
Object-oriented Programming Project
Introduction and software development overview

Dr. Alex Gerdes
TDA367/DIT212 - HT 2018



• Teaching team: 
- Lecturer, course responsible, and examiner: 

‣ Alex Gerdes, alexg@chalmers.se, room EDIT 6479 
- Course assistants: 

‣ Joel Hultin 
‣ Mazdak Farrokhzad 
‣ Robert Krook 
‣ Adam Waldenberg 
‣ Ayberk Tosun 

• Contact information on the course website 

• Student representatives!

Introduction

mailto:alexg@chalmers.se


• A combined Chalmers and GU course 

• Prerequisites: TDA548/DIT012 and TDA552/DIT953 (or 
similar) 

• Course position:

Context

OO 
Programming

OO 
Design and 

Programming

OO 
Analysis, Design 

and Programming

TDA548/DIT012 TDA552/DIT953 TDA367/DIT212



• Knowledge and understanding 
- Explain development methods in technical projects, especially software projects. 
- Describe the phases of a development project: problem identification, 

problem description, user analysis, specification, design, implementation, 
testing, evaluation, etc. 

- Describe basic concepts in software development, e.g. requirements and development 
process. 

• Skills and abilities 
- Run a small scale object-oriented software project in a group according to predefined 

development process and schedule. 
- Write a report of the project, containing a basic requirements specification and the design. 
- Apply skills from previous programming courses, such as design principles and patterns, in 

the design and development phase of the project. 
- Use modern software development tools, such as testing frameworks, 'build automation', 

and version management. 

• Judgement and approach 
- Reflect on good object-oriented design and implementation in the project.

Expected learning outcomes



• What are we going to do? 
- Lectures 
- Workshops 
- Seminar 
- Project 

• Project: 
- Work together in a group to build an application of your choice 

following a (predefined) agile software process  
- Expected application type is a standalone or mobile with a GUI 
- Examples: 

‣ Chat application 
‣ Mail application 
‣ (preferably not a 2D-game, but not forbidden)

Course content



Course organisation

V1 V2 V3 V4 V5-V8 V9

Supervised group meeting

2 self organised group meetings

2 lectures 1 lecture 1 lecture 1 lecture Project 
presentation

Workshop: 
maven / git

Workshop: 
junit / travis

Peer review

Seminar



• Just a few lectures (compared to other courses) 
- Software Development overview (this lecture) 
- User stories and related topics 
- Analysis 
- Design 
- Implementation 

• Purpose: introduce concepts  

• (not many new concepts, exercise what you learned in 
the first year)

Lectures



• Topics 
- Version control: Git 
- Build automation: Maven 
- Unit testing: JUnit 
- Continuous integration: Travis 

• Pointers to tutorials + some instructions 

• Purpose: learn about tools and how to use them 

• Other possible useful tools: 
- Project management: Google Sheets, Trello 
- Communication: Slack

Workshops



• Automate all steps to build, test, package, and deploy 
software 

• Modern software development is highly dependent on 
libraries 

• First thing to investigate if some need: Is there a library?  
- Potentially very complex to handle because of transitive 

dependencies (libraries depend on other libraries, that depends 
on ...)  

• By using build automation software to handle libraries/APIs 
needed by our application we greatly reduce the problems!  

• We accept: Maven and Gradle

Build automation



• Git is mandatory 

• Hosting may be on GitHub or BitBucket, as long as 
assistants and I have access 

• Must use Git in a disciplined way  

• All members should use a (the same) workflow (more in 
workshop) 

Version control: Git



• Size: 4 or 5 persons 

• Register group via link on course website,  

• Do it as soon as possible 
- deadline: Wednesday 5 September at 13:00 

• Find team members with same ambition level, 
important! 

• Not necessarily same skill level 

• Can’t find a group: contact me

Groups



• With assistant:  
- 1 per week, approximately 1 hour 
- Help with process, advice in design, documentation, etc. 
- Not a bug fixer! 
- The group is responsible, you are supposed to push 
- Any problems: contact me 
- Mandatory and on time! 

• Self organised: 
- At least 2 times per week 
- Documented: agendas on GitHub 
- Mandatory!

Group meetings



• Project presentation 
- Demo run application  
- Technical walkthrough  
- Answer questions (from audience)  
- Act as opponents for other group  
- ~ 20 min./group  

• End report 
- Integration of documents written during project 
- Peer review of other group’s design and code 

• Group gets a grade, which is adjusted for each individual

Examination



• The course website contains updated and relevant 
information: 
- Latests news (also announced via a Google-group, subscribe!) 
- Schedule 
- Slides (contains last year’s slides now, will be updated after/

just before lecture) 
- Contact information 
- Project description 
- Lots of pointers to relevant information 
- … 

• Check it regularly!

Course website



Ask questions! 

Reflect!

It is going to be fun!!!



Software development



• Software development is different from classical 
engineering 

• Software development 

• Is often very complex because  

• many stakeholders 

• concepts or specifications not well defined 

• Is a young engineering discipline, somewhat of an art 

• Is in between very informal (dynamic/chaotic)  

• Is normally a group task  

• Is highly dependent on communication  

• How to construct a high quality application fulfilling its 
intent?  

• Unsolved problem... but many impressive applications 
constructed 

Software development

Software Development
How to write an application!

Application

Software have some problems compared to classical engineering …

Software development (of the kind in course)
- Is often very complex because 

- many stakeholder, 
- concepts or specifications not well defined,

- Is a young engineering discipline, somewhat of an art ... 
- Is in between very informal (dynamic/chaotic)
- Is short of mathematical tools (formulas)
- Is normally a group task 
- Is highly dependent on communication

How to construct a high quality application fulfilling its intent?
- Unsolved problem ...
- … but many impressive applications constructed



Waterfall model

[Royce, 1970]: https://dl.acm.org/citation.cfm?id=41801



• Phases 
- Requirements analysis and definition 
- System and software design 
- Implementation and unit testing 
- Integration and system testing 
- Operation and maintenance 

• Main principle: One phase has to be completed before 
the next phase can be started 

• Changes are hard due to implied dependencies 
between artefacts from different phases

Waterfall model



• Customer’s change requests cannot be adapted easily 
by the ongoing development process 

• The process should only be applied when requirements 
are pretty complete, well understood by all 
stakeholders (customer, project manager, developers, 
testers, …), and changes are not expected 

• Only a few projects fulfil all these preconditions at the 
beginning 

• Waterfall model is used for large engineering projects, 
which might be spread over several development sites

Waterfall model - restrictions



Waterfall model

Test
Implementation

Design
0%

20%

40%

60%

80%

100%

Feature 1 Feature 2 Feature 3 Feature 4

Design the whole 
system

src: https://availagility.co.uk/2009/12/22/fidelity-the-lost-dimension-of-the-iron-triangle/



Waterfall model

src: https://availagility.co.uk/2009/12/22/fidelity-the-lost-dimension-of-the-iron-triangle/

Test

Implementation
Design

0%

20%

40%

60%

80%

100%

Feature 1 Feature 2 Feature 3 Feature 4

Implement the whole 
system



Waterfall model

src: https://availagility.co.uk/2009/12/22/fidelity-the-lost-dimension-of-the-iron-triangle/

Test

Implementation
Design

0%

20%

40%

60%

80%

100%

Feature 1 Feature 2 Feature 3 Feature 4

Test the whole  
system



V-model

Specification

Analysis

Design

Implementation

System Test

Integration 
Test

Module Test

Operations
Concept Operation

Decom
position

In
te

gr
at

io
n 

& 
Ve

rif
ica

tio
n

Test cases

Validation

Test cases

Validation

Test cases
Validation

Test cases

Validation



• Applicability 
- Automotive industry 
- Medical and other high-criticality devices 
- Integrating systems and software development 
- Governmental projects with strict documentation standards 
- Hierarchical development projects with subcontractors 
- Large engineering projects spread over several development 

sites 

• Restrictions 
- Change requests due to modified requirements could not be 

adapted easily 
- Sequential development

V-model



Spiral model

http://commons.wikimedia.org/wiki/File:Spiral_model_%28Boehm,_1988%29.svg



1. Objective setting 
• Specific objectives for the phase are identified 

2. Risk assessment and reduction 
• Risks are assessed and activities put in place to reduce the key 

risks 

3. Development and validation 
• A development model for the system is chosen which can be any 

of the generic models (“process model generator” [Boehm, 2000]) 

4. Planning 
• The project is reviewed and the next phase of the spiral is 

planned

Spiral model



Incremental / iterative model

src: http://epf.eclipse.org/wikis/openup/



Iterative – Iteration 1

src: https://availagility.co.uk/2009/12/22/fidelity-the-lost-dimension-of-the-iron-triangle/

Test

Implementation
Design

0%

20%

40%

60%

80%

100%

Feature 1 Feature 2 Feature 3 Feature 4

Build the whole 
system to a low 

fidelity



Iterative – Iteration 2

src: https://availagility.co.uk/2009/12/22/fidelity-the-lost-dimension-of-the-iron-triangle/

Test

Implementation
Design

0%

20%

40%

60%

80%

100%

Feature 1 Feature 2 Feature 3 Feature 4

Review what has 
been built and 

improve the fidelity



Iterative – Iteration 3

src: https://availagility.co.uk/2009/12/22/fidelity-the-lost-dimension-of-the-iron-triangle/

Test

Implementation
Design

0%

20%

40%

60%

80%

100%

Feature 1 Feature 2 Feature 3 Feature 4

Repeat until fidelity 
reaches acceptance 

standards



• System requirements always evolve during a project 

• Iterations are part of larger development projects 

• Iterations require additional time for refactoring of the 
architecture and the code! 

• Pure iteration models do not prescribe delivery after 
each iteration!

Iteration Models

That’s the “evolution” part!



Incremental – increment 1

src: https://availagility.co.uk/2009/12/22/fidelity-the-lost-dimension-of-the-iron-triangle/

Test

Implementation
Design

0%

20%

40%

60%

80%

100%

Feature 1 Feature 2 Feature 3 Feature 4

Build feature 1 
completely



Incremental – increment 2

src: https://availagility.co.uk/2009/12/22/fidelity-the-lost-dimension-of-the-iron-triangle/

Test

Implementation
Design

0%

20%

40%

60%

80%

100%

Feature 1 Feature 2 Feature 3 Feature 4

Build feature 2 
completely



Incremental – increment n

src: https://availagility.co.uk/2009/12/22/fidelity-the-lost-dimension-of-the-iron-triangle/

Test

Implementation
Design

0%

20%

40%

60%

80%

100%

Feature 1 Feature 2 Feature 3 Feature 4

Repeat until all 
required features are 

done



Incremental delivery

Define outline 
requirements

Assign 
requirements to 

increments

Design system 
architecture

Develop system 
increment

Validate 
increment

Integrate 
incrementValidate system

Final delivery

System incomplete

Validate system

?



Incremental delivery

Define outline 
requirements

Assign 
requirements to 

increments

Design system 
architecture

Develop system 
increment

Validate 
increment

Integrate 
incrementValidate system

Final delivery

System incomplete

Validate system

?



• Customer value can be delivered with each increment 
so system functionality is early available for customer’s 
feedback 

• Early increments act as prototype to help elicit 
requirements for later increments 

• Reduced risk of project failure 

• The highest priority system services tend to receive the 
most testing

Incremental delivery



Iterative–incremental - iteration 1

src: https://availagility.co.uk/2009/12/22/fidelity-the-lost-dimension-of-the-iron-triangle/

Test

Implementation
Design

0%

20%

40%

60%

80%

100%

Feature 1 Feature 2 Feature 3 Feature 4

Build a small part of 
the system to low 

fidelity



Iterative–incremental - iteration 2

src: https://availagility.co.uk/2009/12/22/fidelity-the-lost-dimension-of-the-iron-triangle/

Test

Implementation
Design

0%

20%

40%

60%

80%

100%

Feature 1 Feature 2 Feature 3 Feature 4

Review it and figure 
out how to extend 

and improve it



Iterative–incremental - iteration 3

src: https://availagility.co.uk/2009/12/22/fidelity-the-lost-dimension-of-the-iron-triangle/

Test

Implementation
Design

0%

20%

40%

60%

80%

100%

Feature 1 Feature 2 Feature 3 Feature 4

Review it and figure 
out how to extend 

and improve it



Iterative–incremental - iteration k

src: https://availagility.co.uk/2009/12/22/fidelity-the-lost-dimension-of-the-iron-triangle/

Test

Implementation
Design

0%

20%

40%

60%

80%

100%

Feature 1 Feature 2 Feature 3 Feature 4

Review it and figure 
out how to extend 

and improve it



Iterative–incremental - iteration n

src: https://availagility.co.uk/2009/12/22/fidelity-the-lost-dimension-of-the-iron-triangle/

Test

Implementation
Design

0%

20%

40%

60%

80%

100%

Feature 1 Feature 2 Feature 3 Feature 4

Repeat until all 
required features are 

done



• Different process lifecycles deliver different value at different 
points in time 

• ”Best” lifecycle depends on the concrete project (see 
”Selecting a Process”): there’s no ”one size fits all” 

• Waterfall and V-Model driven by up-front requirement and 
design 

• Spiral model is risk-driven 

• Iterative, incremental, and iterative-incremental lifecycles 
deliver value in regular intervals

Lifecycles – Summary



Lifecycle model and processes



Choosing a Software Process
Choosing a Software Process

Decision 
for a 

design 
process

Lifecycle

Customer 
Demands

Development 
Approach

Organisational
Rules

35



• Availability of the customer or a representative 

• Procurement process of the customer 

• External regulations 

• Longevity of the system 

• Scale of the system 

• Criticality of the system 

• Scale of the development effort 

• Expected duration of the development effort 

• Distribution of the development team 

• Expected maintenance approach 

• …

Criteria for Process Selection



• Agile processes expect 
- team members volunteer to take up tasks that need to be 

done 
- team members to take responsibility for task completion 
- team members to take responsibility for communicating 

issues and problems 
- the team as a whole establishes norms and processes to 

help them achieve their goals 
- managers to create a work environment characterised by 

trust and continuous improvement 
- management to understand that the team is self-organised 

and responsible 
- that the development team is physically co-located

Criteria for Process Selection: Teamwork



Selection Matrix

Factors Waterfall V-Shaped Spiral Iterative and 
Incremental

Agile Methodologies

Unclear User 
Requirement

Poor Poor Excellent Good Excellent

Unfamiliar Technology Poor Poor Excellent Good Poor

Complex System Good Good Excellent Good Poor

Reliable system Good Good Excellent Good Good

Short Time Schedule Poor Poor Excellent Excellent Excellent

Strong Project 
Management

Excellent Excellent Excellent Excellent Excellent

Cost limitation Poor Poor Poor Excellent Excellent

Visibility of 
Stakeholders

Good Good Excellent Good Excellent

Skills limitation Good Good Poor Good Poor

Documentation Excellent Excellent Good Excellent Poor

Component reusability Excellent Excellent Poor Excellent Poor

src: https://melsatar.wordpress.com/2012/03/21/choosing-the-right-software-development-life-cycle-model/



Course process



Course process

Write User Stories and  
sketch a GUI

Select User Stories and use 
GUI to create object model

Dry run the model

Implement and test 
 the model

Expand model

Finished?

Idea 

No?

Text, pictures

UML

JUnit, Java



Course process

Write User Stories and  
sketch a GUI

Select User Stories and use 
GUI to create object model

Dry run the model

Implement and test 
 the model

Expand model

Finished?

Idea 

User stories / requirements

Analysis

Design & 
Implementation



Iteration planning
Iteration Planning

Iterations Last Iteration

 w1 w3 Demo

First runnable 
version Add functionality

Iteration 1

w8

Iterations and weeks
- Must have something to run late week 3 (probably some tests, more later …)!



• Effective communication is a fundamental requirement for 
software development 

• Find a room with a whiteboard and gather  
- Don't spread the group!  

• Use issue trackers, can't remember everything...  
- Most IDE have “TODO” lists (use // TODO in NetBeans, IntelliJ, …) 
- Web based issue trackers  

• Wordlist for definitions 
- Have experienced group members using same notion for different 

concepts! Confusion ... time lost… 
-  If any ambiguity write down in wordlist (and/or as class comment)

Communication



[Sommerville, 2011] Ian Sommerville. Software Engineering – 9th Edition. Pearson, 2011 

[Royce, 1970] Winston Royce. Managing the Development of Large Software Systems. Proceedings of 
IEEE WESCON 26, pages 1–9, August 1970 

[Forsberg & Mooz, 1991] Kevin Forsberg and Harold Mooz. The Relationship of System Engineering to 
the Project Cycle. In Proceedings of the First Annual Symposium of National Council on System 
Engineering, pages 57–65, October 1991 

[Boehm, 1988] Barry Boehm. A Spiral Model of Software Development and Enhancement. ACM 
SIGSOFT Software Engineering Notes, ACM, 11(4):14-24, August 1986 

[Boehm, 2000] Barry Boehm. Spiral Development: Experience, Principles,and Refinements. Special 
Report CMU/SEI-2000-SR-008, July 2000 

[Henderson-Sellers & Ralyté, 2010] Brian Henderson-Sellers and Jolita Ralyté. Situational method 
engineering: State-of-the-art review, Journal of Universal Computer Science, 16 (2010), pp. 424–478. 

[Gren et al., 2016] Lucas Gren, Richard Torkar, Robert Feldt. Group Development and Group Maturity 
when Building Agile Teams, submitted to JSS, 2016 

Jeff Patton on iterative vs. incremental and what it means to produce something ”shippable”: http://
jpattonassociates.com/dont_know_what_i_want/

Further reading


