Learning Modern 3D Graphics Programming

Jason L. McKesson

Learning Modern 3D Graphics Programming
Jason L. McKesson
Copyright © 2012 Jason L. McKesson

Table of Contents

F N oo 1N 1 TS = To o PP PPPTP iv
WhY RE80 TRIS BOOK? ...ttt ettt e ettt e ettt e et et b e ettt et et et e et e e e et eeb e e e et e e eenaas iv
WWHEE Y OU INEEU ..ottt ettt e ettt oo ettt oo e et et oo e et et 4o et e e bt e e et e bt e e et e b e e e e eebat e et es bt e eeeeba s e eeenbnneaeenes v
Organization Of THIS BOOKuuuiiiiiiie et e et et e ettt e ettt e e et et e e et et e e e e ab s %
Conventions USEA iN THIS BOOKociiutiiiiiii ettt ettt ettt ettt e et ettt e e et et e et e et n e e e e eter e e e eabeneeeenbnaaeeens Vi

BUITAING the TULOMEIS ...ttt e et oottt e et et e e et e b oo et e b e e et e b e e et s b e e et et e e e enbaeeas 1

[I 0 L= =T Lo O PRSPPI POPPTTR 3
Fg11oTo (U oi (oo H PO PP PP 4
O o = o T = o | = PP 21
2. PlaYING WITN COLOIS ...ttt ettt ettt e ettt e oo ettt oo et e et et et ko e e et e e et e e a et e e a et e e et e aa e e enaans 34

T o (o g o TP P PP PPPPPTPRPPPIN 43
3. OPENGL'S MOVING THANGIE ...ttt ettt et ettt e e ettt e e et et et e e et eb et e e et et e e e e e e bat e e e eeba s e e e eebaneeeentnnaeeenes 44
@ T= o = = PP PP PPPPPTI 54
IO o L= v R R D= o1 o PP PPTRPPPPPTN 74
OO o L= v Nl WY o 1 o] o TP PPPPPTRUPPPPN 97
A A e g o I T o T 1Y Tl (L] o E TSP PP UPPPPPTPPPINt 121
AT 111 o O 1= 01 = o E PSP UPPPTTR 142

RV = (o TSP PP PP PPPPTTRPPPPIN 158
L 11 £= 3 @ o PSP UPPPTTR 159
O ot I o | S PP PP PPPPTT 185
S 1T = PP TSUPPTR 208
12, DYNAIMIC RBINJE ... eeeteieteit ettt ettt ettt ettt ettt oo ettt oo et eh oo et e b oo et e b e e et e b e e et et e e et e b e e et b e e e ra s 229
13, LE€S 8N TMPOSIONSt.eeeiti ettt ettt ettt ettt ettt et e h 4o et e b oo et et oo et e bt e et e b e e et eb e e et eb e e e e bb e e e e ne s 247

Y = (L0] oo PP PSP PP UPPPTT 266
T4, TEXIUIES @& NOL PICIUMNES ... ee ittt ettt oottt et ettt oot et e e et et b s e et e et e et et e e et e e e e et e b e e et et neeeenans 267
R = 0 11T oS PP 289
16. GAMMA BNA TEXIUINESeeeeeeeett ettt ettt e et e e et oo et et oo ettt e e et e e bt e ettt bt e e et e bt e e et et e e e et e b e e et e e b e e et bb e e e e nb e eeesbnes 311
17, SPOUIGNE ON TEXIUIES ... eeett ettt ettt ettt oottt ettt e et e et e et e e b e ettt bt et e e bt et e e e et e et e et e nb e e e ennnns 320

RV = 01 o = T PP PT PRSPPI 339

A A Yo 1V o= o I o o1 oo PSP T TP PPPPTT 340

F N ¥ 0T= S (1 o | PSP PRSPPI 341
Bl oo e 1 1= = TP TUPPPTPUUPPPN 341

B. History Of PC GraphiCS HAMGWEIEcoiiiiieiiiii ettt e ettt e et et e et et e e ettt e e et et e e e e et e e e eren s 343
LY eTe e o o RN 1Y o] o PSP PPPPRTR 343
DYNAMIte COMDINENS ... ittt ettt e e et h oo et e b e et e e bt et e b e et e b bt et e b e et e bb e e e et e 343
VETICES @MU REGISIEIS ...t ieiiiti ettt ettt ettt oottt e ettt e et et oo et ettt e et e e bt e et et bt e et e e bt e et e e e e e e e e e e aa e e enaas 345
PrOgrammMING @ LBSEceeuuieieiii ettt ettt ettt ettt e ettt e e ettt e et et e et et et et et e e et e e e e e e e e a e e eaans 346
(D= o< 0T = 0oy TP U PP UPPPTRRPN 348
Y LeTe (= £ W) 1o (oo R PP TPPPT TR 349

C. Getting Started WIth OPENGLiiiiii ettt ettt e et et oo ettt e e et e te 4 et e e te o e et e th e e e e ettt e e eebe e e et e bt e e e eetb e e eeeneaeeee 352
IVIBNUBL USBOE ...t ettt ettt ettt 4otttk 4ot ettt oo e ettt oo ettt bt e et e b b e e et e e b e e et e b a e e et eab e e e eat e e enraaeaae 352

About this Book

Threedimensional graphics hardwareisfast becoming, not merely astaple of computer systems, but an indispensable component. Many operating
systems directly use and even require some degree of 3D rendering hardware. Even in the increasingly important mobile computing space, 3D
graphics hardware is a standard feature of all but the lowest power devices.

Understanding how to make the most of that hardware is a difficult challenge, particularly for someone new to graphics and rendering.

Why Read This Book?

There are many physical booksfor teaching graphics. There are many more online repositories of knowledge, inthe form of wikis, blogs, tutorials,
and forums. So what does this book offer that others do not?

Programmability. Virtually all of the aforementioned sources instruct beginners using something called “fixed functionality.” This represents
configurations in older graphics processors that define how a particular rendering operation will proceed. It is generally considered easiest to
teach neophyte graphics programmers using the fixed function pipeline.

Thisisconsidered true becauseit is easy to get something to happen with fixed functionality. It's simpler to make pictures that ook like something
real. The fixed function pipelineislike training wheels for abicycle.

There are downsides to this approach. First, much of what islearned with this approach must be inevitably abandoned when the user encountersa
graphics problem that must be solved with programmability. Programmability wipes out almost all of the fixed function pipeline, so the knowledge
does not easily transfer.

A more insidious problem is that the fixed function pipeline can give the illusion of knowledge. A user can think they understand what they
are doing, but they're really just copy-and-pasting code around. Programming thus becomes akin to magical rituals: you put certain bits of code
before other hits, and everything seems to work.

This makes debugging nightmarish. Because the user never really understood what the code does, the user is unable to diagnose what a particul ar
problem could possibly mean. And without that ability, debugging becomes a series of random guesses as to what the problem is.

By contrast, you cannot use a programmable system successfully without first understanding it. Confronting programmable graphics hardware
means confronting issues that fixed function materials often gloss over. This may mean a slower start overall, but when you finally get to the
end, you truly know how everything works.

Another problem is that, even if you truly understand the fixed function pipeline, it limits how you think about solving problems. Because of
itsinflexibility, it focuses your mind along certain problem solving possibilities and away from others. It encourages you to think of textures as
pictures; vertex data as texture coordinates, colors, or positions; and the like. By its very nature, it limits creativity and problem solving.

Lastly, even on mobile systems, fixed functionality is generally not available in the graphics hardware. Programmability is the order of the day
for most graphics hardware, and this will only become more true in the future.

What this book offers is beginner-level instruction on what many consider to be an advanced concept. It teaches programmable rendering for
beginning graphics programmers, from the ground up.

Thisbook also covers some important material that is often neglected or otherwise rel egated to “advanced” concepts. These concepts are not truly
advanced, but they are often ignored by most introductory material because they do not work with the fixed function pipeline.

Thisbook isfirst and foremost about |earning how to be a graphics programmer. Therefore, whenever it is possible and practical, this book will
present material in a way that encourages the reader to examine what graphics hardware can do in new and interesting ways. A good graphics
programmer sees the graphics hardware as a set of tools to fulfill their needs, and this book tries to encourage this kind of thinking.

One thing this book is not, however, is a book on graphics APIs. While it does use OpenGL and out of necessity teach rendering concepts in
terms of OpenGL, it isnot truly abook that is about OpenGL. It is not the purpose of this book to teach you all of theins and outs of the OpenGL
API.Therewill be parts of OpenGL functionality that are not dealt with because they are not relevant to any of the lessons that this book teaches.
If you already know graphics and are in need of abook that teaches modern OpenGL programming, thisis not it. It may be useful to you in that
capacity, but that is not this book's main thrust.

About this Book

This book isintended to teach you how to be a graphics programmer. It is not aimed at any particular graphicsfield; it is designed to cover most
of the basics of 3D rendering. So if you want to be a game devel oper, a CAD program designer, do some computer visualization, or any number
of things, this book can still be an asset for you.

This does not mean that it covers everything thereis about 3D graphics. Hardly. It triesto provide a sound foundation for your further exploration
in whatever field of 3D graphicsyou are interested in.

One topic this book does not cover in depth is optimization. The reason for this is simply that serious optimization is an advanced topic.
Optimizations can often be platform-specific, different for different kinds of hardware. They can also be API-specific, as some APIshave different
optimization needs. Optimizations may be mentioned hereand there, but it issimply too complex of asubject for abeginning graphics programmer.
Thereis achapter in the appendix covering optimization opportunities, but it only provides afairly high-level look.

What You Need

Thisisabook for beginning graphics programmers; it can also serve as abook for those familiar with fixed functionality who want to understand
programmable rendering better. But thisis not a book for beginning programmers.

Y ou are expected to be able to read C and reasonable C++ code. If “Hello, world!” isthe extent of your C/C++ knowledge, then perhapsyou should
write some more substantial code before proceeding with trying to render images. 3D graphics rendering is simply not a beginner programming
task; thisisjust as true for traditional graphics learning as for modern graphics learning.

These tutorials should be transferable to other languages aswell. If you can read C/C++, that is enough to understand what the code is doing. The
text descriptions that explain what the code does are also sufficient to get information out of these tutorials.

Any substantial discussion of 3D rendering requires a discussion of mathematics, which are at the foundation of all 3D graphics. This book
expects you to know basic geometry and algebra.

Thetutorialswill present the more advanced math needed for graphics asit becomes necessary, but you should have at least aworking knowledge
of geometry and algebra. Linear algebrais not required, though it would be helpful.

The code tutorialsin this book use OpenGL as their rendering API. Y ou do not need to know OpenGL, but to execute the code, you must have a
programming environment that allows OpenGL. Specifically, you will need hardware capable of running OpenGL version 3.3. This means any
GeForce 8xxx or better, or any Radeon HD-class card. These are also called “Direct3D 10" cards, but you do not need Windows Vistaor 7 to
use their advanced features through OpenGL.

Organization of This Book

This book is broken down into a number of general subjects. Each subject contains several numbered chapters called tutorials. Each tutorial
describes severa related concepts. In virtually every case, each concept is demonstrated by a companion set of code.

Each tutorial begins with an overview of the concepts that will be discussed and demonstrated. At the end of each tutorial is a review section
and a glossary of all terms introduced in that tutorial. The review section will explain the concepts presented in the tutorial. It will also contain
suggestions for playing with the source code itself; these are intended to further your understanding of these concepts. If the tutorial introduced
new OpenGL functions or functions for the OpenGL shading language, they will be reviewed here as well.

This is a book for beginning graphics programmers. Graphics is a huge topic, and this book will not cover every possible effect, feature, or
technique. This book will also not cover every technique in full detail. Sometimes techniques will be revisited in later materials, but there simply
isn't enough space to say everything about everything. Therefore, when certain techniques are introduced, there will be a section at the end
providing some cursory examination of more advanced techniques. Thiswill help you further your own research into graphics programming, as
you will know what to search for online or in other books.

Each tutorial ends with a glossary of all of the terms defined in that tutorial.
Browser Note
This website and these tutorials make extensive use of SVG images. Basic SVG support is in all major browsers except al Internet

Explorer versions before version 9. If you are content with these versions of Internet Explorer (or unable to upgrade), consider installing
the Google Chrome Frame add-on for IE8. Thiswill allow you to see the images correctly.

About this Book

Conventions used in This Book

Text in this book is styled along certain conventions. The text styling denotes what the marked-up text represents.
« defined term: Thisterm will have a definition in the glossary at the end of each tutorial.
* Functi onNames: These can bein C, C++, or the OpenGL Shading Language.

* nameCf Vari abl e: These can bein C, C++, or the OpenGL Shading Language.

G._ENUMERATCRS

Narmes/ O / Pat hs/ And/ Fi | es

K: The keyboard key “K,” which is not the same as the capital |etter “K”. The latter iswhat you get by pressing Shift+K.

Vi

Building the Tutorials

Thesetutoriasrequireanumber of external librariesin order to function. The specific version of theselibraries that the tutorials use are distributed
with the tutorials. The tutoria source distribution [http://bitbucket.org/alfonse/gltut/downloads] can be found online. This section will describe
each of the external libraries, how to build them, and how to build the tutorials themselves. Windows and Linux builds are supported.

Y ou will need minimal familiarity with using the command linein order to build these tutorials. Also, any mention of directoriesisalwaysrelative
to where you unzipped this distribution.

File Structure

Thelayout of the filesin the tutorial directory is quite smple. Thef r anewor k directory and all directories of the form Tut * contain all of the
source code for the tutorials themselves. Each Tut * directory has the code for the various tutorials. The f r amewor k directory simply contains
utility code that is commonly used by each tutorial.

Each tutorial contains one or more projects; each project is referenced in the text for that tutorial.

The Docunent s directory contains the source for the text documentation explaining how these tutorials work. This sourceisin xml files using
the DocBook 5.0 format.

Every other directory contains the code and build files for alibrary that the tutorials require.

Necessary Utilities

In order to build everything, you will need to download the Premake 4 [http://industriousone.com/premake] utility for your platform of choice.

Premake is a utility like CMake [http://www.cmake.org/]: it generates build files for a specific platform. Unlike CMake, Premake is strictly a
command-line utility. Premake's build scripts are written in the Lua language [http://www.lua.org/home.html], unlike CMake's build scripts that
use their own language.

Note that Premake only generates build files; once the build files are created, you can use them as normal. It can generate project filesfor Visual
Studio, Code::Blacks [http://www.codeblocks.org/], and X Code, as well as GNU Makefiles. And unless you want to modify one of the tutorials,
you only need to run Premake once for each tutorial.

The Premake download comes as a pre-built executable for al platforms of interest, including Linux.

Unofficial OpenGL SDK

The Unofficial OpenGL SDK [http://glsdk.sourceforge.net/docs/html/index.html] is an aggregation of libraries, unifying a number of tools for
developing OpenGL applications, al bound together with a unified build system. A modified SDK distribution is bundled with these tutorials;
this distro does not contain the documentation or GLFW that comes with the regular SDK.

The SDK hislibrary uses Premake to generate its build files. So, with premaked.exe in your path, go to the gl sdk directory. Type pr emake4
pl at , wherepl at isthe name of the platform of choice. For Visual Studio 2008, thiswould be “vs2008”; for V S2010, thiswould be “vs2010.”
Thiswill generate Visual Studio projects and solution files for that particular version.

For GNU and makefile-based builds, thisis*gmake”. Thiswill generate amakefile. To build for debug, usemake confi g=debug; similarly,
to build for release, use make confi g=r el ease.

Using the generated build files, compile for both debug and release. You should build the entire solution; the tutorials use all of the libraries
provided.

Note that there is no execution of make i nstal | or similar constructs. The SDK is designed to be used where it is; it does not install itself
to any system directories on your machine. Incidentally, neither do these tutorials.

http://bitbucket.org/alfonse/gltut/downloads
http://bitbucket.org/alfonse/gltut/downloads
http://industriousone.com/premake
http://industriousone.com/premake
http://www.cmake.org/
http://www.cmake.org/
http://www.lua.org/home.html
http://www.lua.org/home.html
http://www.codeblocks.org/
http://www.codeblocks.org/
http://glsdk.sourceforge.net/docs/html/index.html
http://glsdk.sourceforge.net/docs/html/index.html

Building the Tutorials

Tutorial Building

Each tutorial directory has a pr emake4. | ua file; thisfile is used by Premake to generate the build files for that tutorial. Therefore, to build
any tutorial, you need only go to that directory and type pr enake4 pl at , then use those build files to build the tutorial .

Each tutorial will generally have more than one source file and generate multiple executables. Each executable represents a different section of
the tutorial, as explained in that tutorial's documentation.

If you want to build al of the tutorials at once, go to the root directory of the distribution and use Premake on the pr enake4. | ua filein that
directory. It will put all of the tutorialsinto one giant project that you can build.

If you look at any of the tutorial source files, you will not find the mai n function defined anywhere. This function is defined in f r amewor k/
f ramewor k. cpp; itand all of the other sourcefilesinthef r anewor k directory is shared by every tutoria. It does the basic boilerplate work:
creating a FreeGLUT window, etc. This allows the tutorial source filesto focus on the useful OpenGL -specific code.

Part |. The Basics

Graphics programming can be a daunting task when starting out. The rendering pipeline involves a large number of steps, each dealing with a
variety of math operations. It has stages that run actual programs to compute results for the next. Mastering this pipeline, being able to use it as
atool to achieve avisual effect, isthe essence of being a graphics programmer.

This section of the book will introduce the basic math necessary for 3D graphics. It will introduce the rendering pipeline as defined by OpenGL.
And it will demonstrate how data flows through the graphics pipeline.

Introduction

Unlike most sections of thistext, thereis no source code or project associated with this section. Here, we will be discussing vector math, graphical
rendering theory, and OpenGL. This serves as a primer to the rest of the book.

Vector Math

This book assumes that you are familiar with algebra and geometry, but not necessarily with vector math. Later material will bring you up to
speed on more complex subjects, but this will introduce the basics of vector math.

A vector can have many meanings, depending on whether we are talking geometrically or numerically. In either case, vectors have dimensionality;
this represents the number of dimensions that the vector has. A two-dimensional vector is restricted to a single plane, while a three-dimensional
vector can point in any physical space. Vectors can have higher dimensions, but generally we only deal with dimensions between 2 and 4.

Technically, avector can have only one dimension. Such a vector is called ascalar.

In terms of geometry, a vector can represent one of two concepts: a position or a direction within a particular space. A vector position represents
a specific location in space. For example, on this graph, we have a vector position A:

Figure 1. Position Vectors

Y

A vector can also represent a direction. Direction vectors do not have an origin; they simply specify a direction in space. These are all direction
vectors, but the vectors B and D are the same, even though they are drawn in different locations:

Introduction

Figure 2. Direction Vectors

A

That's all well and good for geometry, but vectors can a so be described numerically. A vector in this case is a sequence of numbers, one for each

dimension. So a two-dimensional vector has two numbers; a three-dimensional vector has three. And so forth. Scalars, numerically speaking,
arejust asingle number.

Y

Each of the numberswithin avector is called acomponent. Each component usually has aname. For our purposes, the first component of avector
isthe X component. The second component isthe Y component, the third isthe Z, and if thereisafourth, itiscalled W.

When writing vectors in text, they are written with parenthesis. So a 3D vector could be (0, 2, 4); the X component is 0, the Y component is 2,
and the Z component is 4. When writing them as part of an equation, they are written as follows:

X

y
z

A=

In math equations, vector variables are either in boldface or written with an arrow over them.

When drawing vectors graphically, one makes a distinction between position vectors and direction vectors. However, numerically there is no
difference between the two. The only difference is in how you use them, not how you represent them with numbers. So you could consider a
position a direction and then apply some vector operation to them, and then consider the result a position again.

Though vectors have individual numerical components, a vector as awhole can have a number of mathematical operations applied to them. We
will show afew of them, with both their geometric and numerical representations.

Vector Addition. You can take two vectors and add them together. Graphically, this works as follows:

Introduction

Figure 3. Vector Addition

A+B

Y

Remember that vector directions can be shifted around without changing their values. So if you put two vectors head to tail, the vector sum is
simply the direction from the tail of the first vector to the head of the last.

Introduction

Figure 4. Vector Addition Head-to-Tail
A

A+B

Y

Numerically, the sum of two vectorsisjust the sum of the corresponding components:

Equation 1. Vector Addition with Numbers

Ay bx ay t bx
#é_ + % = || + by = ay + by
az bZ a‘Z + bZ

Any operation whereyou perform an operation on each component of avector iscalled acomponent-wise operation. Vector addition iscomponent-
wise. Any component-wise operation on two vectors requires that the two vectors have the same dimensionality.

Vector Negation and Subtraction. You can negate a vector. This reversesits direction:

Introduction

Figure 5. Vector Negation

Y

Numerically, this means negating each component of the vector.

Equation 2. Vector Negation

cy - dy
-’é:- a :'ay
a, G

Just as with scalar math, vector subtraction is the same as addition with the negation of the second vector.

Introduction

Figure 6. Vector Subtraction
A

. B

Y

Vector Multiplication. Vector multiplication is one of the few vector operationsthat has no real geometric equivalent. To multiply adirection
by another, or multiplying a position by another position, does not really make sense. That does not mean that the numerical equivalent is not
useful, though.

Multiplying two vectors numerically is simply component-wise multiplication, much like vector addition.

Equation 3. Vector Multiplication

ay bx ax* bx
’é*%: ay * by = ay*by
a-z bZ aZ* bZ

Vector/Scalar Operations. Vectors can be operated on by scalar values. Recall that scalars are just single numbers. Vectors can be multiplied
by scalars. This magnifies or shrinks the length of the vector, depending on the scalar value.

Introduction

Figure 7. Vector Scaling

3*A

Y

Numerically, thisis a component-wise multiplication, where each component of the vector is multiplied with each component of the scalar.

Equation 4. Vector-Scalar Multiplication

a, S* ay
s*h=s*||=[s*a,
%l |s*a,

Scalars can also be added to vectors. This, like vector-to-vector multiplication, has no geometric representation. It is a component-wise addition
of the scalar with each component of the vector.

Equation 5. Vector-Scalar Addition

a, S+ ay
s+=s+|3|=|stq
Gl |s+a,

Vector Algebra. Itisuseful to know abit about the relationships between these kinds of vector operations.

Vector addition and multiplication follow many of the same rules for scalar addition and multiplication. They are commutative, associative, and
distributive.

Equation 6. Vector Algebra

Commutative: A+b=b+% a*b=bh*%
Associative: A+ (b+t)=(a+b)+t ax(brt)=(a*b)+¢
Distributive: &* (h+%)=(a*b) + (a* %)

10

Introduction

V ector/scalar operations have similar properties.
Length. Vectors have alength. The length of avector direction is the distance from the starting point to the ending point.

Numerically, computing the distance requires this equation:

Equation 7. Vector Length
#a# =Vval+al+a)

This uses the Pythagorean theorem to compute the length of the vector. Thisworks for vectors of arbitrary dimensions, not just two or three.

Unit Vectors and Normalization. A vector that has a length of exactly one is called a unit vector. This represents a pure direction with a
standard, unit length. A unit vector variable in math equations is written with a” over the variable name.

A vector can be converted into a unit vector by normalizing it. This is done by dividing the vector by its length. Or rather, multiplication by
the reciprocal of the length.

Equation 8. Vector Normalization
dx
HA#

A 1 _ ay
Lty R

Thisisnot all of the vector math that we will use in these tutorials. New vector math operations will beintroduced and explained as needed when
they are first used. And unlike the math operations introduced here, most of them are not component-wise operations.

Range Notation. This book will frequently use standard notation to specify that a value must be within a certain range.

If avalueis constrained between 0 and 1, and it may actually have the values 0 and 1, then it is said to be “on the range” [0, 1]. The square
brackets mean that the range includes the value next to it.

If avalueis constrained between 0 and 1, but it may not actually have a value of 0O, then it is said to be on the range (0, 1]. The parenthesis
means that the range does not include that value.

If avalueis constrained to O or any number greater than zero, then the infinity notation will be used. This range is represented by [0,). Note
that infinity can never be reached, so it is always exclusive. A constraint to any number less than zero, but not including zero would be on the
range (-oo, 0).

Graphics and Rendering

Thisis an overview of the process of rendering. Do not worry if you do not understand everything right away; every step will be covered in
lavish detail in later tutorials.

Everything you see on your computer's screen, even the text you are reading right now (assuming you are reading this on an electronic display
device, rather than a printout) is simply a two-dimensional array of pixels. If you take a screenshot of something on your screen, and blow it
up, it will look very blocky.

11

Introduction

Figure 8. An Image

Each of these blocksis a pixel. The word “pixel” is derived from the term “Picture Element”. Every pixel on your screen has a particular color.
A two-dimensional array of pixelsiscaled an image.

The purpose of graphics of any kind is therefore to determine what color to put in what pixels. This determination is what makes text look like
text, windows look like windows, and so forth.

Since all graphics are just a two-dimensional array of pixels, how does 3D work? 3D graphics is thus a system of producing colors for pixels
that convince you that the scene you are looking at is a 3D world rather than a 2D image. The process of converting a 3D world into a 2D image
of that world is called rendering.

There are several methods for rendering a 3D world. The process used by real-time graphics hardware, such as that found in your computer,
involves avery great deal of fakery. This processis called rasterization, and arendering system that uses rasterization is called arasterizer.

In rasterizers, al objects that you see are empty shells. There are techniques that are used to allow you to cut open these empty shells, but this
simply replaces part of the shell with another shell that shows what the inside looks like. Everything is a shell.

All of these shellsare made of triangles. Even surfacesthat appear to beround are merely trianglesif you look closely enough. There aretechniques
that generate more triangles for objects that appear closer or larger, so that the viewer can almost never see the faceted silhouette of the object.
But they are always made of triangles.

Note

Some rasterizers use planar quadrilaterals: four-sided objects, where al of the points lie in the same plane. One of the reasons that
hardware-based rasterizers always use triangles is that all of the lines of atriangle are guaranteed to be in the same plane. Knowing this
makes the rasterization process less complicated.

An object ismade out of a series of adjacent triangles that define the outer surface of the object. Such series of triangles are often called geometry,
amodel or amesh. These terms are used interchangeably.

The process of rasterization has several phases. These phases are ordered into a pipeline, wheretriangles enter from thetop and a2D imageisfilled
in at the bottom. Thisis one of the reasonswhy rasterization is so amenabl e to hardware acceleration: it operates on each triangle one at atime, in
a specific order. Triangles can be fed into the top of the pipeline while triangles that were sent earlier can still be in some phase of rasterization.

12

Introduction

The order in which triangles and the various meshes are submitted to the rasterizer can affect its output. Always remember that, no matter how
you submit the triangular mesh data, the rasterizer will process each triangle in a specific order, drawing the next one only when the previous
triangle has finished being drawn.

OpenGL isan API for accessing a hardware-based rasterizer. As such, it conformsto the model for rasterization-based 3D renderers. A rasterizer
receives a sequence of triangles from the user, performs operations on them, and writes pixels based on thistriangle data. Thisisasimplification
of how rasterization worksin OpenGL, but it is useful for our purposes.

Triangles and Vertices. Triangles consist of 3 vertices. A vertex is a collection of arbitrary data. For the sake of simplicity (we will expand
upon this later), let us say that this data must contain a point in three dimensional space. It may contain other data, but it must have at least this.
Any 3 points that are not on the same line create atriangle, so the smallest information for atriangle consists of 3 three-dimensional points.

A point in 3D space is defined by 3 numbers or coordinates. An X coordinate, aY coordinate, and a Z coordinate. These are commonly written
with parenthesis, asin (X, Y, Z).

Rasterization Overview

The rasterization pipeline, particularly for modern hardware, is very complex. Thisisavery simplified overview of this pipeline. It is necessary
to have asimple understanding of the pipeline before we look at the details of rendering things with OpenGL. Those detail s can be overwhelming
without a high level overview.

Clip Space Transformation. The first phase of rasterization is to transform the vertices of each triangle into a certain region of space.
Everything within this volume will be rendered to the output image, and everything that falls outside of this region will not be. This region
corresponds to the view of the world that the user wantsto render.

The volume that the triangle is transformed into is called, in OpenGL parlance, clip space. The positions of the triangl€e's vertices in clip space
are called clip coordinates.

Clip coordinatesarealittle different from regular positions. A positionin 3D space has 3 coordinates. A positionin clip space hasfour coordinates.
The first three are the usual X, Y, Z positions; the fourth is called W. This last coordinate actually defines what the extents of clip space are
for this vertex.

Clip space can actually be different for different vertices within atriangle. It is aregion of 3D space on the range [-W, W] in each of the X, Y,
and Z directions. So vertices with a different W coordinate are in a different clip space cube from other vertices. Since each vertex can have an
independent W component, each vertex of atriangle existsin its own clip space.

In clip space, the positive X direction isto theright, the positive Y direction is up, and the positive Z direction is away from the viewer.

The process of transforming vertex positions into clip space is quite arbitrary. OpenGL provides alot of flexibility in this step. We will cover
this step in detail throughout the tutorials.

Because clip space is the visible transformed version of the world, any triangles that fall outside of this region are discarded. Any triangles that
are partially outside of this region undergo a process called clipping. This breaks the triangle apart into a number of smaller triangles, such that
the smaller triangles are all entirely within clip space. Hence the name * clip space.”

Normalized Coordinates. Clip space is interesting, but inconvenient. The extent of this space is different for each vertex, which makes
visualizing atrianglerather difficult. Therefore, clip spaceistransformed into amore reasonable coordinate space: normalized device coordinates.

This processisvery smple. The X, Y, and Z of each vertex's position is divided by W to get normalized device coordinates. That is all.

The space of normalized device coordinatesis essentially just clip space, except that therange of X, Y and Z are[-1, 1]. Thedirections are all the
same. Thedivision by W is an important part of projecting 3D triangles onto 2D images; we will cover that in afuture tutorial.

13

Introduction

Figure 9. Nor malized Device Coor dinate Space

, -Y
The cube indicates the boundaries of normalized device coordinate space.

Window Transformation. The next phase of rasterization is to transform the vertices of each triangle again. This time, they are converted
from normalized device coordinates to window coordinates. As the name suggests, window coordinates are relative to the window that OpenGL
is running within.

Even though they refer to the window, they are till three dimensional coordinates. The X goesto the right, Y goes up, and Z goes away, just as
for clip space. The only difference is that the bounds for these coordinates depends on the viewable window. It should also be noted that while
these are in window coordinates, none of the precision islost. These are not integer coordinates; they are still floating-point values, and thus they
have precision beyond that of asingle pixel.

The boundsfor Z are [0, 1], with O being the closest and 1 being the farthest. Vertex positions outside of this range are not visible.

Note that window coordinates have the bottom-left position as the (0, 0) origin point. This is counter to what users are used to in window
coordinates, which ishaving thetop-left position be the origin. There aretransformtricksyou can play to allow you to work in atop-l€eft coordinate
space if you need to.

The full details of this process will be discussed at length as the tutorial s progress.

Scan Conver sion. After converting the coordinates of atriangleto window coordinates, thetriangle undergoesaprocess called scan conversion.
This process takes the triangle and breaks it up based on the arrangement of window pixels over the output image that the triangle covers.

14

Introduction

Figure 10. Scan Converted Triangle

oO|O0OfO0|O|0O|O]|O
o|OoOfO|O|O|O]|O
O|Of[OJO\|O|O]|O
O|O|Oj)JO|N0|O|O
oO|O0O[Q|O|Q]|O]|O
O|O[O|O|ONO|O
oO|Ofj0|lO|0O]|Q]|O
oO|O0OfO|O|O O |O
o|Ooffo|o 10|00
oO|QgpO0|O|O|O|O
oO|O0OfO0|O|0O|O]|O

The center image shows the digital grid of output pixels; the circles represent the center of each pixel. The center of each pixel represents a
sample: a discrete location within the area of a pixel. During scan conversion, atriangle will produce a fragment for every pixel sample that is
within the 2D area of the triangle.

The image on the right shows the fragments generated by the scan conversion of the triangle. This creates arough approximation of thetriangle's
general shape.

It is very often the case that triangles are rendered that share edges. OpenGL offers a guarantee that, so long as the shared edge vertex positions
areidentical, there will be no sample gaps during scan conversion.

Figure 11. Shared Edge Scan Conversion

=ri

oOlOo|0O|®

OTo+0 |l O0|O|O|O|O|O

o
d{ofo[™]o|o]|o]|alsTolb
oooo\y

blo|loleto|otalo|o|lo]|a
otclo|olo|lo|o]|otalo]|o
olo|o|o|lo|lo|o]o]|o]|dto

[A‘

To make it easier to use this, OpenGL also offers the guarantee that if you pass the same input vertex data through the same vertex processor,
you will get identical output; thisis called the invariance guarantee. So the onusis on the user to use the same input vertices in order to ensure
gap-less scan conversion.

Scan conversion is an inherently 2D operation. This process only usesthe X and Y position of the triangle in window coordinates to determine
which fragments to generate. The Z value is not forgotten, but it is not directly part of the actual process of scan converting the triangle.

Theresult of scan converting atriangle is a sequence of fragments that cover the shape of the triangle. Each fragment has certain data associated
with it. Thisdata containsthe 2D location of the fragment in window coordinates, aswell asthe Z position of the fragment. ThisZ valueisknown
as the depth of the fragment. There may be other information that is part of a fragment, and we will expand on that in later tutorials.

Fragment Processing. This phase takes afragment from a scan converted triangle and transforms it into one or more color valuesand asingle
depth value. The order that fragments from a single triangle are processed in isirrelevant; since asingle triangle liesin asingle plane, fragments
generated from it cannot possibly overlap. However, the fragments from another triangle can possibly overlap. Since order is important in a
rasterizer, the fragments from one triangle must all be processed before the fragments from another triangle.

15

Introduction

This phase is quite arbitrary. The user of OpenGL has alot of options of how to decide what color to assign a fragment. We will cover this step
in detail throughout the tutorials.

Direct3D Note

Direct3D prefersto call thisstage” pixel processing” or “pixel shading”. Thisisamisnomer for several reasons. First, apixel'sfinal color
can be composed of the results of multiple fragments generated by multiple sampleswithin asingle pixel. Thisisacommon techniqueto
remove jagged edges of triangles. Also, the fragment data has not been written to the image, so it is not a pixel yet. Indeed, the fragment
processing step can conditionally prevent rendering of afragment based on arbitrary computations. Thusa“ pixel” in D3D parlance may
never actually become a pixel at all.

Fragment Writing. After generating one or more colors and a depth value, the fragment iswritten to the destination image. This step involves
more than simply writing to the destination image. Combining the color and depth with the colors that are currently in the image can involve a
number of computations. These will be covered in detail in various tutorials.

Colors

Previously, a pixel was stated to be an element in a 2D image that has a particular color. A color can be described in many ways.

In computer graphics, the usual description of acolor isasaseries of numbersontherange [0, 1]. Each of the numbers correspondsto theintensity
of aparticular reference color; thus the final color represented by the series of numbersis amix of these reference colors.

The set of reference colorsis called a colorspace. The most common color space for screens is RGB, where the reference colors are Red, Green
and Blue. Printed workstend touse CMYK (Cyan, Magenta, Y ellow, Black). Since we're dealing with rendering to ascreen, and because OpenGL
requiresit, we will use the RGB colorspace.

Note

Y ou can play some fancy games with programmatic shaders (see below) that allow you to work in different colorspaces. So technically,
we only have to output to alinear RGB colorspace.

So apixel in OpenGL isdefined as 3 valueson therange [0, 1] that represent acolor in alinear RGB colorspace. By combining different intensities
of this 3 colors, we can generate millions of different color shades. Thiswill get extended slightly, as we deal with transparency later.

Shader

A shader is a program designed to be run on a renderer as part of the rendering operation. Regardless of the kind of rendering system in use,
shaders can only be executed at certain points in that rendering process. These shader stages represent hooks where a user can add arbitrary
algorithms to create a specific visual effect.

In term of rasterization as outlined above, there are several shader stages where arbitrary processing is both economical for performance and
offers high utility to the user. For example, the transformation of an incoming vertex to clip space is a useful hook for user-defined code, asis
the processing of afragment into final colors and depth.

Shaders for OpenGL are run on the actual rendering hardware. This can often free up valuable CPU time for other tasks, or simply perform
operations that would be difficult if not impossible without the flexibility of executing arbitrary code. A downside of thisis that they must live
within certain limits that CPU code would not have to.

There are anumber of shading languages available to various APIs. The one used in this tutoria isthe primary shading language of OpenGL. It
is caled, unimaginatively, the OpenGL Shading Language, or GLSL. for short. It looks deceptively like C, but it is very much not C.

What is OpenGL

Before we can begin looking into writing an OpenGL application, we must first know what it is that we are writing. What exactly is OpenGL ?

OpenGL as an API

OpenGL is usualy thought of as an Application Programming Interface (API). The OpenGL API has been exposed to a number of languages.
But the one that they all ultimately use at their lowest level isthe C API.

16

Introduction

The AP, in C, is defined by a number of typedefs, #defined enumerator values, and functions. The typedefs define basic GL types like GLint,
GLfloat and so forth. These are defined to have a specific bit depth.

Complex aggregates like structs are never directly exposed in OpenGL. Any such constructs are hidden behind the API. This makes it easier to
expose the OpenGL API to non-C languages without having a complex conversion layer.

In C++, if you wanted an object that contained an integer, afloat, and a string, you would create it and accessiit like this:

struct nject

{
int count;
fl oat opacity;
char *nane;

b

//Create the storage for the object.
hj ect newbj ect ;

//Put data into the object.
newQbj ect . count = 5;

newQbj ect. opacity = 0. 4f;

new(bj ect . namre = "Sonme String";

In OpenGL, you would use an API that looks more like this;

// Create the storage for the object
GLui nt obj ect Nan®g;
gl Genoj ect (1, &obj ect Nane);

//Put data into the object.

gl Bi ndCbj ect (GL_MODI FY, obj ect Nane) ;

gl Qbj ect Paraneteri (G._MODI FY, G._OBJECT_COUNT, 5);

gl Obj ect Paraneterf (G._MODI FY, G._OBJECT _OPACITY, O0.4f);

gl Obj ect Par anet ers(G._MODI FY, G._OBJECT _NAME, "Some String");

None of these are actual OpenGL commands, of course. Thisis simply an example of what the interface to such an object would look like.

OpenGL owns the storage for all OpenGL objects. Because of this, the user can only access an object by reference. Almost all OpenGL objects
arereferred to by an unsigned integer (the GL uint). Objects are created by afunction of the form gl Gen* , where* isthe type of the object. The
first parameter is the number of objects to create, and the second isa GLuint* array that receives the newly created object names.

To modify most objects, they must first be bound to the context. Many objects can be bound to different locations in the context; this allows the
same object to be used in different ways. These different locations are called targets; all objects have alist of valid targets, and some have only
one. In the above example, the fictitious target “GL_MODIFY” isthe location where obj ect Nare is bound.

The enumerators GL_OBJECT_* all name fields in the object that can be set. The gl Obj ect Par arret er family of functions set parameters
within the object bound to the given target. Note that since OpenGL isaC API, it has to name each of the differently typed variations differently.
So thereisgl Obj ect Par anet eri for integer parameters, gl Cbj ect Par anet er f for floating-point parameters, and so forth.

Note that all OpenGL objects are not as simple as this example, and the functions that change object state do not all follow these naming
conventions. Also, exactly what it means to bind an object to the context is explained below.

The Structure of OpenGL

The OpenGL AP is defined as a state machine. Almost al of the OpenGL functions set or retrieve some state in OpenGL. The only functions
that do not change state are functions that use the currently set state to cause rendering to happen.

You can think of the state machine as a very large struct with a great many different fields. This struct is called the OpenGL context, and each
field in the context represents some information necessary for rendering.

17

Introduction

Objectsin OpenGL are thus defined as alist of fieldsin this struct that can be saved and restored. Binding an object to atarget within the context
causes the data in this object to replace some of the context's state. Thus after the binding, future function calls that read from or modify this
context state will read or modify the state within the object.

Objects are usually represented as GL uint integers; these are handles to the actual OpenGL objects. The integer value 0 is specidl; it acts asthe
object equivalent of aNULL pointer. Binding object 0 means to unbind the currently bound object. This means that the original context state, the
state that was in place before the binding took place, now becomes the context state.

Let us say that this represents some part of an OpenGL context's state:

Example 1. OpenGL Object State

struct Val ues

{
int iVal uel;
int iValue2;
i
struct OpenGL_Cont ext
{
Val ues *pMai nVal ues;
Val ues *pQt her Val ues;
i

OpenGL_Cont ext cont ext;

To create a Val ues object, you would call something like gl GenVal ues. You could bind the Val ues object to one of two targets:
GL_MAI N_VALUES which represents the pointer cont ext . pMai nVal ues, and G._OTHER VALUES which represents the pointer
cont ext . pQ her Val ues. You would bind the object with a call to gl Bi ndVal ues, passing one of the two targets and the object. This
would set that target's pointer to the object that you created.

There would be a function to set values in a bound object. Say, gl Val uePar am It would take the target of the object, which represents the
pointer in the context. It would also take an enum representing which value in the object to change. The value G._ VALUE_ ONE would represent
i Val uel, and GL_VALUE_TWOwould represent i Val ue2.

The OpenGL Specification

To be technical about it, OpenGL is not an API; it is a specification. A document. The C API is merely one way to implement the spec. The
specification defines the initial OpenGL state, what each function does to change or retrieve that state, and what is supposed to happen when
you call arendering function.

The specification iswritten by the OpenGL Architectural Review Board (ARB), agroup of representatives from companieslike Apple, NVIDIA,
and AMD (the ATI part), among others. The ARB is part of the Khronos Group [http://www.khronos.org/].

The specification is a very complicated and technical document. However, parts of it are quite readable, though you will usually need at least
some understanding of what should be going on to understand it. If you try to read it, the most important thing to understand about it is this: it
describes results, not implementation. Just because the spec says that X will happen does not mean that it actually does. What it means is that
the user should not be able to tell the difference. If a piece of hardware can provide the same behavior in a different way, then the specification
allowsthis, solong asthe user can never tell the difference.

OpenGL Implementations. While the OpenGL ARB does control the specification, it does not control OpenGL's code. OpenGL is not
something you download from a centralized location. For any particular piece of hardware, it is up to the developers of that hardware to write an
OpenGL Implementation for that hardware. Implementations, as the name suggests, implement the OpenGL specification, exposing the OpenGL
API as defined in the spec.

Who controls the OpenGL implementation is different for different operating systems. On Windows, OpenGL implementations are controlled
virtually entirely by the hardware makers themselves. On Mac OSX, OpenGL implementations are controlled by Apple; they decide what version

18

http://www.khronos.org/
http://www.khronos.org/

Introduction

of OpenGL is exposed and what additional functionality can be provided to the user. Apple writes much of the OpenGL implementation on Mac
OSX, which the hardware devel opers writing to an Apple-created internal driver API. On Linux, things are... complicated.

The long and short of thisisthat if you are writing a program and it seems to be exhibiting off-spec behavior, that is the fault of the maker of
your OpenGL implementation (assuming it is not a bug in your code). On Windows, the various graphics hardware makers put their OpenGL
implementations in their regular drivers. So if you suspect abug in their implementation, the first thing you should do is make sure your graphics
drivers are up-to-date; the bug may have been corrected since the last time you updated your drivers.

OpenGL Versions. There are many versions of the OpenGL Specification. OpenGL versions are not like most Direct3D versions, which
typically change most of the API. Code that works on one version of OpenGL will almost always work on later versions of OpenGL.

The only exception to this deals with OpenGL 3.0 and above, relative to previous versions. v3.0 deprecated a number of older functions, and v3.1
removed most of those functions from the APIL. This also divided the specification into 2 variations (called profiles): core and compatibility. The
compatibility profile retains all of the functions removed in 3.1, while the core profile does not. Theoretically, OpenGL implementations could
implement just the core profile; thiswould |eave software that relies on the compatibility profile non-functional on that implementation.

As a practical matter, none of this matters at all. No OpenGL driver developer is going to ship drivers that only implement the core profile. So
in effect, this means nothing at al; all OpenGL versions are all effectively backwards compatible.

vector A value composed of an ordered sequence of other values. The number of values stored in a vector isits
dimensionality. Vectors can have math operations performed on them as awhole.

scalar A single, non-vector value. A one-dimensional vector can be considered a scalar.

vector position A vector that represents a position.

vector direction A vector that represents a direction.

vector component One of the values within a vector.

component-wise operation An operation on avector that applies something to each component of the vector. The results of acomponent-
wise operation is a vector of the same dimension as the input(s) to the operation. Many vector operations
are component-wise.

unit vector A vector who's length is exactly one. These represent purely directional vectors.

vector normalization The process of converting avector into a unit vector that points in the same direction as the original vector.

pixel The smallest division of adigital image. A pixel has a particular color in aparticular colorspace.

image A two-dimensional array of pixels.

rendering The process of taking the source 3D world and converting it into a 2D image that represents a view of that
world from a particular angle.

rasterization A particular rendering method, used to convert a series of 3D trianglesinto a 2D image.

geometry, model, mesh A single object in 3D space made of triangles.

vertex One of the 3 elements that make up atriangle. Vertices can contain arbitrary of data, but among that datais
a 3-dimensional position representing the location of the vertex in 3D space.

clip space, clip coordinates A region of three-dimensional space into which vertex positions are transformed. These vertex positions are

4 dimensional quantities. The fourth component (W) of clip coordinates represents the visible range of clip
space for that vertex. So the X, Y, and Z component of clip coordinates must be between [-W, W] to be a
visible part of the world.

1Deprecation only means marking those functions as to be removed in later functions. They are till available for usein 3.0.

19

Introduction

clipping

normalized device coordinates

window
coordinates

space,

scan conversion

sample

fragment

invariance guarantee

colorspace

shader

shader stage

OpenGL

OpenGL context

object binding

window

Architectural Review Board

OpenGL Implementation

In clip space, positive X goesright, positive Y up, and positive Z away.
Clip-space vertices are output by the vertex processing stage of the rendering pipeline.

The process of taking a triangle in clip coordinates and splitting it if one or more of its vertices is outside
of clip space.

These are clip coordinates that have been divided by their fourth component. This makes this range of space
the samefor all components. Verticeswith positionson therange[-1, 1] arevisible, and other verticesare not.

A region of three-dimensional space that normalized device coordinatesare mappedto. The X and 'Y positions
of verticesin this space are relative to the destination image. The origin isin the bottom-left, with positive X
going right and positive Y going up. The Z value is a number on the range [0, 1], where O isthe closest value
and 1 isthe farthest. Vertex positions outside of thisrange are not visible.

The process of taking a triangle in window space and converting it into a number of fragments based on
projecting it onto the pixels of the output image.

A discrete location within the bounds of a pixel that determines whether to generate a fragment from scan
converting the triangle. The area of a single pixel can have multiple samples, which can generate multiple
fragments.

A single element of a scan converted triangle. A fragment can contain arbitrary data, but among that data
is a 3-dimensional position, identifying the location on the triangle in window space where this fragment
originates from.

A guarantee provided by OpenGL, such that if you provide binary-identical inputs to the vertex processing,
while all other state remains exactly identical, then the exact same vertex in clip-space will be output.

The set of reference colors that define a way of representing a color in computer graphics, and the function
mapping between those reference colors and the actual colors. All colors are defined relative to a particular
colorspace.

A program designed to be executed by arenderer, in order to perform some user-defined operations.

A particular place in a rendering pipeline where a shader can be executed to perform a computation. The
results of this computation will be fed to the next stage in the rendering pipeline.

A specification that defines the effective behavior of a rasterization-based rendering system.

A specific set of state used for rendering. The OpenGL context is like alarge C-style struct that contains a
large number of fields that can be accessed. If you were to create multiple windows for rendering, each one
would have its own OpenGL context.

Objects can be bound to a particular location in the OpenGL context. When this happens, the state within the
object takes the place of acertain set of statein the context. There are multiple binding pointsfor objects, and
each kind of object can be bound to certain binding points. Which bind point an object is bound to determines
what state the object overrides.

The body of the Khronos Group that governs the OpenGL specification.

The software that implements the OpenGL specification for a particular system.

20

Chapter 1. Hello, Triangle!

It istraditional for tutorials and introductory books on programming languages start with a program called “Hello, World!” This program isthe
simplest code necessary to print the text “Hello, World!” It serves as a good test to see that one's build system is functioning and that one can
compile and execute code.

Using OpenGL to write actual text is rather involved. In lieu of text, our first tutorial will be drawing a single triangle to the screen.

Framework and FreeGLUT

The source to this tutorial, foundin Tut 1 Hel |l o Tri angl e/ tut 1. cpp, isfairly smple. The project file that builds the final executable
actually uses two source files: the tutoria file and a common framework file found in f r amewor k/ f r amewor k. cpp. The framework fileis
where the actual initialization of FreeGLUT is done; it is also where main is. Thisfile simply uses functions defined in the main tutorial file.

FreeGLUT isafairly simple OpenGL initialization system. It creates and manages asingle window; all OpenGL commands refer to this window.
Because windows in various GUI systems need to have certain book-keeping done, how the user interfaces with thisisrigidly controlled.

The framework file expects 5 functions to be defined: def aul t s, i ni t, di spl ay, r eshape, and keyboar d. The def aul t s function
is called before FreeGLUT isinitialized; it gives the tutorial the chance to modify the window size or the initialization parameters. Thei ni t
functioniscalled after OpenGL isinitialized. Thisgivesthetutorial filethe opportunity to load what it needsinto OpenGL before actual rendering
takesplace. Ther eshape functioniscalled by FreeGLUT whenever the window isresized. This allowsthe tutorial to make whatever OpenGL
calls are necessary to keep the window's size in sync with OpenGL. Thekeyboar d function is called by FreeGLUT whenever the user presses
akey. This givesthe tutorial the chance to process some basic user input.

The di spl ay function is where the most important work happens. FreeGLUT will call this function when it detects that the screen needs to
be rendered to.

Dissecting Display

The di spl ay function seems on the surface to be fairly simple. However, the functioning of it is fairly complicated and intertwined with the
initialization donein thei ni t function.

Example 1.1. Thedi spl ay Function

gl C ear Col or (0. 0f, 0.0f, 0.0f, 0.0f);
gl d ear (G._COLOR BUFFER BIT);

gl UseProgran(t heProgram ;

gl Bi ndBuf f er (GL_ARRAY_BUFFER, positionBufferbject);
gl Enabl eVertexAttri bArray(0);

gl VertexAttribPointer(0, 4, G._FLOAT, G._FALSE, 0, 0);
gl DrawArrays(G._TRI ANGLES, 0, 3);

gl Di sabl eVertexAttri bArray(0);
gl UseProgram0);

gl ut SwapBuf fers();
Let us examine this code in detail.

Thefirst two lines clear the screen. gl Cl ear Col or isone of those state setting functions; it sets the color that will be used when clearing the
screen. It setstheclearing color to black. gl Cl ear doesnot set OpenGL state; it causesthe screentobecleared. TheGL_COLOR BUFFER BI T
parameter meansthat the clear call will affect the color buffer, causing it to be cleared to the current clearing color we set in the previous function.

21

Hello, Triangle!

The next line sets the current shader program to be used by all subsequent rendering commands. Wewill go into detail asto how thisworks | ater.

The next three commands all set state. These command set up the coordinates of the triangle to be rendered. They tell OpenGL the location in
memory that the positions of the triangle will come from. The specifics of how these work will be detailed later.

The gl Dr awAr r ays function is, as the name suggests, a rendering function. It uses the current state to generate a stream of vertices that will
form triangles.

The next two lines are simply cleanup work, undoing some of the setup that was done for the purposes of rendering.

The last line, gl ut SwapBuf fers, is a FreeGLUT command, not an OpenGL command. The OpenGL framebuffer, as we set up in
f ramewor k. cpp, is double-buffered. This means that the image that are currently being shown to the user is not the same image we are
rendering to. Thus, all of our rendering is hidden from view until it is shown to the user. This way, the user never sees a half-rendered image.
gl ut SwapBuf f er s isthe function that causes the image we are rendering to be displayed to the user.

Following the Data

In the basic background section, we described the functioning of the OpenGL pipeline. We will now revisit this pipeline in the context of the
codeintutorial 1. Thiswill give us an understanding about the specifics of how OpenGL goes about rendering data.

Vertex Transfer

The first stage in the rasterization pipeline is transforming vertices to clip space. Before OpenGL can do this however, it must receive alist of
vertices. So the very first stage of the pipeline is sending triangle data to OpenGL.

Thisisthe data that we wish to transfer:

const float vertexPositions[] = {
0. 75f, 0.75f, 0.0f, 1.0f,
0. 75f, -0.75f, 0.0f, 1.0f,
-0.75f, -0.75f, 0.0f, 1.0f,

}s

Each line of 4 values represents a 4D position of a vertex. These are four dimensional because, as you may recall, clip-space is 4D as well.
These vertex positions are already in clip space. What we want OpenGL to do is render atriangle based on this vertex data. Since every 4 floats
represents a vertex's position, we have 3 vertices: the minimum number for atriangle.

Even though we have this data, OpenGL cannot useit directly. OpenGL has some limitations on what memory it can read from. Y ou can alocate
vertex data all you want yourself; OpenGL cannot directly see any of your memory. Therefore, the first step is to allocate some memory that
OpenGL can see, and fill that memory with our data. Thisis done with something called a buffer object.

A buffer object isalinear array of memory, managed and allocated by OpenGL at the behest of the user. The content of this memory is controlled
by the user, but the user has only indirect control over it. Think of a buffer object as an array of GPU memory. The GPU can read this memory
quickly, so storing datain it has performance advantages.

The buffer object in the tutorial was created during initialization. Here is the code responsible for creating the buffer object:

Example 1.2. Buffer Object Initialization

void InitializeVertexBuffer()

{
gl GenBuffers(1, &positionBufferCbject);

gl Bi ndBuf f er (GL_ARRAY_ BUFFER, positionBufferCbject);
gl Buf f er Dat a(G._ARRAY_BUFFER, sizeof (vertexPositions), vertexPositions, G._STATI C DRAW ;

22

Hello, Triangle!

gl Bi ndBuf f er (GL_ARRAY_BUFFER, 0);
}

The first line creates the buffer object, storing the handle to the object in the global variable posi t i onBuf f er Gbj ect . Though the object
now exists, it does not own any memory yet. That is because we have not allocated any with this object.

The gl Bi ndBuf f er function binds the newly-created buffer object to the GL_ ARRAY_BUFFER binding target. As mentioned in the
introduction [17], objectsin OpenGL usually have to be bound to the context in order for them to do anything, and buffer objects are no exception.

The gl Buf f er Dat a function performs two operations. It allocates memory for the buffer currently bound to GL_ARRAY_BUFFER, which is
the onewe just created and bound. We already have some vertex data; the problem isthat it isin our memory rather than OpenGL's memory. The
si zeof (vert exPosi tions) usesthe C++ compiler to determine the byte size of thever t exPosi ti ons array. We then pass this size
to gl Buf f er Dat a asthe size of memory to allocate for this buffer object. Thus, we allocate enough GPU memory to store our vertex data.
The other operation that gl Buf f er Dat a performs is copying data from our memory array into the buffer object. The third parameter controls
this. If thisvalueis not NULL, asin this case, gl Buf f er Dat a will copy the data referenced by the pointer into the buffer object. After this
function call, the buffer object stores exactly what ver t exPosi ti ons stores.

The fourth parameter is something we will look at in future tutorials.

The second bind buffer call is ssmply cleanup. By binding the buffer object 0 to G__ ARRAY_BUFFER, we cause the buffer object previously
bound to that target to become unbound from it. Zero in this cases works a lot like the NULL pointer. This was not strictly necessary, as any
later binds to this target will ssmply unbind what is already there. But unless you have very strict control over your rendering, it is usualy a
good idea to unbind the objects you bind.

Thisis all just to get the vertex datain the GPU's memory. But buffer objects are not formatted; as far as OpenGL is concerned, all we did was
allocate a buffer object and fill it with random binary data. We now need to do something that tells OpenGL that there is vertex datain this buffer
object and what form that vertex data takes.

We do thisin the rendering code. That is the purpose of these lines:

gl Bi ndBuf f er (GL_ARRAY_BUFFER, positionBufferoject);

gl Enabl eVertexAttri bArray(0);

gl VertexAttribPointer(0, 4, G._FLOAT, G._FALSE, 0, 0);

The first function we have seen before. It simply says that we are going to use this buffer object.

The second function, gl Enabl eVert exAttri bAr r ay issomething we will explain in the next section. Without this function, the next one
is unimportant.

The third function is thereal key. gl Vert exAt t ri bPoi nt er, despite having the word “Pointer” in it, does not deal with pointers. Instead,
it deals with buffer objects.

When rendering, OpenGL pulls vertex data from arrays stored in buffer objects. What we need to tell OpenGL is what format our vertex array
datain the buffer object is stored in. That is, we need to tell OpenGL how to interpret the array of data stored in the buffer.

In our case, our datais formatted as follows:

» Our position datais stored in 32-bit floating point values using the C/C++ type float.

» Each position is composed of 4 of these values.

» Thereisno space between each set of 4 values. The values are tightly packed in the array.
» Thefirst valuein our array of datais at the beginning of the buffer object.

The gl Vert exAttri bPoi nt er function tells OpenGL all of this. The third parameter specifies the base type of avalue. In this casg, it is
GL_FLOAT, which corresponds to a 32-hit floating-point value. The second parameter specifies how many of these values represent a single

23

Hello, Triangle!

piece of data. In this case, that is 4. The fifth parameter specifies the spacing between each set of values. In our case, there is no space between
values, so this value is 0. And the sixth parameter specifies the byte offset from the value in the buffer object is at the front, which is 0 bytes
from the beginning of the buffer object.

The fourth parameter is something that we will look at in later tutorials. The first parameter is something we will look at in the next section.
One thing that appears absent is specifying which buffer object this data comes from. This is an implicit association rather than an explicit
one. gl Vert exAttri bPoi nt er aways refers to whatever buffer is bound to G._ ARRAY_BUFFER at the time that this function is called.
Therefore it does not take a buffer object handle; it simply uses the handle we bound previoudly.

This function will be looked at in greater detail in later tutorials.

Once OpenGL knows where to get its vertex datafrom, it can now use that vertex data to render.

gl DrawArrays(G._TRI ANGLES, 0, 3);

Thisfunction seemsvery simpleon the surface, but it doesagreat deal. The second and third parametersrepresent the start index and the number of
indicesto read from our vertex data. The Oth index of the vertex array (defined with gl Vert exAt t ri bPoi nt er) will be processed, followed
by the 1st and 2nd indices. That is, it starts with the Oth index, and reads 3 vertices from the arrays.

Thefirst parameter to gl Dr awAr r ays tells OpenGL that it is to take every 3 vertices that it gets as an independent triangle. Thus, it will read
just 3 vertices and connect them to form atriangle.

Again, we will gointo details in another tutorial.

Vertex Processing and Shaders

Now that we cantell OpenGL what the vertex datais, we cometo the next stage of the pipeline: vertex processing. Thisisone of two programmable
stages that we will cover in this tutorial, so thisinvolves the use of a shader.

A shader is nothing more than a program that runs on the GPU. There are severa possible shader stages in the pipeline, and each has its own
inputs and outputs. The purpose of a shader isto take itsinputs, aswell as potentialy various other data, and convert them into a set of outputs.

Each shader is executed over a set of inputs. It is important to note that a shader, of any stage, operates completely independently of any other
shader of that stage. There can be no crosstalk between separate executions of a shader. Execution for each set of inputs starts from the beginning
of the shader and continues to the end. A shader defines what its inputs and outputs are, and it isillegal for a shader to complete without writing
to al of its outputs (in most cases).

Vertex shaders, as the name implies, operate on vertices. Specifically, each invocation of a vertex shader operates on a single vertex. These
shaders must output, among any other user-defined outputs, a clip-space position for that vertex. How this clip-space position is computed is
entirely up to the shader.

Shadersin OpenGL are written in the OpenGL Shading Language (GL SL). Thislanguage looks suspiciously like C, but it is very much not C. It
has far too many limitations to be C (for example, recursion is forbidden). Thisiswhat our simple vertex shader looks like:

Example 1.3. Vertex Shader

#version 330

| ayout (1 ocation = 0) in vec4 position;
voi d main()

{
}

This looks fairly simple. The first line states that the version of GLSL used by this shader is version 3.30. A version declaration is required for
all GLSL shaders.

gl _Position = position;

24

Hello, Triangle!

The next line defines an input to the vertex shader. The input is a variable named posi t i on and is of type vec4: a 4-dimensional vector of
floating-point values. It also has alayout location of O; we'll explain that alittle later.

Aswith C, a shader's execution starts with the mai n function. This shader is very simple, copying the input posi t i on into something called
gl _Position. Thisisavariable that is not defined in the shader; that is because it is a standard variable defined in every vertex shader. If
you see an identifier in a GLSL shader that startswith “gl_", then it must be a built-in identifier. Y ou cannot make an identifier that begins with
“gl_"; you can only use ones that already exist.

gl _Positionisdefined as:

out vec4 gl _Position;

Recall that the minimum a vertex shader must do is generate a clip-space position for the vertex. That iswhat gl _Posi t i on is: the clip-space
position of the vertex. Since our input position datais aready a clip-space position, this shader simply copiesit directly into the outpuit.

Vertex Attributes. Shaders have inputs and outputs. Think of these like function parameters and function return values. If the shader is a
function, then it is called with input values, and it is expected to return a number of output values.

Inputs to and outputs from a shader stage come from somewhere and go to somewhere. Thus, theinput posi t i on in the vertex shader must be
filled in with data somewhere. So where does that data come from? Inputs to a vertex shader are called vertex attributes.

Y ou might recognize something similar to the term “vertex attribute.” For example, “glEnableVertexAttribArray” or “glVertexAttribPointer.”
Thisis how data flows down the pipeline in OpenGL. When rendering starts, vertex datain a buffer object is read based on setup work done by
gl Vert exAttri bPoi nt er. Thisfunction describes where the data for an attribute comes from. The connection between a particular call to
gl Vert exAttri bPoi nt er and the string name of an input value to a vertex shader is somewhat complicated.

Each input to a vertex shader has an index location called an attribute index. The input in this shader was defined with this statement:

| ayout (1 ocation = 0) in vecd4 position;

The layout location part assigns the attribute index of 0 to posi ti on. Attribute indices must be greater than or equal to zero, and there is a
hardware-based limit on the number of attribute indices that can bein use at any oneti me'.

In code, when referring to attributes, they are always referred to by attribute index. The functions gl Enabl eVert exAttri bArray,
gl D sabl eVertexAttri bArray, andgl Vert exAttri bPoi nt er all take astheir first parameter an attribute index. We assigned the
attribute index of the posi t i on attributeto 0 in the vertex shader, so the call to gl Enabl eVert exAttri bArray(0) enablesthe attribute
index for the posi t i on attribute.

Here is adiagram of the data flow to the vertex shader:

ror vi rtually al hardware since the beginning of commercial programmable hardware, thislimit has been exactly 16. No more, no less.

25

Hello, Triangle!

Figure 1.1. Data Flow to Vertex Shader

Buffer Object Vertex Shaders
Index O In vec4 position

Index 1 gl _Pos

.

Index 2 p <
—in vec4 position
| Pos
_ Y, gl_ro
Cin vec4 position A
gl _Pos
_ Y,

Without the call to gl Enabl eVert exAttri bArray, calinggl Vert exAt tri bPoi nt er on that attribute index would not mean much.
The enable call does not have to be called before the vertex attribute pointer call, but it does need to be called before rendering. If the attribute
isnot enabled, it will not be used during rendering.

Rasterization

All that has happened thus far isthat 3 vertices have been given to OpenGL and it has transformed them with a vertex shader into 3 positionsin
clip-space. Next, the vertex positions are transformed into normalized-device coordinates by dividing the 3 XY Z components of the position by
the W component. In our case, W for our 3 positions was 1.0, so the positions are already effectively in normalized-device coordinate space.

After this, the vertex positions are transformed into window coordinates. This is done with something called the viewport transform. Thisis so

named because of the function used to set it up, gl Vi ewpor t . Thetutoria callsthisfunction every time the window's size changes. Remember
that the framework callsr eshape whenever the window's size changes. So the tutorial's implementation of reshapeisthis:

Example 1.4. Reshaping Window

void reshape (int w, int h)

{
}

gl Viewport (0, O, (G.sizei) w, (Gsizei) h);

26

Hello, Triangle!

This tells OpenGL what area of the available area we are rendering to. In this case, we change it to match the full available area. Without this
function call, resizing the window would have no effect on the rendering. Also, make note of the fact that we make no effort to keep the aspect
ratio constant; shrinking or stretching the window in adirection will cause the triangle to shrink and stretch to match.

Recall that window coordinates are in alower-left coordinate system. So the point (0O, 0) isthe bottom left of the window. This function takes the
bottom left position as the first two coordinates, and the width and height of the viewport rectangle as the other two coordinates.

Once in window coordinates, OpenGL can now take these 3 vertices and scan-convert it into a series of fragments. In order to do this however,
OpenGL must decide what the list of vertices represents.

OpenGL caninterpret alist of verticesin avariety of different ways. The way OpenGL interprets vertex listsis given by the draw command:
gl DrawAr rays(GL_TRI ANGLES, 0, 3);

The enum G__TRI ANGLES tells OpenGL that every 3 vertices of the list should be used to build a triangle. Since we passed only 3 vertices,
we get 1 triangle.

Figure 1.2. Data Flow to Rasterizer

Viewport
Vertex Shaders Divide by W Transform R

gl_Position

~

gl_Position -
J

~

| Position -
J- Y,

If we rendered 6 vertices, then we would get 2 triangles.

Fragment Processing

A fragment shader is used to compute the output color(s) of afragment. The inputs of afragment shader include the window-space XY Z position
of the fragment. It can also include user-defined data, but we will get to that in later tutorials.

27

Hello, Triangle!

Our fragment shader looks like this;
Example 1.5. Fragment Shader
#version 330

out vec4 out put Col or;
voi d mai n()

{

}
Aswith the vertex shader, the first line states that the shader uses GLSL version 3.30.

out put Col or = vec4(1.0f, 1.0f, 1.0f, 1.0f);

The next line specifies an output for the fragment shader. The output variableis of type vec4.

The main function simply sets the output color to a 4-dimensional vector, with all of the components as 1.0f. This sets the Red, Green, and Blue
components of the color to full intensity, which is 1.0; this creates the white color of the triangle. The fourth component is something we will
seein later tutorials.

Though all fragment shaders are provided the window-space position of the fragment, this one does not need it. So it simply does not useit.

After the fragment shader executes, the fragment output color iswritten to the output image.

Note

In the section on vertex shaders, we had to use the | ayout (| ocati on = #) syntax in order to provide a connection between a
vertex shader input and avertex attribute index. Thiswas required in order for the user to connect avertex array to avertex shader input.
So you may be wondering where the connection between the fragment shader output and the screen comesin.

OpenGL recognizesthat, in alot of rendering, thereis only onelogical placefor afragment shader output to go: the current image being
rendered to (in our case, the screen). Because of that, if you define only one output from a fragment shader, then this output value will
automatically be written to the current destination image. It is possible to have multiple fragment shader outputs that go to multiple
different destination images; this adds some complexity, similar to attribute indices. But that is for another time.

Making Shaders

We glossed over exactly how these text strings called shaders actually get sent to OpenGL. We will go into some detail on that now.

Note

If you arefamiliar with how shaderswork in other APIslike Direct3D, that will not help you here. OpenGL shaderswork very differently
from the way they work in other APIs.

Shaders arewritten in a C-like language. So OpenGL usesavery C-like compilation model. In C, eachindividual .c fileiscompiled into an object
file. Then, one or more object files are linked together into a single program (or static/shared library). OpenGL does something very similar.

A shader string is compiled into a shader object; this is analogous to an object file. One or more shader objectsis linked into a program object.

A program object in OpenGL contains code for all of the shadersto be used for rendering. In thetutorial, we have avertex and afragment shader;
both of these are linked together into a single program object. Building that program object is the responsibility of this code:

Example 1.6. Program I nitialization
void InitializeProgram)
{

std: :vector <G.ui nt > shaderLi st;

shader Li st . push_back(Cr eat eShader (G._VERTEX_SHADER, str VertexShader));

28

Hello, Triangle!

shader Li st. push_back(Cr eat eShader (G._FRAGVENT_SHADER, st r Fragnent Shader));
t hePr ogram = Cr eat eProgran(shaderList);

std::for_each(shaderlList.begin(), shaderList.end(), glDel eteShader);
}

Thefirst statement simply creates alist of the shader objects we intend to link together. The next two statements compile our two shader strings.
The Cr eat eShader function isafunction defined by the tutorial that compiles a shader.

Compiling a shader into a shader object is a lot like compiling source code. Most important of all, it involves error checking. This is the
implementation of Cr eat eShader :

Example 1.7. Shader Creation

GLui nt Creat eShader (G.enum eShader Type, const std:.:string &strShaderFil e)
{

GLui nt shader = gl Creat eShader (eShader Type) ;

const char *strFileData = strShaderFile.c_str();

gl Shader Sour ce(shader, 1, &strFileData, NULL);

gl Conpi | eShader (shader) ;
GLi nt status;

gl Get Shaderi v(shader, G._COWPI LE STATUS, &status);
if (status == G._FALSE)

{
GLi nt infolLoglLengt h;
gl Get Shaderi v(shader, G__I NFO LOG LENGTH, &i nfolLogLength);
GLchar *strlnfoLog = new GL.char[infoLogLength + 1];
gl Get Shader | nf oLog(shader, infoLogLength, NULL, strlnfolLog);
const char *strShader Type = NULL;
swi t ch(eShader Type)
{
case G._VERTEX SHADER: strShader Type = "vertex"; break;
case GL_CEOVETRY_SHADER: strShader Type = "geonetry"; break;
case GL_FRAGVENT SHADER: strShader Type = "fragnent"; break;
}
fprintf(stderr, "Conpile failure in % shader:\n%\n", strShaderType, strlnfolLog);
del ete[] strlnfolog;

}

return shader;

}

An OpenGL shader object is, as the name suggests, an object. So the first step is to create the object with gl Cr eat eShader . This function
creates a shader of a particular type (vertex or fragment), so it takes a parameter that tells what kind of object it creates. Since each shader stage
has certain syntax rules and pre-defined variables and constants (thus making different shader stages different dialects of GLSL), the compiler
must be told what shader stage is being compiled.

Note

Shader and program objects are objects in OpenGL. But they work rather differently from other kinds of OpenGL objects. For example,
creating buffer objects, as shown above, uses afunction of the form “glGen*” where* is“Buffer”. It takes a number of objectsto create
and alist to put those object handlesin.

29

Hello, Triangle!

There are many other differences between shader/program objects and other kinds of OpenGL objects.
The next step isto actually compile the text shader into the object. The C-style string is retrieved from the C++ st d: : st ri ng object, anditis
fed into the shader object withthe gl Shader Sour ce function. Thefirst parameter isthe shader object to put the string into. The next parameter
isthe number of stringsto put into the shader. Compiling multiple stringsinto a single shader object works analogously to compiling header files
in C files. Except of course that the .c file explicitly lists the files it includes, while you must manually add them with gl Shader Sour ce.
The next parameter is an array of const char* strings. The last parameter is normally an array of lengths of the strings. We passin NULL, which
tells OpenGL to assume that the string is null-terminated. In general, unless you need to use the null character in a string, there is no need to
use the last parameter.
Once the strings are in the object, they are compiled with gl Conpi | eShader , which does exactly what it says.

After compiling, we need to see if the compilation was successful. We do this by calling gl Get Shaderiv to retrieve the
GL_COWPI LE_STATUS. If thisis G__ FALSE, then the shader failed to compile; otherwise compiling was successful.

If compilation fails, we do some error reporting. It prints a message to stderr that explains what failed to compile. It aso prints an info log from
OpenGL that describes the error; think of thislog as the compiler output from aregular C compilation.

After creating both shader objects, we then pass them on to the Cr eat ePr ogr amfunction:

Example 1.8. Program Creation

GLui nt CreateProgranmconst std::vector<G.uint> &haderlLi st)

{
GLui nt program = gl Creat eProgram();
for(size_t iLoop = 0; iLoop < shaderList.size(); iLoop++)
gl Att achShader (program shaderList[iLoop]);

gl Li nkProgr an{ progranj;

GLint status;

gl Get Program v (program G._LINK STATUS, &status);

if (status == G._FALSE)

{
GLint infolLoglLengt h;
gl Get Program v(program GL_INFO LOG LENGTH, & nfolLoglLength);
GL.char *strlnfoLog = new G.char[infolLogLength + 1];
gl Get Progr am nf oLog(program infolLogLength, NULL, strlnfolLog);
fprintf(stderr, "Linker failure: %\n", strlnfolLog);
del ete[] strlnfolog;

}

for(size_ t iLoop = 0; iLoop < shaderList.size(); iLoop++)
gl Det achShader (program shaderLi st[i Loop]);

return program

}

Thisfunction isfairly simple. It first creates an empty program object with gl Cr eat ePr ogr am This function takes no parameters; remember
that program objects are a combination of all shader stages.

Next, it attaches each of the previously created shader objects to the programs, by calling the function gl At t achShader in aloop over the
st d: : vect or of shader objects. The program does not need to be told what stage each shader object isfor; the shader object itself remembers
this.

30

Hello, Triangle!

Once al of the shader objects are attached, the code links the program with gl Li nkPr ogr am Similar to before, we must then fetch the
linking status by calling gl Get Pr ogr am v with GL_LI NK_STATUS. If it isGL_FALSE, then the linking failed and we print the linking log.
Otherwise, we return the created program.

Note

In the above shaders, the attribute index for the vertex shader input posi t i on wasassigned directly in the shader itself. There are other
waysto assign attribute indicesto attributes besides| ayout (1 ocat i on = #) . OpenGL will even assign an attribute index if you do
not use any of them. Therefore, it is possible that you may not know the attribute index of an attribute. If you need to query the attribute
index, you may call gl Get At tri bLocat i on with the program object and a string containing the attribute's name.

Once the program was successfully linked, the shader objects are removed from the program with gl Det achShader . The program's linking
status and functionality is not affected by the removal of the shaders. All it doesistell OpenGL that these objects are no longer associated with
the program.

After the program has successfully linked, and the shader objects removed from the program, the shader objects are deleted using the C++
algorithm st d: : f or _each. Thislineloops over each of the shadersin thelist and callsgl Del et eShader onthem.

Using Programs. To tell OpenGL that rendering commands should use a particular program object, the gl UsePr ogr amfunction is called.
In thetutorial thisis called twiceinthedi spl ay function. It is called with the global t hePr ogr am which tells OpenGL that we want to use
that program for rendering until further notice. It islater called with 0, which tells OpenGL that no programs will be used for rendering.

Note

For the purposes of thesetutorials, using program objectsisnot optional. OpenGL doeshave, initscompatibility profile, default rendering
state that takes over when a program is not being used. We will not be using this, and you are encouraged to avoid its use as well.

Cleanup

Thetutorial alocatesalot of OpenGL resources. It allocates abuffer object, which represents memory on the GPU. It creates two shader objects
and a program object, all of which stored in memory owned by OpenGL. But it only deletes the shader objects; nothing else.

Part of this is due to the nature of FreeGLUT, which does not provide hooks for a cleanup function. But part of it is aso due to the nature of
OpenGL itself. In asimple example such as this, there is no need to delete anything. OpenGL will clean up its own assets when OpenGL is shut
down as part of window deactivation.

It isgenerally good form to delete objectsthat you create before shutting down OpenGL. And you certainly should doit if you encapsulate objects
in C++ objects, such that destructors will delete the OpenGL objects. But it is not strictly necessary.

In Review

In thistutorial, you have learned the following:
» Buffer objects are linear arrays of memory allocated by OpenGL. They can be used to store vertex data.

» GLSL shaders are compiled into shader objects that represent the code to be executed for a single shader stage. These shader objects can be
linked together to produce a program object, which represent all of the shader code to be executed during rendering.

» Thegl Dr awAr r ays function can be used to draw triangles, using particular buffer objects as sources for vertex data and the currently bound
program object.

Further Study

Even with asimple tutorial like this, there are many things to play around with and investigate.

» Change the color value set by the fragment shader to different values. Use values in the range [0, 1], and then see what happens when you
go outside that range.

31

Hello, Triangle!

» Change the positions of the vertex data. Keep position valuesin the [-1, 1] range, then see what happens when triangles go outside this range.
Notice what happens when you change the Z value of the positions (note: nothing should happen while they're within the range). Keep W

at 1.0 for now.

» Change the values that r eshape givesto gl Vi ewpor t . Make them bigger or smaller than the window and see what happens. Shift them
around to different quadrants within the window.

» Changether eshape function so that it respects aspect ratio. This meansthat the area rendered to may be smaller than the window area. Also,
try to make it so that it always centers the area within the window.

» Changethe clear color, using valuesin the range [0, 1]. Notice how this interacts with changes to the viewport above.

Add another 3 verticesto thelist, and change the number of verticessentinthegl Dr awAr r ay s call from 3to 6. Add more and play with them.

OpenGL Functions of Note

glClearColor, glClear

glGenBuffers, glBindBuffer,
olBufferData

glEnableVertexAttribArray,
glDisableVertexAttribArray,
glVertexAttribPointer

glDrawArrays
glViewport

ol CreateShader,
ol ShaderSource,
ol CompileShader,
olDeleteShader

gl CreateProgram,
gl AttachShader,
glLinkProgram,

gl DetachShader

glUseProgram

ol GetAttribLocation

Glossary

buffer object

input variable

These functions clear the current viewabl e area of the screen. gl Cl ear Col or setsthe color to clear, while
gl C ear withthe G._COLOR_BUFFER _BI T value causes the image to be cleared with that color.

These functions are used to create and manipulate buffer objects. gl GenBuf f er s creates one or more
buffers, gl Bi ndBuf f er attachesit to alocation in the context, and gl Buf f er Dat a allocates memory
and fills this memory with data from the user into the buffer object.

These functions control vertex attribute arrays. gl Enabl eVertexAttri bArray activates the
given attribute index, gl Di sabl eVert exAttri bArray deactivates the given attribute index, and
gl Vert exAttri bPoi nt er definestheformat and source location (buffer object) of the vertex data.

This function initiates rendering, using the currently active vertex attributes and the current program object
(among other state). It causes a number of vertices to be pulled from the attribute arrays in order.

This function defines the current viewport transform. It defines as a region of the window, specified by the
bottom-left position and a width/height.

These functions create aworking shader object. gl Cr eat eShader simply creates an empty shader object
of a particular shader stage. gl Shader Sour ce sets strings into that object; multiple calls to this function
simply overwrite the previously set strings. gl Conpi | eShader causes the shader object to be compiled
with the previously set strings. gl Del et eShader causes the shader object to be deleted.

These functions create a working program object. gl Cr eat ePr ogr amcreates an empty program object.
gl Att achShader attaches a shader object to that program. Multiple calls attach multiple shader objects.
gl Li nkPr ogr amlinksall of the previously attached shadersinto acomplete program. gl Det achShader
is used to remove a shader object from the program object; this does not affect the behavior of the program.

This function causes the given program to become the current program. All rendering taking place after this
call will usethis program for the various shader stages. If the program 0 is given, then no program is current.

This function retrieves the attribute index of a named attribute. It takes the program to find the attribute in,
and the name of the input variable of the vertex shader that the user islooking for the attribute index to.

An OpenGL object that represents a linear array of memory, containing arbitrary data. The contents of the
buffer are defined by the user, but the memory is allocated by OpenGL. Data in buffer objects can be used
for many purposes, including storing vertex data to be used when rendering.

A shader variable, declared at global scope. Input variables receive their values from earlier stages in the
OpenGL rendering pipeline.

32

Hello, Triangle!

output variable

vertex attribute

attribute index

viewport transform

shader object

program object

A shader variable, declared at global scope, using the out keyword. Output variables written to by a shader
are passed to later stages in the OpenGL rendering pipeline for processing.

Input variables to vertex shaders are called vertex attributes. Each vertex attribute is a vector of up to 4
elementsin length. Vertex attributes are drawn from buffer objects; the connection between buffer object data
and vertex inputsismadewith thegl Ver t exAt t ri bPoi nt er andgl Enabl eVert exAttri bArray
functions. Each vertex attribute in a particular program object has an index; this index can be queried with
gl Get Attri bLocat i on. Theindex isused by the various other vertex attribute functions to refer to that
specific attribute.

Each input variable in a vertex shader must be assigned an index number. This number is used in code to
refer to that particular attribute. This number is the attribute index.

The process of transforming vertex data from normalized device coordinate space to window space. It
specifies the viewable region of awindow.

An objectinthe OpenGL API that isused to compile shaders and represent the compiled shader'sinformation.
Each shader object is typed based on the shader stage that it contains data for.

An object in the OpenGL API that represents the full sequence of all shader processing to be used when
rendering. Program objects can be queried for attribute locations and various other information about the
program. They also contain some state that will be seen in later tutorials.

33

Chapter 2. Playing with Colors

This tutorial will show how to provide some color to the triangle from the previous tutorial. Instead of just giving the triangle a solid color, we
will use two methods to provide it with varying color across its surface. The methods are to using the fragment's position to compute a color
and to using per-vertex data to compute a color.

Fragment Position Display

Aswe stated in the overview, part of the fragment's data includes the position of the fragment on the screen. Thus, if we want to vary the color of
atriangle across its surface, We can access this data in our fragment shader and use it to compute the final color for that fragment. Thisis done
in the Fragment Position tutorial, who's main fileis Fr agPosi ti on. cpp.

In this tutorial, and all future ones, shaders will be loaded from files instead of hard-coded strings in the .cpp file. To support this, the
framework has the Fr amewor k: : LoadShader and Fr amewor k: : Cr eat ePr ogr am functions. These work similarly to the previous
tutorial's Cr eat eShader and Cr eat ePr ogr am except that LoadShader takes afilename instead of a shader file.

The FragPosition tutorial loads two shaders, the vertex shader dat a/ FragPosition.vert and the fragment shader dat a/
FragPosi ti on. f rag. The vertex shader isidentical to the one in the last tutorial. The fragment shader is very new, however:

Example 2.1. FragPosition's Fragment Shader
#version 330
out vec4 out put Col or;

void main()

{
float |erpVvalue = gl _FragCoord.y / 500. Of;
out put Col or = m x(vec4(1.0f, 1.0f, 1.0f, 1.0f),
vec4(0.2f, 0.2f, 0.2f, 1.0f), lerpValue);
}

gl _FragCoor d isabuilt-in variable that is only available in afragment shader. Itisavec3, soit hasan X, Y, and Z component. The X and
Y values are in window coordinates, so the absolute value of these numbers will change based on the window's resolution. Recall that window
coordinates put the origin at the bottom-left corner. So fragments along the bottom of the triangle would have alower Y value than those at the top.

The idea with this shader is that the color of a fragment will be based on the Y vaue of its window position. The 500.0f is the height of the
window (unless you resize the window). The division in the first line of the function simply converts the Y position to the [0, 1] range, where
lisat the top of the window and O is at the bottom.

The second line uses this [0, 1] value to perform alinear interpolation between two colors. The ni x function is one of the many, many standard
functions that the OpenGL Shading Language provides. Many of these functions, like i x, are vectorized. That is, some of their parameters can
be vectors, and when they are, they will perform their operations on each component of the vector simultaneoudly. In this case, the dimensionality
of the first two parameters must match.

Themi x function performs alinear interpolation. It will return exactly the first parameter if the third parameter is 0, and it will return exactly the
second parameter if the third parameter is 1. If the third parameter is between 0 and 1, it will return a value between the two other parameters,
based on the third parameter.

Note

The third parameter to m x must be on the range [0, 1]. However, GLSL will not check this or do the clamping for you. If it is not
on this range, the result of the m x function will be undefined. “Undefined” is the OpenGL shorthand for, “I do not know, but it is
probably not what you want.”

Playing with Colors

We get the following image:

Figure 2.1. Fragment Position

In this case, the bottom of the triangle, the one closest to a Y of O, will be the most white. While the top of the triangle, the parts closest to a
Y of 500, will have the darkest color.

Other than the fragment shader, nothing much changes in the code.

Vertex Attributes

Using the fragment position in a fragment shader is quite useful, but it is far from the best tool for controlling the color of triangles. A
much more useful tool is to give each vertex a color explicitly. The Vertex Colors tutorial implements this; the main file for this tutoria is
Vert exCol ors. cpp.

35

Playing with Colors

We want to affect the data being passed through the system. The sequence of events we want to happen is as follows.
1. For every position that we passto a vertex shader, we want to pass a corresponding color value.

2. For every output position in the vertex shader, we also want to output a color value that is the same as the input color value the vertex shader
received.

3. Inthe fragment shader, we want to receive an input color from the vertex shader and use that as the output color of that fragment.

You most likely have some serious questions about that sequence of events, notably about how steps 2 and 3 could possibly work. Well get to
that. We will follow the revised flow of data through the OpenGL pipeline.

Multiple Vertex Arrays and Attributes
In order to accomplish the first step, we need to change our vertex array data. That data now looks like this:

Example 2.2. New Vertex Array Data

const float vertexData[] = {

0. Of , 0.5f, 0.0f, 1.0f,
0.5f, -0.366f, 0.0f, 1.0f,
-0.5f, -0.366f, 0.0f, 1.0f,
1. 0f, 0. 0f, 0.0f, 1.0f,
0. Of , 1.0f, 0.0f, 1.0f,
0. Of , 0.0f, 1.0f, 1.0f,

b

First, we need to understand what arrays of data look like at the lowest level. A single byte is the smallest addressible datain C/C++. A byte
represents 8 bits (a bit can be 0 or 1), and it is a number on the range [0, 255]. A value of type float requires 4 bytes worth of storage. Any float
valueis stored in 4 consecutive bytes of memory.

A sequence of 4 floats, in GLSL parlance avec4, is exactly that: a sequence of four floating-point values. Therefore, avec4 takes up 16 bytes,
4 floats times the size of afloat.

Thevert exDat a variableis one large array of floats. The way we want to use it however is as two arrays. Each 4 floatsis a single vec4, and
the first three vecas represents the positions. The next 3 are the colors for the corresponding vertices.

In memory, thevert exDat a array looks like this:

Figure2.2. Vertex Array Memory Map

float (4 bytes):

vecd (16 bytes): I I

vertexData: I I I

36

Playing with Colors

The top two show the layout of the basic data types, and each box is a byte. The bottom diagram shows the layout of the entire array, and each
box isafloat. The left half of the box represents the positions and the right half represents the colors.

Thefirst 3 sets of values are the three positions of the triangle, and the next 3 sets of values are the three colors at these vertices. What we really
have is two arrays that just happen to be adjacent to one another in memory. One starts at the memory address &vert exDat a[0] , and the
other starts at the memory address &vert exDat a[12]

Aswith al vertex data, thisis put into a buffer object. We have seen this code before:

Example 2.3. Buffer Object Initialization

void InitializeVertexBuffer()

{
gl GenBuffers(1, &vertexBufferject);
gl Bi ndBuf f er (GL_ARRAY_BUFFER, vertexBufferject);
gl Buf f er Dat a(G._ARRAY_ BUFFER, si zeof (vertexData), vertexData, G._STATI C_DRAW ;
gl Bi ndBuf f er (GL_ARRAY_BUFFER, 0);
}

The code has not changed, because the sizes of the array is computed by the compiler withthesi zeof directive. Since we added afew elements
to the buffer, the computed size naturally grows bigger.

Also, you may notice that the positions are different from prior tutorials. The original triangle, and the one that was used in the Fragment Position
code, was aright triangle (one of the angles of the triangle is 90 degrees) that was isosceles (two of its three sides are the same length). This new
triangleis an equilateral triangle (all three sides are the same length) centered at the origin.

Recall from above that we are sending two pieces of data per-vertex: a position and a color. We have two arrays, one for each piece of data.
They may happen to be adjacent to one another in memory, but this changes nothing; there are two arrays of data. We need to tell OpenGL how
to get each of these pieces of data.

Thisis done asfollows:

Example 2.4. Rendering the Scene

voi d display()

{
gl Cl earCol or(0.0f, 0.0f, 0.0f, 0.0f);
gl d ear (G._COLOR BUFFER BI T);

gl UseProgramt heProgranj ;

gl Bi ndBuf f er (GL_ARRAY_BUFFER, vertexBuffer Cbject);

gl Enabl eVert exAttri bArray(0);

gl Enabl eVertexAttri bArray(1);

gl VertexAttribPointer (0, 4, G._FLOAT, G._FALSE, 0, 0);

gl VertexAttribPointer(1, 4, G._FLOAT, G._FALSE, 0, (void*)48);

gl DrawArrays(G._TRI ANGLES, 0, 3);
gl Di sabl eVertexAttri bArray(0);

gl Di sabl eVertexAttri bArray(1);

gl UseProgran(0);

gl ut SwapBuf fers();
gl ut Post Redi spl ay();

37

Playing with Colors

Since we have two pieces of data, we have two vertex attributes. For each attribute, we must call gl Enabl eVert exAt t ri bAr r ay to enable
that particular attribute. The first parameter is the attribute location set by thel ayout (| ocat i on) field for that attribute in the vertex shader.

Then, we call gl Vert exAttri bPoi nt er for each of the attribute arrays we want to use. The only difference in the two calls are which

attribute location to send the data to and the last parameter. The last parameter is the byte offset into the buffer of where the data for this attribute
starts. This offset, in this case, is 4 (the size of afloat) * 4 (the number of floatsin avecd) * 3 (the number of vecd's in the position data).

Note

If you'rewonderingwhy itis(voi d*) 48 and not just 48, that is because of some legacy API cruft. The reason why the function name
is glVertexAttrib“ Pointer” is because the last parameter is technically a pointer to client memory. Or at least, it could be in the past. So
we must explicitly cast the integer value 48 to a pointer type.

After this, we use gl Dr awAr r ays to render, then disable the arrays with gl Di sabl eVert exAttri bArray.

Drawing in Detail
In the last tutorial, we skimmed over the details of what exactly gl Dr awAr r ays does. Let ustake a closer [ook now.
The various attribute array functions set up arrays for OpenGL to read from when rendering. In our case here, we have two arrays. Each array

has a buffer object and an offset into that buffer where the array begins, but the arrays do not have an explicit size. If we look at everything as
C++ pseudo-code, what we have isthis:

Example 2.5. Vertex Arrays

G.byte *bufferCbject = (void*){0.0f, 0.5f, 0.0f, 1.0f, 0.5f, -0.366f, ...};

float *positionAttribArray[4] = (float *[4]) (& bufferCbject + 0));

float *colorAttribArray[4] = (float *[4]) (& bufferCbject + 48));

Each element of the posi ti onAttri bArray contains 4 components, the size of our input to the vertex shader (vec4). This is the case
because the second parameter of gl Vert exAt t ri bPoi nt er is 4. Each component is a floating-point number; similarly because the third
parameter is GL_FLOAT. The array takes its data from buf f er Obj ect because this was the buffer object that was bound at the time that
gl VertexAttri bPoi nt er was caled. And the offset from the beginning of the buffer object is O because that is the last parameter of
gl VertexAttri bPoi nter.

The same goesfor col or Att ri bAr r ay, except for the offset value, which is 48 bytes.

Using the above pseudo-code representation of the vertex array data, gl Dr awAr r ays would be implemented as follows:

Example 2.6. Draw Arrays Implementation

void gl DrawArrays(G.enum type, Gint start, G.int count)

{
for(Gint element = start; elenent < start + count; el enent++)
{
Vert exShader (positionAttri bArray[el enment], colorAttribArray[el enent]);
}
}

This means that the vertex shader will be executed count times, and it will be given data beginning with the st ar t -th element and continuing
for count elements. So the first time the vertex shader gets run, it takes the position attribute from buf f er Gbj ect[0 + (0 * 4 *
si zeof (fl oat))] and the color attribute from buf ferCbject[48 + (0 * 4 * sizeof (float))]. The second time pulls
the position from buf fer Gbj ect[0 + (1 * 4 * sizeof(float))] and color from buf ferChject[48 + (1 * 4 *
si zeof (float))].Andsoon.

The data flow from the buffer object to the vertex shaders looks like this now:

38

Playing with Colors

Figure 2.3. Multiple Vertex Attributes

Buffer Object Vertex Shaders
Index O In vec4 position
In vec4 color
Index 1
Index 2 g .
Index O —in vecd position
_ in vec4 color
Index 1 L y
Index 2 . .
de \Cln vecd position |
- In vec4 color
_ J

As before, every 3 vertices process is transformed into atriangle.

Vertex Shader

Our new vertex shader looks like this:
Example 2.7. M ulti-input Vertex Shader
#versi on 330

[ayout (Il ocation
[ayout (Il ocation

0) in vec4d position;
1) in vecd color;

smoot h out vec4 theCol or;

voi d main()

{
gl _Position = position;
t heCol or = col or;

}

There are three new lines here. Let us take them one at atime.

39

Playing with Colors

The declaration of the global col or defines anew input for the vertex shader. So this shader, in addition to taking an input named posi ti on
also takes a second input named col or . Aswith the posi ti on input, this tutorial assigns each attribute to an attribute index. posi ti on is
assigned the attribute index O, while col or isassigned 1.

That much only gets the data into the vertex shader. We want to pass this data out of the vertex shader. To do this, we must define an output
variable. Thisisdone using the out keyword. In this case, the output variableiscalled t heCol or and is of type vec4.

The snoot h keyword is an interpolation qualifier. We will see what this meansin a bit later.

Of course, this simply defines the output variable. In mai n, we actually writeto it, assigning to it the value of col or that was given as avertex
attribute. This being shader code, we could have used some other heuristic or arbitrary algorithm to compute the color. But for the purpose of
thistutorial, it issimply passing the value of an attribute passed to the vertex shader.

Technically, the built-in variable gl _Posi ti on isdefinedasout vec4 gl _Positi on. Soitisan output variable aswell. It is a special

output because this valueis directly used by the system, rather than used only by shaders. User-defined outputs, liket heCol or above, have no
intrinsic meaning to the system. They only have an effect in so far as other shader stages use them, as we will see next.

Fragment Program
The new fragment shader looks like this:

Example 2.8. Fragment Shader with Input
#version 330

smooth in vec4d theCol or;

out vec4 out put Col or;

voi d main()

{
}

This fragment shader defines an input variable. It is no coincidence that this input variable is named and typed the same as the output variable
from the vertex shader. We are trying to feed information from the vertex shader to the fragment shader. To do this, OpenGL requires that the
output from the previous stage have the same name and type as the input to the next stage. It also must use the same interpolation qualifier; if
the vertex shader used snoot h, the fragment shader must do the same.

out put Col or = theCol or;

Thisis agood part of the reason why OpenGL requires vertex and fragment shaders to be linked together; if the names, types, or interpolation
qualifiers do not match, then OpenGL will raise an error when the program is linked.

So the fragment shader receives the value output from the vertex shader. The shader simply takes this value and copies it to the output. Thus, the
color of each fragment will ssimply be whatever the vertex shader passed along.

Fragment Interpolation

Now we come to the elephant in the room, so to speak. Thereis a basic communication problem.

See, our vertex shader isrun only 3 times. This execution produces 3 output positions (gl _Posi ti on) and 3 output colors (t heCol or). The
3 positions are used to construct and rasterize a triangle, producing a number of fragments.

The fragment shader is not run 3 times. It is run once for every fragment produced by the rasterizer for this triangle. The number of fragments
produced by a triangle depends on the viewing resolution and how much area of the screen the triangle covers. An equilateral triangle the length
of who's sides are 1 has an area of ~0.433. Thetotal screen area (on therange[-1, 1] in X and Y) is 4, so our triangle covers approximately one-
tenth of the screen. The window's natural resolution is 500x500 pixels. 500* 500 is 250,000 pixels; one-tenth of thisis 25,000. So our fragment
shader gets executed about 25,000 times.

40

Playing with Colors

There's adight disparity here. If the vertex shader is directly communicating with the fragment shader, and the vertex shader is outputting only
3total color values, where do the other 24,997 values come from?

The answer is fragment interpolation.

By using the interpolation qualifier snoot h when defining the vertex output and fragment input, we are telling OpenGL to do something special
with this value. Instead of each fragment receiving one value from a single vertex, what each fragment gets is a blend between the three output
values over the surface of the triangle. The closer the fragment is to one vertex, the more that vertex's output contributes to the value that the
fragment program receives.

Because such interpolation is by far the most common mode for communicating between the vertex shader and the fragment shader, if you do
not provide an interpolation keyword, snoot h will be used by default. There are two other alternatives: noper specti ve andf | at .

If you were to modify the tutorial and change snoot h to noper spect i ve, you would see no change. That does not mean a change did not
happen; our example is just too simple for there to actually be a change. The difference between snoot h and noper spect i ve is somewhat
subtle, and only matters once we start using more concrete examples. We will discuss this difference later.

Thef | at interpolation actually turns interpolation off. It essentially says that, rather than interpolating between three values, each fragment of
the triangle will simply get the first of the three vertex shader output variables. The fragment shader gets a flat value across the surface of the
triangle, hencetheterm “f | at .”

Each rasterized triangle has its own set of 3 outputs that are interpolated to compute the value for the fragments created by that triangle. So if
you render 2 triangles, the interpolated values from one triangle do not directly affect the interpolated values from another triangle. Thus, each
triangle can be taken independently from the rest.

It is possible, and highly desirable in many cases, to build multiple triangles from shared vertices and vertex data. But we will discuss this at
alater time.

The Final Image

When you run the tutorial, you will get the following image.

Figure 2.4. Interpolated Vertex Colors

The colors at each tip of the triangle are the pure red, green, and blue colors. They blend together towards the center of the triangle.

In Review

In thistutorial, you have learned the following:

41

Playing with Colors

» Datais passed to vertex shaders via buffer objects and attribute arrays. This datais processed into triangles.
» Thegl _FragCoor d built-in GLSL variable can be used in fragment shaders to get the window-space coordinates of the current fragment.

» Data can be passed from a vertex shader to a fragment shader, using output variables in the vertex shader and corresponding input variables
in the fragment shader.

 Data passed from the vertex shader to the fragment shader isinterpolated across the surface of the triangle, based on the interpolation qualifier
used for the output and input variables in the vertex and fragment shaders respectively.

Further Study

Here are some ideas to play around with.

» Change the viewport in the FragPosition tutorial. Put the viewport in the top half of the display, and then put it in the bottom half. See how
this affects the shading on the triangle.

» Combinethe FragPosition tutorial with the Vertex Color tutorial. Use interpolated color from the vertex shader and multiply that with the value
computed based on the screen-space position of the fragment.

GLSL Functions of Note

vec mx(vec initial, vec final, float alpha);

Performs alinear interpolation betweeni ni ti al , fi nal , based on al pha. An al pha vaue of 0 meansthat thei ni t al valueisreturned,
whilean al pha of 1 meansthef i nal vaueisreturned. The vec type means that the parameter can be a vector or float. All occurrences of vec
must be the same in a particular function call, however, soi ni ti al andfi nal must have the same type.

Theal pha value can be either ascalar or avector of thesamelengthasi ni ti al andfi nal . If itisascalar, then al of the components of the
two values are interpolated by that scalar. If it isavector, then the componentsof i ni ti al andfi nal areinterpolated by their corresponding
components of al pha.

If al pha, or any component of al pha, is outside of the range [0, 1], then the return value of this function is undefined.

Glossary

fragment interpolation Thisisthe process of taking 3 corresponding vertex shader outputs and interpolating them across the surface
of the triangle. For each fragment generated, there will also be an interpolated value generated for each
of the vertex shader's outputs (except for certain built-in outputs, like gl _Posi t i on.) The way that the
interpolation is handled depends on the interpolation qualifier on the vertex output and fragment input.

interpolation qualifier A GLSL keyword assigned to outputs of vertex shaders and the corresponding inputs of fragment shaders.

It determines how the three values of the triangle are interpolated across that triangle's surface. The qualifier
used on the vertex shader output must match with the one used on the fragment shader input of the same name.

Valid interpolation qualifiersare snoot h, f | at , and noper specti ve.

42

Part Il. Positioning

Vertex positions are perhaps the most important part of avertex'sinformation. The only datathat avertex shader must produce isthe computation
of aclip-space vertex position; everything else is user-defined.

Computing proper vertex positions can turn an assemblage of triangles into something that resembles areal object. This section of the book will
detail how to make objects move around, as well as presenting them as a three-dimensional object. It covers how to manipulate vertex positions
through a series of spaces, to allow for concepts like a change of viewer orientation. And it covers how to position and orient objects arbitrarily,
to achieve many different kinds of movement and animation.

Chapter 3. OpenGL's Moving Triangle

Thistutorial is about how to move objects around. It will introduce new shader techniques.

Moving the Vertices

The simplest way one might think to move atriangle or other object around isto simply modify the vertex position data directly. From previous
tutorials, we learned that the vertex data is stored in a buffer object. So the task is to modify the vertex data in the buffer object. This is what
cpuPositi onOf f set . cpp does.

The modifications are done in two steps. Thefirst step isto generate the X, Y offset that will be applied to each position. The second isto apply
that offset to each vertex position. The generation of the offset is done with the Conput ePosi ti onCOf f set function:

Example 3.1. Computation of Position Offsets
voi d Comput ePositionOf fsets(float & XOfset, float & YO fset)
{ const float fLoopDuration = 5.0f;
const float fScale = 3.14159f * 2.0f / fLoopDuration;
float fEl apsedTinme = glutGet(GLUT_ELAPSED TI ME) / 1000. Of;
float fCurrTi neThroughLoop = fnodf (fEl apsedTi ne, fLoopDuration);

f XOF f set
fYOF f set

cosf (f Curr Ti meThr oughLoop * fScale) * 0.5f;
si nf (f Curr Ti meThr oughLoop * fScale) * 0.5f;

}

This function computes offsets in a loop. The offsets produce circular motion, and the offsets will reach the beginning of the circle every 5
seconds (controlled by f LoopDur at i on). Thefunctiongl ut Get (GLUT_ELAPSED Tl ME) retrievestheinteger timein milliseconds since
the application started. Thef nodf function computes the floating-point modulus of thetime. In lay terms, it takes the first parameter and returns
the remainder of the division between that and the second parameter. Thus, it returns avalue on therange [0, f LoopDur at i on), which iswhat
we need to create a periodically repeating pattern.

Thecosf and si nf functions compute the cosine and sine respectively. It is not important to know exactly how these functions work, but they
effectively compute a circle of diameter 2. By multiplying by 0.5f, it shrinks the circle down to acircle with a diameter of 1.

Once the offsets are computed, the offsets have to be added to the vertex data. Thisis done with the Adj ust Ver t exDat a function:

Example 3.2. Adjusting the Vertex Data

voi d AdjustVertexData(float fXOfset, float fYOfset)

{
std::vector<float> fNewDat a(ARRAY_COUNT(vertexPositions));
mencpy(& NewDat a[0], vertexPositions, sizeof(vertexPositions));

for(int iVertex = 0; iVertex < ARRAY_COUNT(vertexPositions); iVertex += 4)
{

f NewDat a[i Vertex] += fXO fset;

fNewDat a[i Vertex + 1] += f YO fset;

}

gl Bi ndBuf f er (GL_ARRAY_BUFFER, positionBufferObject);
gl Buf f er SubDat a(GL_ARRAY_BUFFER, 0, sizeof (vertexPositions), &f NewData[O0]);

44

OpenGL's Moving Triangle

gl Bi ndBuf f er (GL_ARRAY_BUFFER, 0);
}

This function works by copying the vertex data into a std::vector, then applying the offset to the X and Y coordinates of each vertex. The last
three lines are the OpenGL-relevant parts.

First, the buffer objects containing the positions is bound to the context. Then the new function gl Buf f er SubDat a is called to transfer this
data to the buffer object.

The difference between gl Buf f er Dat a and gl Buf f er SubDat a isthat the SubData function does not allocate memory. gl Buf f er Dat a
specifically allocates memory of a certain size; gl Buf f er SubDat a only transfers data to the already existing memory. Calling
gl Buf f er Dat a on a buffer object that has already been allocated tells OpenGL to reallocate this memory, throwing away the previous data
and allocating a fresh block of memory. Whereas calling gl Buf f er SubDat a on a buffer object that has not yet had memory allocated by
gl Buf f er Dat a isan error.

Think of gl Buf f er Dat a asacombination of mal | oc and nentpy, while glBufferSubDataisjust nencpy.

The gl Buf f er SubDat a function can update only a portion of the buffer object's memory. The second parameter to the function is the byte
offset into the buffer object to begin copying to, and the third parameter is the number of bytes to copy. The fourth parameter is our array of
bytes to be copied into that location of the buffer object.

Thelast lineof thefunctionissimply unbinding the buffer object. Itisnot strictly necessary, but itisgood form to clean up binds after making them.
Buffer Object Usage Hints. Every time we draw something, we are changing the buffer object's data. OpenGL has a way to tell it that you
will be doing something like this, and it is the purpose of the last parameter of gl Buf f er Dat a. This tutorial changed the allocation of the
buffer object dightly, replacing:

gl Buf f er Dat a(G._ARRAY_BUFFER, si zeof (vertexPositions), vertexPositions, G. STATI C DRAW ;

with this:

gl Buf f er Dat a(G._ARRAY_BUFFER, si zeof (vertexPositions), vertexPositions, G. STREAM DRAW ;

GL_STATI C_DRAWtells OpenGL that you intend to only set the data in this buffer object once. G._ STREAM DRAWtells OpenGL that you
intend to set this data constantly, generally once per frame. These parameters do not mean anything with regard to the API; they are simply
hints to the OpenGL implementation. Proper use of these hints can be crucial for getting good buffer object performance when making frequent

changes. We will see more of these hints later.

The rendering function now has become this:

Example 3.3. Updating and Drawing the Vertex Data

voi d display()

{
float fXOffset = 0.0f, fYOfset = 0.0f;
Comput ePositi onO fsets(f XOffset, fYOfset);
Adj ust VertexDat a(f XO fset, fYOfset);

gl Cl earCol or(0.0f, 0.0f, 0.0f, 0.0f);
gl d ear (G._COLOR BUFFER BI T);

gl UseProgramt heProgranj ;

gl Bi ndBuf f er (GL_ARRAY_ BUFFER, positionBufferCbject);
gl Enabl eVertexAttri bArray(0);

gl VertexAttribPointer(0, 4, G._FLOAT, G._FALSE, 0, 0);

gl DrawArrays(G._TRI ANGLES, 0, 3);

45

OpenGL's Moving Triangle

gl D sabl eVertexAttri bArray(0);
gl UsePr ogranm(0);

gl ut SwapBuf fers();
gl ut Post Redi spl ay();

}

The first three lines get the offset and set the vertex data. Everything but the last line is unchanged from the first tutorial. The last line of the
function isthere to tell FreeGLUT to constantly call di spl ay. Ordinarily, di spl ay would only be called when the window's size changes or
when the window is uncovered. gl ut Post Redi spl ay causes FreeGLUT to call di spl ay again. Not immediately, but reasonably fast.

If you run the tutorial, you will see asmaller triangle (the size was reduced in thistutorial) that slides around in acircle.

A Better Way

Thisisfinefor a3-vertex example. Butimagine asceneinvolving millionsof vertices(and no, that's not an exaggeration for high-end applications).
Moving objects this way means having to copy millions of vertices from the original vertex data, add an offset to each of them, and then upload
that data to an OpenGL buffer object. And all of that is before rendering. Clearly there must be a better way; games can not possibly do this
every frame and still hold decent framerates.

Actualy for quite sometime, they did. In the pre-GeForce 256 days, that was how all gamesworked. Graphics hardware just took alist of vertices
in clip space and rasterized them into fragments and pixels. Granted, in those days, we were talking about maybe 10,000 triangles per frame. And
while CPUs have come along way since then, they have not scaled with the complexity of graphics scenes.

The GeForce 256 (note: not a GT 2xx card, but the very first GeForce card) was the first graphics card that actually did some from of vertex
processing. It could store vertices in GPU memory, read them, do some kind of transformation on them, and then send them through the rest of
the pipeline. The kinds of transformations that the old GeForce 256 could do were quite useful, but fairly simple.

Having the benefit of modern hardware and OpenGL 3.x, we have something far more flexible: vertex shaders.

Remember what it is that we are doing. We compute an offset. Then we apply that offset to each vertex position. VVertex shaders are given each
vertex position. So it makes sense to simply give the vertex shader the offset and let it compute the final vertex position, since it operates on each
vertex. Thisiswhat ver t Posi ti onOf f set . cpp does.

The vertex shader isfoundin dat a\ posi ti onCf f set . vert . The vertex shader used hereis asfollows:

Example 3.4. Offsetting Vertex Shader
#version 330

| ayout (1 ocation = 0) in vec4 position;
uni form vec2 of fset;

void main()

{
vec4 total Offset = vec4(offset.x, offset.y, 0.0, 0.0);
gl _Position = position + total Ofset;

}

After defining the input posi t i on, the shader defines a 2-dimensional vector of f set . But it defines it with the term uni f or m rather than
i norout . Thishasa particular meaning.

Shaders and Granularity. Recall that, with each execution of a shader, the shader gets new values for variables defined asi n. Eachtime a
vertex shader iscalled, it gets a different set of inputs from the vertex attribute arrays and buffers. That is useful for vertex position data, but it is
not what we want for the offset. We want each vertex to use the same offset; a“uniform” offset, if you will.

46

OpenGL's Moving Triangle

Variables defined as uni f or mdo not change at the same frequency as variables defined as i n. Input variables change with every execution
of the shader. Uniform variables (called uniforms) change only between executions of rendering calls. And even then, they only change when
the user sets them explicitly to anew value.

Vertex shader inputs come from vertex attribute array definitions and buffer objects. By contrast, uniforms are set directly on program objects.
In order to set a uniform in a program, we need two things. The first is a uniform location. Much like with attributes, there is an index that
refers to a specific uniform value. Unlike attributes, you cannot set this location yourself; you must query it. In this tutorial, thisis done in the
InitializeProgramfunction, withthisline

of fset Location = gl Get Uni fornlLocation(theProgram "offset");

Thefunction gl Get Uni f or mLocat i on retrievesthe uniform location for the uniform named by the second parameter. Note that just because
auniform isdefined in ashader, GLSL does not have to provide alocation for it. It will only have alocation if the uniform is actually used in the

program, as we see in the vertex shader; gl Get Uni f or mLocat i on will return -1 if the uniform has no location.

Once we have the uniform location, we can set the uniform's value. However, unlike retrieving the uniform location, setting a uniform's value
requires that the program be currently in use with gl UsePr ogr am Thus, the rendering code looks like this:

Example 3.5. Draw with Calculated Offsets

voi d display()

{
float fXOFfset = 0.0f, fYOfset = 0. 0f;

Conput ePosi ti onO fsets(f XOFfset, fYOfset);

gl C ear Col or (0. 0f, 0.0f, 0.0f, 0.0f);
gl O ear (GL_COLOR BUFFER BI T);

gl UsePr ogran(t heProgram ;

gl Uni f or n2f (of f set Locati on, fXOffset, fYOfset);

gl Bi ndBuf f er (GL_ARRAY_BUFFER, positionBufferObject);
gl Enabl eVertexAttri bArray(0);

gl VertexAttribPointer(0, 4, G._FLOAT, G__FALSE, 0, 0);
gl DrawArrays(GL_TRI ANGLES, 0, 3);

gl D sabl eVertexAttri bArray(0);
gl UsePr ogranm(0);

gl ut SwapBuf fers();
gl ut Post Redi spl ay();

}

We use Conput ePosi ti onOf f set s to get the offsets, and then use gl Uni f or n2f to set the uniform's value. The buffer object's datais
never changed; the shader simply does the hard work. Which is why those shader stages exist in the first place.

47

OpenGL's Moving Triangle

Standard OpenGL Nomenclature
The function gl Uni f or n2f usesaspecia bit of OpenGL nomenclature. Specificaly, the “2f" part.

Uniforms can have different types. And because OpenGL is defined in terms of C rather than C++, there is no concept of function
overloading. So functionsthat do the same thing which take different types must have different names. OpenGL has standardized itsnaming
convention for these.

Functionslike gl Uni f or mhave a suffix. The first part of the suffix is the number of valuesit takes. In the above case, gl Uni f or n2f
takes 2 values, in addition to the regular parameters. The basic gl Uni f or mparameters are just the uniform location, so gl Uni f or nmRf
takes a uniform location and two values.

The type of valuesit takes is defined by the second part. The possible type names and their associated types are:

b signed byte ub unsigned byte
S signed short us unsigned short
i signed int ui unisgned int

f float d double

Note that OpenGL has special typedefsfor all of these types. GLfloat is atypedef for float, for example. Thisis not particularly useful for
simple types, but for integer types, they can be very useful.

Not all functionsthat take multiple typestakeall possible types. For example, gl Uni f or monly comesini , ui ,andf variations (OpenGL
4.0 introduces d variants).

There are also vector forms, defined by adding a “v” after the type. These take an array of values, with a parameter saying how many
elementsareinthearray. So thefunction gl Uni f or n2f v takesauniform location, anumber of entries, and an array of that many entries.
Each entry is two floats in size; the number of entries is not the number of floats or other types. It is the number of values divided by the
number of values per entry. Since “2f” represents two floats, that is how many values are in each entry.

Some OpenGL functionsjust take atype without anumber. These functionstake afixed number of parameters of that type, usually just one.

Vector Math. You may be curious about how these lines work:

vecd total O fset = vec4(offset.x, offset.y, 0.0, 0.0);
gl _Position = position + total Ofset;

The vec4 that looks like afunction hereis a constructor; it creates avecd from 4 floats. Thisis done to make the addition easier.

The addition of posi ti ontot ot al Of f set isacomponent-wise addition. It is a shorthand way of doing this:

gl _Position.x = position.x + total Ofset.x;
gl _Position.y = position.y + total Ofset.y;
gl _Position.z = position.z + total Ofset. z;
gl _Position.w = position.w + total O fset.w

GLSL hasalot of vector math built in. The math operations are all component-wise when applied to vectors. However, it isillegal to add vectors
of different dimensions to each other. So you cannot have avec2 + vecd. That is why we had to convert of f set to avec4 before performing

the addition.

More Power to the Shaders

It's all well and good that we are no longer having to transform vertices manually. But perhaps we can move more things to the vertex shader.

Could it be possible to move all of Conput ePosi ti onCOf f set s to the vertex shader?

48

OpenGL's Moving Triangle

WEell, no. The call to gl ut Get (GL_ELAPSED TI ME) cannot be moved there, since GLSL code cannot directly call C/C++ functions. But
everything else can be moved. Thisiswhat ver t Cal cOf f set . cpp does.

The vertex programisfound indat a\ cal cOf f set . vert.

Example 3.6. Offset Computing Vertex Shader
#version 330

| ayout (1 ocation = 0) in vec4 position;
uni form fl oat | oopDuration;

uni formfloat tine;

void main()

{
float tinmeScale = 3.14159f * 2.0f / | oopDuration;
float currTime = nod(tinme, |oopDuration);
vec4 total OFfset = vecd(
cos(currTime * tineScale) * 0.5f,
sin(currTinme * tinmeScale) * 0.5f,
0. of,
0. 0f);
gl _Position = position + total Ofset;
}

This shader takes two uniforms: the duration of the loop and the el apsed time.

In this shader, we use a number of standard GLSL functions, like mod, cos, and si n. We saw ni x in the last tutorial. And these are just the
tip of theiceberg; there are alot of standard GLSL functions available.

The rendering code looks quite similar to the previous rendering code:

Example 3.7. Rendering with Time

voi d display()

{
gl C ear Col or (0. 0f, 0.0f, 0.0f, 0.0f);
gl O ear (GL_COLOR BUFFER BI T);
gl UsePr ogran(t heProgram;
gl Uni f or miLf (el apsedTi meUni form gl ut Get (GLUT_ELAPSED TI ME) / 1000. 0f) ;
gl Bi ndBuf f er (GL_ARRAY_BUFFER, positionBufferObject);
gl Enabl eVertexAttri bArray(0);
gl VertexAttribPointer(0, 4, G._FLOAT, G__FALSE, 0, 0);
gl DrawArrays(GL_TRI ANGLES, 0, 3);
gl Di sabl eVertexAttri bArray(0);
gl UsePr ogranm(0);
gl ut SwapBuffers();
gl ut Post Redi spl ay() ;
}

49

OpenGL's Moving Triangle

Thistime, we do not need any code to use the elapsed time; we ssimply pass it unmodified to the shader.

You may be wondering exactly how it is that the | oopDur at i on uniform gets set. This is done in our shader initialization routine, and it is
done only once:

Example 3.8. Loop Duration Setting

void InitializeProgram)

{
std::vector<GLui nt > shaderlLi st;
shader Li st. push_back(Franmewor k: : LoadShader (G._VERTEX SHADER, "cal cOffset.vert"));
shader Li st. push_back(Franmewor k: : LoadShader (G._ FRAGVENT _SHADER, "standard.frag"));
t hePr ogram = Franewor k: : Cr eat ePr ogr an(shader Li st) ;
el apsedTi neUni form = gl Get Uni f or mLocati on(t heProgram "tinme");
GLui nt | oopDurati onUnf = gl Get Uni formLocati on(theProgram "Il oopDuration");
gl UseProgramn(t heProgram ;
gl Uni f or miLf (1 oopDurati onUnf, 5.0f);
gl UseProgram0);
}

We get the time uniform asnormal with gl Get Uni f or mLocat i on. For theloop duration, we get that in alocal variable. Then weimmediately
set the current program object, set the uniform to avalue, and then unset the current program object.

Program objects, like all objectsthat contain internal state, will retain their state unlessyou explicitly changeit. Sothevalue of | oopDur at i on
will be 5.0f in perpetuity; we do not need to set it every frame.

Multiple Shaders

WEell, moving thetriangle around isnice and al, but it would al so be good if we could do something time-based in the fragment shader. Fragment
shaders cannot affect the position of the object, but they can control its color. And thisiswhat f r agChangeCol or . cpp does.

The fragment shader in this tutorial isloaded from the filedat a\ cal cCol or. f r ag:
Example 3.9. Time-based Fragment Shader

#version 330

out vec4 out put Col or;

uni form fl oat fragLoopDuration;
uniformfloat tine,

const vec4 firstColor = vec4(1l.0f, 1.0f, 1.0f, 1.0f);
const vec4 secondCol or = vec4(0.0f, 1.0f, 0.0f, 1.0f);

voi d main()

{

float currTime = nod(time, fraglLoopDuration);

float currLerp = currTime / fragLoopDurati on;

out put Col or = m x(firstCol or, secondCol or, currlLerp);
}

50

OpenGL's Moving Triangle

This function is similar to the periodic loop in the vertex shader (which did not change from the last time we saw it). Instead of using sin/cos
functions to compute the coordinates of a circle, interpolates between two colors based on how far it is through the loop. When it is at the start
of the loop, the triangle will bef i r st Col or, and when it is at the end of the loop, it will be secondCol or .

The standard library function mi x performs linear interpolation between two values. Like many GLSL standard functions, it can take vector
parameters; it will perform component-wise operations on them. So each of the four components of thetwo parameterswill belinearly interpolated
by the 3rd parameter. The third parameter, cur r Ler p in this case, is a value between 0 and 1. When it is 0, the return value from mi x will be
the first parameter; when it is 1, the return value will be the second parameter.

Here isthe program initialization code:

Example 3.10. More Shader Creation

void InitializeProgram))

{
std::vect or<CGLui nt > shaderlLi st;
shader Li st. push_back(Franmewor k: : LoadShader (G._VERTEX SHADER, "cal cOffset.vert"));
shader Li st. push_back(Franewor k: : LoadShader (G._FRAGVENT _SHADER, "cal cColor.frag"));
t hePr ogram = Franewor k: : Cr eat ePr ogr an(shader Li st) ;
el apsedTi neUni form = gl Get Uni f or mLocati on(t heProgram "tinme");
GLui nt | oopDurationUnf = gl GetUni formLocation(theProgram "I oopDuration");
GLui nt fraglLoopDur Unf = gl Get Uni forniocati on(theProgram "fragLoopDuration");
gl UseProgramn(t heProgram ;
gl Uni f or miLf (| oopDur ati onUnf, 5.0f);
gl Uni f or miLf (f ragLoopDur Unf, 10. 0f);
gl UseProgram0);
}

As before, we get the uniform locations for t i me and | oopDur at i on, aswell asthenew f r agLoopDur at i on. We then set the two loop
durations for the program.

Y ou may bewondering how thet i nme uniform for the vertex shader and fragment shader get set? One of the advantages of the GLSL compilation
model, which links vertex and fragment shaders together into a single object, is that uniforms of the same name and type are concatenated. So
there is only one uniform location for t i e, and it refersto the uniform in both shaders.

The downside of thisis that, if you create one uniform in one shader that has the same name as a uniform in a different shader, but a different
type, OpenGL will give you alinker error and fail to generate a program. Also, it is possible to accidentally link two uniforms into one. In the
tutorial, the fragment shader's loop duration had to be given a different name, or else the two shaders would have shared the same loop duration.

In any case, because of this, the rendering code is unchanged. The time uniform is updated each frame with FreeGLUT's elapsed time.

Globalsin shaders. Variables at global scope in GLSL can be defined with certain storage qualifiers: const , uni formi n, and out . A
const value works like it doesin C99 and C++: the value does not change, period. It must have an initializer. An unqualified variable works
like one would expect in C/C++; it is agloba value that can be changed. GLSL shaders can call functions, and globals can be shared between
functions. However, unlikei n, out , and uni f or ns, non-const and const variables are not shared between stages.

On Vertex Shader Performance

Thesetutorials are simple and should run fast enough, but it isstill important to look at the performance implications of various operations. In this
tutorial, we present 3 ways of moving vertex data: transform it yourself on the CPU and upload it to buffer objects, generate transform parameters
on the CPU and have the vertex shader use them to do the transform, and put as much as possible in the vertex shader and only have the CPU
provide the most basic parameters. Which is the best to use?

51

OpenGL's Moving Triangle

Thisisnot an easy question to answer. However, it isamost always the case that CPU transformations will be slower than doing it on the GPU.
The only time it will not beisif you need to do the exact same transformations many times within the same frame. And even then, it is better
to do the transformations once on the GPU and save the result of that in a buffer object that you will pull from later. This is called transform
feedback, and it will be covered in alater tutorial.

Between the other two methods, which is better really depends on the specific case. Take our example. In one case, we compute the offset on
the CPU and pass it to the GPU. The GPU applies the offset to each vertex position. In the other case, we ssimply provide a time parameter,
and for every vertex, the GPU must compute the exact same offset. This means that the vertex shader is doing alot of work that all comes out
to the same number.

Even so, that does not mean it's always slower. What mattersisthe overhead of changing data. Changing a uniform takes time; changing a vector
uniform typically takes no more time than changing a single float, due to the way that many cards handle floating-point math. The question is
this: what is the cost of doing more complex operations in a vertex shader vs. how often those operations need to be done.

The second vertex shader we use, the one that computesthe offset itself, doesalot of complex math. Sine and cosine valuesare not particularly fast
to compute. They require quite afew computations to calculate. And since the offset itself does not change for each vertex in a single rendering
call, performance-wise it would be best to compute the offset on the CPU and pass the offset as a uniform value.

And typically, that is how rendering is done much of the time. Vertex shaders are given transformation values that are pre-computed on the CPU.
But this does not mean that this is the only or best way to do this. In some cases, it is often useful to compute the offsets via parameterized
values passed to the vertex shader.

Thisisbest done when vertex shader inputs are abstracted away. That is, rather than passing a position, the user passes more general information,
and the shader generates the position at a particular time or some other parameter. This can be done for particle systems based on forces; the
vertex shader executes the force functions based on time, and is able to thus compute the location of the particle at an arbitrary time.

This also has an advantage that we have seen. By passing high-level information to the shader and letting it do complex math, you can affect
much more than just a simple offset. The color animation in the fragment shader would not have been possible with just an offset. High-level
parameterization gives shaders agreat deal of freedom.

In Review

In thistutorial, you have learned about the following:

 Buffer object contents can be updated partially with the gl Buf f er SubDat a function. This function performs the equivaent of anenctpy
operation.

» Uniform variablesin shaders are variables that are set by code outside of GLSL. They only change between rendering calls, so they are uniform
over the surface of any particular triangle.

 Uniform variable values are stored with the program object. This state is preserved until it is explicitly changed.

« Uniform variables defined in two GLSL stages that have the same name and type are considered the same uniform. Setting this uniform in
the program object will changeits value for both stages.

Further Study

There are several things you can test to see what happens with these tutorials.

* Withvert Cal cOf f set. cpp, changeit so that it draws two triangles moving in a circle, with one a half | oopDur at i on ahead of the
other. Simply changethe uniformsafter thegl Dr awAr r ays call and then makethegl Dr awAr r ays call again. Add half of theloop duration
to the time before setting it the second time.

e InfragChangeCol or. cpp, change it so that the fragment program bounces between f i r st Col or and secondCol or, rather than
popping from secondCol or back to first at the end of a loop. The first-to-second-to-first transition should all happen within a single
fragLoopDur at i on timeinterval. In case you are wondering, GLSL supportsthei f statement, aswell asthe ?: operator. For bonus points
however, do it without an explicit conditional statement; fedl free to use asin or cos function to do this.

52

OpenGL's Moving Triangle

 Using our knowledge of uniforms, go back to Tutorial 2's FragPosition tutorial. Modify the code so that it takes a uniform that describes the
window's height, rather than using a hard-coded value. Change the r eshape function to bind the program and modify the uniform with the
new height.

OpenGL Functions of Note

glBufferSubData This function copies memory from the user's memory addressinto abuffer object. This function takes a byte
offset into the buffer object to begin copying, aswell as a number of bytes to copy.

When this function returns control to the user, you are freeto immediately deallocate the memory you owned.
So you can alocate and fill a piece of memory, call thisfunction, and immediately free that memory with no
hazardous side effects. OpenGL will not store the pointer or make use of it later.

glGetUniformL ocation This function retrieves the location of a uniform of the given name from the given program object. If that
uniform does not exist or was not considered in use by GLSL, then this function returns -1, which is not a
valid uniform location.

glUniform* Sets the given uniform in the program currently in use (set by gl UsePr ogr anj to the given value. Thisis
not merely one function, but an entire suite of functions that take different types.

GLSL Functions of Note

vec nod(vec numnerator, float denoninator);

The mod function takes the modulus of the nuner at or by thedenom nat or . The modulus can be thought of asaway of causing aloop; the
return value will be on the range [0, denom nat or) in alooping fashion. Mathematically, it is defined as nuner at or - (denom nat or *
FLOOR(nurmer at or /denom nat or)), where FLOOR rounds a floating-point value down towards the smallest whole number.

Thetype vec can be either float or any vector type. It must be the same type for all parameters. If avector denominator is used, then the modulus
is taken for each corresponding component. The function returns a vector of the same size asitsnuner at or type.

vec cos(vec angle);
vec sin(vec angle);

Returns the trigonometric cosine or sine [http://en.wikipedia.org/wiki/Sine#Sine.2C_cosine_and_tangent], respectively, of the given angl e.
The angl e is given in units of radians. If the angl e is a vector, then the returned vector will be of the same size, and will be the cosine or
sine of each component of theangl e vector.

Glossary

uniforms These are a class of global variable that can be defined in GLSL shaders. They represent values that are
uniform (unchanging) over the course of arendering operation. Their values are set from outside of the shader,
and they cannot be changed from within a shader.

53

http://en.wikipedia.org/wiki/Sine#Sine.2C_cosine_and_tangent
http://en.wikipedia.org/wiki/Sine#Sine.2C_cosine_and_tangent

Chapter 4. Objects at Rest

Thus far, we have seen very flat things. Namely, a single triangle. Maybe the triangle moved around or had some colors.

Thistutorial is all about how to create arealistic world of objects.

The Unreal World

The Orthographic Cube tutorial renders arectangular prism (a 3D rectangle). The dimensions of the prism are 0.5x0.5x1.5, so it islonger in the
Zaxisby 3xtheX and Y.

The code in this tutorial should be familiar, for the most part. We simply draw 12 triangles rather than one. The rectangular faces of the prism
are made of 2 triangles, splitting the face along one of the diagonals.

The vertices also have a color. However, the color for the 6 vertices that make up afaceis always the same; this gives each face asingle, uniform
color.

The vertex shader isacombination of thingswe know. It passes a color through to the fragment stage, but it also takes avec2 offset uniform that it
adds an offset to the X and Y components of the position. The fragment shader simply takes the interpolated color and usesit as the output color.

Face Culling

There is one very noteworthy code change, however: the initialization routine. It has afew new functions that need to be discussed.

Example 4.1. Face Culling Initialization

void init()

{
InitializeProgranm();
InitializeVertexBuffer();

gl GenVertexArrays(1l, &vao);
gl Bi ndVert exArray(vao);

gl Enabl e(GL_CULL_FACE) ;
gl Cul | Face(GL_BACK) ;
gl Front Face(A._CW ;

}

The last three lines are new.

The gl Enabl e function isamulti-purpose tool. There are alot of binary on/off flags that are part of OpenGL's state. gl Enabl e isused to set
these flags to the “on” position. Similarly, thereisagl Di sabl e function that sets the flag to “ off.”

The GL_CULL_FACE flag, when enabled, tells OpenGL to activate face culling. Up until now, we have been rendering with face culling off.

Face culling is a useful feature for saving performance. Take our rectangular prism, for example. Pick up aremote control; their general shapeis
that of arectangular prism. No matter how you look at it or orient it, you can never see more than 3 sides of it at once. So why bother spending
all that fragment processing time drawing the other three sides?

Face culling isaway of telling OpenGL not to draw the sides of an object that you cannot see. It is quite simple, really.

In window space, after the transform from normalized device coordinates, you have a triangle. Each vertex of that triangle was presented to
OpenGL in a specific order. This gives you away of numbering the vertices of the triangle.

No matter what size or shape the triangle is, you can classify the ordering of atriangle in two ways:. clockwise or counter-clockwise. That is, if
the order of the verticesfrom 1 to 2 to 3 moves clockwisein acircle, relative to the triangl€'s center, then the triangle is facing clockwise relative
to the viewer. Otherwise, the triangle is counter-clockwise relative to the viewer. This ordering is called the winding order.

54

Objects at Rest

Figure4.1. Triangle Winding Order

1 1

3 2

The left triangle has a clockwise winding order; the triangle on the right has a counter-clockwise winding order.

Face culling in OpenGL works based on this ordering. Setting this is a two-step process, and is accomplished by the last two statements of the
initialization function.

The gl Fr ont Face defines which winding order, clockwise or counter-clockwise, is considered to be the “front” side of the triangle. This
function can be given either G._ CWor GL_ CCW for clockwise and counter-clockwise respectively.

Thegl Cul | Face function defineswhich side, front or back, getsculled. Thiscan be given GL_BACK, GL_FRONT, or GL_FRONT_AND_BACK.
Thelatter culls everything, so no triangles are rendered. This can be useful for measuring vertex shader performance but isless useful for actually
drawing anything.

The triangle data in the tutorial is specifically ordered so that the clockwise facing of the triangles face out. This prevents the drawing of the
rear-facing faces.

Lack of Perspective

So, the image looks like this:

Figure4.2. Orthographic Prism

55

Objects at Rest

There's something wrong with this. Namely, that it looks like a square.

Pick up a remote control again. Point it directly at your eye and position it so that it isin the center of your vision. Y ou should only be able to
see the front panel of the remote.

Now, move it to the right and up, similar to where the squareis. Y ou should be able to see the bottom and left side of the remote.
So we should be able to see the bottom and | eft side of our rectangular prism. But we cannot. Why not?

Think back to how rendering happens. In clip-space, the vertices of the back end of the rectangular prism are directly behind the front end. And
when we transform these into window coordinates, the back vertices are still directly behind the front vertices. Thisis what the rasterizer sees,
so thisiswhat the rasterizer renders.

There has to be something that reality is doing that we are not. That something is called “ perspective.”

Perspective Projection

Recall that our destination image, the screen, is just a two dimensional array of pixels. The 3D rendering pipeline we are using defines
transformations of vertex positions that go from clip-space to window space. Once the positions are in window space, 2D triangles are rendered.

A projection, in terms of the rendering pipeline is a way to transform a world from one dimensionality to another. Our initial world is three
dimensional, and therefore, the rendering pipeline defines a projection from this 3D world into the 2D one that we see. It is the 2D world in
which the triangles are actually rendered.

Finite projections, which are the ones we are interested in, only project objects onto a finite space of the lower dimensionality. For a 3D to 2D
projection, there is afinite plane on which the world is projected. For 2D to 1D, there is a bounded line that is the result of the projection.

An orthographic projection isavery simplistic projection. When projecting onto an axis-aligned surface, as below, the projection simply involves
throwing away the coordinate perpendicular to the surface.

Figure 4.3. 2D to 1D Orthographic Projection

A scene orthographically projected onto the black line. The gray box represents the part of the world that is visible to the projection; parts of
the scene outside of this region are not seen.

When projecting onto an arbitrary line, the math is a bit more complicated. But what makes it an orthographic projection is that the dimension
perpendicular to the surface is negated uniformly to create the projection. The fact that it is a projection in the direction of the perpendicular and
that it isuniform is what makes it orthographic.

56

Objects at Rest

Human eyes do not see the world via orthographic projection. If they did, you would only be able to see an area of the world the size of your
pupils. Because we do not use orthographic projections to see (among other reasons), orthographic projections do not |ook particularly real to us.

Instead, we use a pinhole cameramodel for our eyesight. This model performs a perspective projection. A perspective projection is a projection
of the world on a surface as though seen through a single point. A 2D to 1D perspective projection looks like this;

Figure 4.4. 2D to 1D Per spective Projection

Asyou can see, the projection is radial, based on the location of a particular point. That point is the eye or camera of the projection.

Just from the shape of the projection, we can see that the perspective projection causes alarger field of geometry to be projected onto the surface.

An orthographic projection only captures the rectangular prism directly in front of the surface of projection. A perspective projection captures
alarger space of the world.

In 2D, the shape of the perspective projection is aregular trapezoid (a quadrilateral that has only one pair of paralel sides, and the other pair of
sides have the same slope). In 3D, the shapeis called a frustum; essentialy, a pyramid with the tip chopped off.

57

Objects at Rest

Figure4.5. Viewing Frustum

N

!
'
4
'
v
vy
N
<€ il atiedl’ et \utati
)
L
7
Lo
' v
5 \
/ :
v
\
\
v
\
v

Mathematical Perspective

Now that we know what we want to do, we just need to know how to do it.

We will be making afew simplifying assumptions:

e The plane of projection is axis-aligned and faces down the -Z axis. Thus, -Z is farther away from the plane of projection.

e Theeyepointisfixed at the origin (0, 0, 0).

e Thesize of the plane of projection will be [-1, 1]. All points that project outside of this range are not drawn.

Y es, this sounds somewhat like normalized device coordinate space. No, that's not a coincidence. But |et's not get ahead of ourselves.

We know afew things about how the projection results will work. A perspective projection essentially shifts vertices towards the eye, based on
the location of that particular vertex. Vertices farther in Z from the front of the projection are shifted less than those closer to the eye. And the

shift also depends on how far the vertices are from the center of the plane of projection, in the X,Y direction.

The problemisreadly just a simple geometry problem. Here is the equivalent form in a 2D to 1D perspective projection.

58

Objects at Rest

Figure 4.6. 2D to 1D Perspective Projection Diagram

4 Projection Plane

% .(O, 0, 0)

The projection of the point P onto the projection plane. This planeis at an offset of E, compared to the eye point, which is fixed at the origin.
R isthe projected point.

What we have aretwo similar right triangles: the triangle formed by E, R and E,, and the triangle formed by E, P, and P,. We have the eye position
and the position of the unprojected point. To find the location of R, we simply do this:

Equation 4.1. Per spective Computation

kb

Since thisis a vectorized function, this solution applies equally to 2D as to 3D. Thus, perspective projection is simply the task of applying that
simple formula to every vertex that the vertex shader receives.

The Perspective Divide

The basic perspective projection function is smple. Really simple. Indeed, it is so simple that it has been built into graphics hardware since the
days of the earliest 3Dfx card and even prior graphics hardware.

Y ou might notice that the scaling can be expressed as a division operation (multiplying by the reciprocal). And you may recall that the difference
between clip space and normalized device coordinate space is a division by the W coordinate. So instead of doing the divide in the shader, we
can simply set the W coordinate of each vertex correctly and |et the hardware handle it.

This step, the conversion from clip-space to normalized device coordinate space, has a particular name: the per spective divide. So named because
it isusually used for perspective projections; orthographic projections tend to have the W coordinates be 1.0, thus making the perspective divide
ano-op.

Note

Y ou may be wondering why this arbitrary division-by-W step exists. Y ou may also be wondering, in this modern days of vertex shaders
that can do vector divisionsvery quickly, why we should bother to use the hardware division-by-W step at al. There are several reasons.

59

Objects at Rest

Onewe will cover in just abit when we deal with matrices. More important oneswill be covered in future tutorials. Suffice it to say that
there are very good reasons to put the perspective term in the W coordinate of clip space vertices.

Camera Perspective

Before we can actually implement perspective projection, we need to deal with anew issue. The orthographic projection transform was essentially
ano-op. Itisautomatic, by the nature of how OpenGL usesthe clip space verticesoutput by the vertex shader. The perspective projection transform
isabit more involved. Indeed, it fundamentally changes the nature of the world.

Our vertex positions before now have been stored directly in clip space. We did on occasion add an offset to the positions to move them to
more convenient locations. But for all intents and purposes, the position values stored in the buffer object are exactly what our vertex shader
outputs: clip space positions.

Recall that the divide-by-W is part of the OpenGL-defined transform from clip space positions to NDC positions. Perspective projection defines
aprocess for transforming positions into clip space, such that these clip space positions will appear to be a perspective projection of a3D world.
This transformation has well-defined outputs: clip space positions. But what exactly are its input values?

We therefore define a new space for positions; let us call this space camera space.! This is not a space that OpenGL recognizes (unlike clip-
spacewhichisexplicitly defined by GL); it ispurely an arbitrary user construction. The definition of camera space will affect the exact process of
perspective projection, since that projection must produce proper clip space positions. Therefore, it can be useful to define camera space based on
what we know of the general process of perspective projection. This minimizes the differences between camera space and the perspective form
of clip space, and it can simplify our perspective projection logic.

The volume of camera space will range from positive infinity to negative infinity in all directions. Positive X extends right, positive Y extends
up, and positive Z is forward. The last one is a change from clip space, where positive Z is away.

Our perspective projection transform will be specific to this space. As previously stated, the projection plane shall be aregion [-1, 1] in the X
and Y axes, and at a Z value of -1. The projection will be from vertices in the -Z direction onto this plane; vertices that have a positive Z value
are behind the projection plane.

Now, we will make one more simplifying assumption: the location of the center of the perspective plane isfixed at (0, 0, -1) in camera space.
Therefore, since the projection plane is pointing down the -Z axis, eye's location relative to the plane of projection is (0, O, -1). Thus, the E;,
value, the offset from the projection plane to the eye, is always -1. This means that our perspective term, when phrased as division rather than
multiplication, is simply P,/-1: the negation of the camera-space Z coordinate.

Having a fixed eye position and projection plane makes it difficult to have zoom-in/zoom-out style effects. This would normally be done by
moving the plane relative to the fixed eye point. Thereisaway to do this, however. All you need to do is, when transforming from camera space
to clip space, scale all of the X and Y values by a constant. What this does is make the world, as the camera sees it, smaller or larger in the X
and Y axes. It effectively makes the frustum wider or narrower.

To compare, cameraspace and normalized device coordinate space (after the perspective divide) look likethis, using a2D version of aperspective
projection:

Thereason it is called “ camera’ space will be discussed later.

60

Objects at Rest

Figure4.7. Camerato NDC Transformation in 2D
-z4A

-« T

v v
Camera Space Norm. Device Coord.

Do note that this diagram has the Z axis flipped from camera space and normalized device coordinate (NDC) space. This is because camera
space and NDC space have different viewing directions. In camera space, the cameralooks down the -Z axis; more negative Z values are farther
away. In NDC space, the cameralooks down the +Z axis; more positive Z values are farther away. The diagram flips the axis so that the viewing
direction can remain the same between the two images (up is away).

If you perform an orthographic projection from NDC space on the right (by dropping the Z coordinate), then what you get is a perspective
projection of the world on the left. In effect, what we have done is transform objects into a three-dimensional space from which an orthographic
projection will ook like a perspective one.

Perspective in Depth

So we know what to do with the X and Y coordinates. But what does the Z value mean in a perspective projection?

Until the next tutorial, we are going to ignore the meaning of Z. Even so, we still need some kind of transform for it; if avertex extends outside
of the[-1, 1] box in any axisin normalized device coordinate (NDC) space, then it is outside of the viewing area. And because the Z coordinate
undergoes the perspective divide just like the X and Y coordinates, we need to take this into account if we actually want to see anything in our
projection.

Our W coordinate will be based on the camera-space Z coordinate. We need to map Z values from the camera-space range [0, “0) O the NDC
space range [-1, 1]. Since camera space is an infinite range and we're trying to map to a finite range, we need to do some range bounding. The
frustum is already finitely boundinthe X and Y directions, we simply need to add a Z boundary.

The maximum distance that avertex can be beforeit is considered no longer in view isthe camera zFar. We also have a minimum distance from
the eye; thisis called the camera zNear. This creates afinite frustum for our camera space viewpoint.

Note

It isvery important to remember that these are the zNear and zFar for the camera space. The next tutorial will also introduce a range of
depth, also using the names zNear and zFar. Thisis arelated but fundamentally different range.

The camera zNear can appear to effectively determine the offset between the eye and the projection plane. However, thisis not the case. Even if
zNear islessthan 1, which would place the near Z plane behind the projection plane, you till get an effectively valid projection. Objects behind
the plane can be projected onto the plane just aswell asthose in front of it; it is still a perspective projection. Mathematically, this works.

What it does not do is what you would expect if you moved the plane of projection. Since the plane of projection has a fixed size (the range
[-1, 1]), moving the plane would ater where points appear in the projection. Changing the camera zNear does not affect the X, Y position of
pointsin the projection.

61

Objects at Rest

There are several ways to go about mapping one finite range to another. One confounding problem is the perspective divide itself; it is easy to
perform alinear mapping between two finite spaces. It is quite another to do a mapping that remains linear after the perspective divide. Since we
will be dividing by -Z itself (the camera-space Z, not the clip-space Z), the math is much more complex than you might expect.

For reasons that will be better explained in the next tutorial, we will use this modestly complicated function to compute the clip-space Z:
Equation 4.2. Depth Computation

_ ZcameralF +N) = 2NF
chip — N-F + N-F

Some important things about this equation and camerazNear/zFar. First, these values are positive; the equation accountsfor this when performing
the transformation. Also, zNear cannot be O; it can be very close to zero, but it must never be exactly zero.

Let us review the previous diagram of camera-to-NDC transformation in 2D space:

-« T

v v
Camera Space Norm. Device Coord.

The example of 2D camera-space vs. 2D NDC space uses this equation to compute the Z values. Take a careful look at how the Z coordinates
match. The Z distances are evenly spaced in camera space, but in NDC space, they are non-linearly distributed. And yet ssimultaneously, points
that are colinear in camera-space remain colinear in NDC space.

This fact has some interesting properties that we will investigate further in the next tutorial.

Drawing in Perspective

Given all of the above, we now have a specific sequence of stepsto transform avertex from camera spaceto clip space. These stepsare asfollows:
1. Frustum adjustment: multiply the X and Y value of the camera-space vertices by a constant.
2. Depth adjustment: modify the Z value from camera space to clip space, as above.

3. Perspective division term: compute the W value, where E, is-1.

62

Objects at Rest

Now that we have all the theory down, we are ready to put things properly in perspective. This is done in the ShaderPerspective tutorial.

Our new vertex shader, dat a\ Manual Per specti ve. vert lookslike this:
Example 4.2. ManualPer spective Vertex Shader
#versi on 330

| ayout (| ocati on
| ayout (| ocati on

0) in vec4d position;
1) in vecd color;

smoot h out vec4 theCol or;

uni formvec2 of fset;

uni formfl oat zNear;

uni form fl oat zFar;

uni form float frustuntcal e;

void main()

{
vec4 caneraPos = position + vec4(offset.x, offset.y, 0.0, 0.0);
vec4 cli pPos;
cli pPos. xy = caneraPos. xy * frustuntcal e;
clipPos.z = caneraPos.z * (zNear + zFar) / (zNear - zFar);
clipPos.z += 2 * zNear * zFar / (zNear - zFar);
cli pPos.w = -caneraPos. z;
gl _Position = clipPos;
t heCol or = col or;
}

We have afew new uniforms, but the code itself is only modestly complex.

Thefirst statement simply applies an offset, just like the vertex shaders we have seen before. It positions the object in camera space, so that it is
offset from the center of the view. Thisis here to make it easier to position the object for projection.

The next statement performs a scalar multiply of the camera-space X and Y positions, storing them in a temporary 4-dimensional vector. From
there, we compute the clip Z position based on the formula discussed earlier.

The W coordinate of the clip space positionisthe Z distancein cameraspace divided by the Z distance from the plane (at the origin) to the eye. The
eyeisfixed at (0, 0, -1), so thisleaves uswith the negation of the camera space Z position. OpenGL will automatically perform the division for us.

After that, we simply store the clip space position where OpenGL needs it, store the color, and we're done. The fragment shader is unchanged.

With all of the new uniforms, our program initialization routine has changed:

Example 4.3. Program Initialization

of fset Uni form = gl Get Uni f or mLocati on(t heProgram "offset");
frustuntcal eUnif = gl Get Uni f ornLocati on(theProgram "frustuntcal e");
zNear Uni f = gl Get Uni formLocation(theProgram "zNear");

zFarUni f = gl Get Uni forniocati on(theProgram "zFar");

gl UsePr ogr an(t heProgram ;

63

Objects at Rest

gl Uni f or mLf (frustuntcal eUni f, 1.0f);
gl Uni f or mLf (zNear Uni f, 1.0f);

gl Uni for mif (zFar Uni f, 3.0f);

gl UsePr ogranm(0);

We only set the new uniforms once. The scale of 1.0 means effectively no change. We define the Z to go from -1 to -3 (remember that, in our
Z equation, the zZNear and zFar are positive but refer to negative values).

Thelocation of the prism has also changed. Intheoriginal tutorial, it waslocated on the 0.75 rangein Z. Because camera space hasavery different
Z from clip space, this had to change. Now, the Z location of the prism is between -1.25 and -2.75.

All of thisleaves us with this result:

Figure 4.8. Perspective Prism

Now, it looks like arectangular prism. A bright, colorful, unrealistic one.

Vector Math

We glossed over something in the vertex shader that bears more discussion. Namely, thisline:
clipPos. xy = cameraPos. xy * frustuntcal e;

Even if you are familiar with vector math libraries in other languages, this code should be rather odd. Traditional vector libraries allow you to
write selectorslikevec. x and vec. win order to get a specific field from a vector. So what does something likevec. xy mean?

Well, it means the obvious; this expression returns a 2D vector (vec?), since there are only two components mentioned (X and Y). This vector
will have itsfirst component come from the X component of vec and the second component come from the Y component of vec. Thiskind of
selection is called, in GLSL parlance, swizze selection. The size of the returned vector will be the number of components you mention, and the
order of these components will dictate the order of the components returned.

Y ou can do any kind of swizzle operation on avector, so long as you keep in mind the following rules:

* You cannot select components that are not in the source vector. So if you have:

vec?2 t heVec;

You cannot dot heVec. zz because it has no Z component.

Objects at Rest

 You cannot select more than 4 components.

These are the only rules. So you can have a vec2 that you swizzle to create a vecd (vec. yyyx); you can repeat components; etc. Anything
goes so long as you stick to those rules.

Y ou should & so assume that swizzling is fast. Thisis not true of most CPU-based vector hardware, but since the earliest days of programmable
GPUs, swizzle selection has been a prominent feature. In the early programmable days, swizzles caused no performance loss; in al likelihood,
this has not changed.

Swizzle selection can also be used on the left side of the equals, as we have done here. It allows you to set specific components of a vector
without changing the other components.

When you multiply avector by ascalar (non-vector value), it does acomponent-wise multiply, returning avector containing the scalar multiplied
by each of the components of the vector. We could have written the above line as follows:

cl i pPos. x
clipPos.y

cameraPos. x * frustunScal e;
caneraPos.y * frustunScal e;

But it probably would not be as fast as the swizzle and vector math version.

The Matrix has You

So, now that we can put the world into perspective, let's do it the right way. The “needlessly overcomplicated for the time being but will make
sensein afew tutorials” way.

First, let us look at the system of equations used to compute clip coordinates from camera space. Given that S is the frustum scale factor, Nis
the zNear and F isthe zFar, we get the following four equations.

Equation 4.3. Camerato Clip Equations
X clip — SX camera
YcIip - SY camera

— F+N 2FN
chip - N - Fanmera +N - F
Waip = - Z camera

The odd spacing is intentional. For laughs, let's add a bunch of meaningless terms that do not change the equation, but starts to develop an
interesting pattern:

Equation 4.4. Camerato Clip Expanded Equations

Xaip = OXcamera? (OYcamera® (0Zcamerat (OWeamena
Yap = OXcamerat N cameat (0Zcamerat (OWeamera
chip = (O)X camera + (O)Y camera T (IEI + IE)anmera + (I\?F-—l\llz)wcamera
Waip = (OXcamerat (O¥camerat - Dcaneat (OWeamena

What we have here is what is known as a linear system of equations. The equations can be specified as a series of coefficients (the numbers
being multiplied by the XY ZW values) which are multiplied by the input values (XY ZW) to produce the single output. Each individual output

65

Objects at Rest

valueis alinear combination of all of the input values. In our case, there just happen to be alot of zero coefficients, so the output valuesin this
particular case only depend on afew input values.

Y ou may be wondering at the multiplication of the additive term of Zy;y's value by the camera space W. Well, our input camera space position's
W coordinate is aways 1. So performing the multiplication is valid, so long as this continues to be the case. Being able to do what we are about
to dois part of the reason why the W coordinate exists in our camera-space position values (the perspective divide is the other).

We can re-express any linear system of equations using a special kind of formulation. Y ou may recognize this reformulation, depending on your
knowledge of linear algebra:

tx1 [S O O
v 0S 0
- 0 0 E*N 2N
lWlClip lO O _ 1 O llcharnera

The two long vertical columns of XYZW labeled “clip” and “camera” are 4-dimensional vectors; namely the clip and camera space position
vectors. The larger block of numbersisamatrix. Y ou probably are not familiar with matrix math. If not, it will be explained presently.

X
Y
Z

Z
-

Generically speaking, amatrix isatwo dimensional block of numbers (matrices with more than 2 dimensions are called “tensors’). Matrices are
very common in computer graphics. Thus far, we have been able to get along without them. Aswe get into more detailed object transformations
however, we will rely more and more on matrices to simplify matters.

In graphics work, we typically use 4x4 matrices; that is, matrices with 4 columns and 4 rows respectively. Thisis due to the nature of graphics
work: most of the things that we want to use matrices for are either 3 dimensiona or 3 dimensional with an extra coordinate of data. Our 4D
positions are just 3D positions with a 1 added to the end.

The operation depicted above is a vector-matrix multiplication. A matrix of dimension nxmcan only be multiplied by a vector of dimension n.
The result of such a multiplication is a vector of dimension m Since our matrix in this case is 4x4, it can only be multiplied with a 4D vector
and this multiplication will produce a4D vector.

Matrix multiplication does what the expanded eguation example does. For every row in the matrix, the values of each component of the column
are multiplied by the corresponding values in the rows of the vector. These values are then added together; that becomes the single value for
the row of the output vector.

Equation 4.6. Vector Matrix Multiplication

mil m2l m31 mdllrx x*mll + y*m2l + z*m31 + w* m4l
mi12 m22 m32 m42||y| _[X*ml2 + y*m22 + z*m32 + w*m42
m13 m23 m33 m43|[Z| |x*ml3 + y*m23 + z*m33 + w*m43
mld m24 m34 mad™™ Liemia + oy m24 + z*m34 + wrm

This results ultimately in performing 16 floating-point multiplications and 12 floating-point additions. That's quite a lot, particularly compared
with our current version. Fortunately, graphics hardware is designed to make these operations very fast. Because each of the multiplications are
independent of each other, they could all be done simultaneously, which is exactly the kind of thing graphics hardware does fast. Similarly, the
addition operations are partially independent; each row's summation does not depend on the values from any other row. Ultimately, vector-matrix
multiplication usually generates only 4 instructions in the GPU's machine language.

We can re-implement the above perspective projection using matrix math rather than explicit math. The MatrixPerspective tutorial does this.

66

Objects at Rest

The vertex shader is much simpler in this case:
Example 4.4. M atrixPer spective Vertex Shader
#version 330

| ayout (| ocati on
| ayout (| ocati on

= 0) in vecd position;
= 1) in vecd color;

smoot h out vec4 theCol or;

uni form vec2 of fset;
uni form mat 4 perspectiveMatri x;

void main()

{
vec4 cameraPos = position + vec4(offset.x, offset.y, 0.0, 0.0);
gl _Position = perspectiveMatrix * caneraPos;
t heCol or = col or;

}

The OpenGL Shading Language (GLSL), being designed for graphics operations, naturally has matrices as basic types. The mat4 is a 4x4 matrix
(columns x rows). GLSL has types for al combinations of columns and rows between 2 and 4. Square matrices (matrices where the number of
columns and rows are equal) only use one number, asin mat4 above. So mat3 is a 3x3 matrix. If the matrix is not square, GLSL uses notation
like mat2x4: a matrix with 2 columns and 4 rows.

Note that the shader no longer computes the values on its own; it is given a matrix with all of the stored values as a uniform. This is simply
because there is no need for it. All of the objectsin a particular scene will be rendered with the same perspective matrix, so there is no need to
waste potentially precious vertex shader time doing redundant computations.

V ector-matrix multiplication is such acommon operation in graphics that operator * is used to perform it. So the second line of mai n multiplies
the perspective matrix by the camera position.

Please note the order of this operation. The matrix is on the left and the vector is on the right. Matrix multiplication is not commutative, so M*v
is not the same thing as v*M. Normally vectors are considered 1xN matrices (where N is the size of the vector). When you multiply vectors on
the left of the matrix, GLSL considersit an Nx1 matrix; thisisthe only way to make the multiplication make sense. Thiswill multiply the single
row of the vector with each column, summing the results, creating a new vector. This is not what we want to do. We want to multiply rows of
the matrix by the vector, not columns of the matrix. Put the vector on the right, not the left.

The program initialization routine has afew changes:

Example 4.5. Program I nitialization of Perspective Matrix

of fset Uni form = gl Get Uni f or mLocati on(t heProgram "offset");

per spectiveMatrixUnif = gl Get Uni fornLocation(theProgram "perspectiveMatrix");
float fFrustunScale = 1.0f; float fzNear = 0.5f; float fzFar = 3.0f;

float theMatrix[16];
menset (theMatri x, 0, sizeof(float) * 16);

t heMat ri x[0]
t heMat ri x[5]
t heMat ri x[10]
t heMat ri x[14]

Frust untcal e;

Frust untcal e;

(fzFar + fzNear) / (fzNear - fzFar);

(2 * fzFar * fzNear) / (fzNear - fzFar);

=f
=f

67

Objects at Rest

theMatrix[11] = -1.0f;

gl UsePr ogr an(t heProgram ;
gl Uni f or mvat ri x4f v(perspectiveMatrixUnif, 1, G._FALSE, theMatrix);
gl UsePr ogranm(0);

A 4x4 matrix contains 16 values. So we start by creating an array of 16 floating-point numbers called t heMat r i x. Since most of the values
are zero, we can just set the whole thing to zero. This works because |IEEE 32-hit floating-point numbers represent a zero as 4 bytes that all
contain zero.

The next few functions set the particular values of interest into the matrix. Before we can understand what's going on here, we need to talk a
bit about ordering.

A 4x4 matrix is technically 16 values, so a 16-entry array can store a matrix. But there are two ways to store a matrix as an array. One way is
called column-major order, the other naturally is row-major order. Column-major order means that, for an NxM matrix (columns x rows), the
first N values in the array are the first column (top-to-bottom), the next N values are the second column, and so forth. In row-major order, the
first M valuesin the array are the first row (left-to-right), followed by another M values for the second row, and so forth.

In this example, the matrix is stored in column-major order. So array index 14 isin the third row of the fourth column.
The entire matrix is asingle uniform. To transfer the matrix to OpenGL, we use the gl Uni f or mviat r i x4f v function. The first parameter is
the uniform location that we are uploading to. This function can be used to transfer an entire array of matrices (yes, uniform arrays of any type

are possible), so the second parameter is the number of array entries. Since we're only providing one matrix, thisvalueis 1.

The third parameter tells OpenGL what the ordering of the matrix datais. If itis GL_ TRUE, then the matrix dataisin row-major order. Since our
datais column-major, we set it to G._ FALSE. The last parameter is the matrix data itself.

Running this program will give us:

Figure 4.9. Per spective Matrix

The same thing we had before. Only now done with matrices.

Aspect of the World

If you run the last program, and resize the window, the viewport resizes with it. Unfortunately, this also means that what was once a rectangular
prism with a square front becomes elongated.

68

Objects at Rest

Figure 4.10. Bad Aspect Ratio

Thisis a problem of aspect ratio, the ratio of an image's width to its height. Currently, when you change the window's dimensions, the code
calsgl Vi ewport to tell OpenGL the new size. This changes OpenGL's viewport transform, which goes from normalized device coordinates
to window coordinates. NDC space has a 1:1 aspect ratio; the width and height of NDC space is 2x2. As long as window coordinates also has
a 1:1 width to height ratio, objects that appear square in NDC space will still be square in window space. Once window space became non-1:1,
it caused the transformation to also become not a square.

What exactly can be done about this? Well, that depends on what you intend to accomplish by making the window bigger.

One simple way to do thisisto prevent the viewport from ever becoming non-square. This can be done easily enough by changing ther eshape
function to be this:

Example 4.6. Square-only Viewport

void reshape (int w, int h)

{
if(w < h)
gl Viewport (0, O, (Gsizei) w, (Gsizei) w;
el se
gl Viewport (0, O, (CGLsizei) h, (Gsizei) h);
}

Now if you resize the window, the viewport will always remain a square. However, if the window is non-square, there will be a lot of empty
space either to the right or below the viewport area. This space cannot be rendered into with triangle drawing commands (for reasons that we
will seein the next tutorial).

This solution has the virtue of keeping the viewable region of the world fixed, regardless of the shape of the viewport. It has the disadvantage
of wasting window space.

What do we do if we want to use as much of the window as possible? Thereisaway to do this.

Go back to the definition of the problem. NDC spaceis a[-1, 1] cube. If an object in NDC space is a square, in order for it to be a square in
window coordinates, the viewport must also be a square. Conversely, if you want non-square window coordinates, the object in NDC space must
not be a square.

So our problem iswith the implicit assumption that squaresin camera space need to remain squares throughout. Thisis not the case. To do what
we want, we need to transform thingsinto clip space such that they are the correct non-square shape that, once the perspective divide and viewport
transform converts them into window coordinates, they are again square.

Currently, our perspective matrix defines a square-shaped frustum. That is, the top and bottom of the frustum (if it were visualized in camera
space) would be sguares. What we need to do instead is create a rectangular frustum.

69

Objects at Rest

Figure4.11. Widescreen Aspect Ratio Frustum

A

We aready have some control over the shape of the frustum. We said originally that we did not need to move the eye position from the origin
because we could simply scale the X and Y positions of everything to achieve a similar effect. When we do this, we scale the X and Y by the
same value; this produces a uniform scale. It also produces a square frustum, as seen in camera space. Since we want a rectangular frustum, we
need to use anon-uniform scale, wherethe X and Y positions are scaled by different values.

What this will do is show more of the world. But in what direction do we want to show more? Human vision tends to be more horizontal than
vertical. Thisiswhy movies tend to use a minimum of 16:9 width:height aspect ratio (most use more width than that). So it is usually the case
that you design aview for a particular height, then adjust the width based on the aspect ratio.

Thisis done in the AspectRatio tutorial. This code uses the same shaders as before; it simply modifies the perspective matrix in ther eshape
function.

Example 4.7. Reshape with Aspect Ratio

void reshape (int w, int h)
{
per specti veMat ri x[0]
per spectiveMat ri x[5]

= fFrustuntscale / (w/ (float)h);

= fFrustuntcal e;

gl UsePr ogran(t heProgram;

gl Uni f or mviat ri x4f v(perspectiveMatrixUnif, 1, G._FALSE, perspectiveMatrix);
gl UseProgran{0);

gl Viewport (0, O, (Gsizei) w, (Gsizei) h);

70

Objects at Rest

The matrix, now a global variable called per specti veMat ri x, getsits other fields from the program initialization function just as before.
The aspect ratio codeis only interested in the XY scale values.

Here, we change the X scaling based on the ratio of the width to the height. The Y scaling iseft alone.

Also, the offset used for positioning the prism was changed from (0.5, 0.5) to (1.5, 0.5). This means that part of the object is off the side of the
viewport until you resize the window. Changing the width shows more of the area; only by changing the height do you actually make the objects
bigger. The square always looks like a square.

In Review

In thistutorial, you have learned about the following:

Face culling can cause triangles to be culled (not rendered) based on the order of the vertices in window space.

Perspective projections are used to give a scene the appearance of depth, where objects farther away appear smaller and offset compared to near
ones. OpenGL hardware has special provisionsfor perspective projections; namely the transform from clip-space to NDC space division by W.

The perspectivetransformation can be performed asamatrix multiplication operation. Matrix/vector multiplicationisaway to compute multiple
linear equations in a single operation.

The proper aspect ratio for a display image can be maintained by scaling the X and Y coordinates of camera-space vertices based on the
window's aspect ratio. This transformation can be folded into the perspective projection matrix.

Further Study

Try doing these things with the given programs.

In all of the perspective tutorials, we only ever had a frustum scale of 1.0. Adjust the frustum scale and see how it affects the scene.

Adjust the zNear distance, so that it intersects with the prism. See how this affects the rendering. Adjust the zFar distance similarly and see
what happens.

We made some simplifying assumptions in our perspective transformation algorithm. In particular, we fixed the eye point at (0, 0, 0). and the
plane at (0, 0, 1). However, this was not strictly necessary; we could have altered our perspective transform algorithm to use a variable eye
point. Adjust the ShaderPerspective to implement an arbitrary perspective plane location (the size remains fixed at [-1, 1]). You will need to
offset the X, Y camera-space positions of the vertices by E, and E, respectively, but only after the scaling (for aspect ratio). And you will need
to divide the camera-space Z term by -E; instead of just -1.

Do the above, but in matrix form. Remember that any terms placed in the fourth column will be added to that component, due to the
multiplication by Weamera (Which is aways 1.0).

OpenGL Functions of Note

glEnable/giDisable These functions activate or inactivate certain features of OpenGL. Thereis alarge list of possible features

that can be enabled or disabled. In thistutorial, G._ CULL_FACE was used to enable/disable face culling.

ol CullFace/glFrontFace These two functions control how face culling works. gl Fr ont Face defines which triangle winding order

is considered the front. gl Cul | Face defines what face gets culled. This function can also cull all faces,
though thisis not useful if you want to get rendering done.

These functions only do something useful if G._ CULL_FACE is currently enabled. They still set the values
internally evenif GL_CULL_FACE is not enabled, so enabling it later will use the up-to-date settings.

Glossary

face culling The ability to cull triangles based on the winding order of the triangle. This functionadity is activated

in OpenGL by using gl Enabl e with GL_CULL_FACE. Which faces get culled is determined by the
gl Cul | Face and gl Fr ont Face functions.

71

Objects at Rest

winding order

projection

orthographic projection

perspective projection

frustum

perspective divide

camera space

camera zNear, camera zFar

swizzle selection

The order, clockwise or counter-clockwise, that the 3 vertices that make up a triangle are received in. This
is measured in window coordinates, two-dimensionally.

The act of taking a series of objectsin ahigher dimension and presenting those objectsin alower dimension.
The act of rendering a 3D scene to a 2D image requires projecting that scene from three dimensions into
two dimensions.

Projection always happens relative to a surface of projection. Projecting 2D space onto a 1D space requires a
finite line to be projected on. Projecting 3D space onto 2D space requires a plane of projection. This surface
is defined in the higher dimension's world.

A form of projection that simply negates all offsetsin the direction perpendicular to the surface of projection.
When doing a 3D to 2D orthographic projection, if the planeis axis aligned, then the projection can be done
simply. The coordinate that is perpendicular to the plane of projection issimply discarded. If the planeis not
axis aligned, then the math is more complex, but it has the same effect.

Orthographic projections are uniform in the direction of the projection. Because of the uniformity, lines that
are parallel in the higher dimension space are guaranteed to remain parallel in the lower dimension space.

A form of projection that projects onto the surface based on a position, the eye position. Perspective
projections attempt to emulate a pin-hole camera model, which is similar to how human eyes see. The
positions of objects in space are projected onto the surface of projection radially based on the eye position.

Parallel lines in the higher dimension are not guaranteed to remain parallel in the lower dimension. They
might, but they might not.

Geometrically, a frustum is 3D shape; a pyramid that has the top chopped off. The view of a 3D to 2D
perspective projection, from the eye through the plane of projection has the shape of a frustum.

A new name for the transformation from clip space to normalized device coordinate space. Thisis so called
because the division by W is what allows perspective projection to work using only matrix math; a matrix
alone would not otherwise be able to perform the full perspective projection operation.

An arbitrarily defined, but highly useful, space from which the perspective projection can be performed
relatively easily. Camera spaceis an infinitely large space, with positive X going right, positive Y going up,
and positive Z coming towards the viewer.

In camera space, the eye position of the perspective projection is assumed to be at (0, 0, 1), and the plane
of projectionisa[-1, 1] planein X and Y, which passes through the 3D origin. Thus, al points that have a
positive Z are considered to be behind the camera and thus out of view. Positions in camera space are defined
relative to the camera's location, since the camera has a fixed point of origin.

Normalized device coordinate (NDC) space is bounded in al dimensions on the range [-1, 1]. Camera space
is unbounded, but the perspective transform implicitly bounds what is considered in view to [-1, 1] in the X
and Y axis. Thisleavesthe Z axis unbounded, which NDC space does not allow.

The camera zNear and zFar values are numbers that define the minimum and maximum extent of Z in the
perspective projection transform. These values are positive value, though they represent negative values in
camera space. Using the standard perspective transform, both values must be greater than 0, and zZNear must
be less than zFar.

Swizzle selection is a vector technique, unique to shading languages, that allows you to take a vector and
arbitrarily build other vectors from the components. This selection is completely arbitrary; you can build a
vecd from avec2, or any other combination you wish, up to 4 elements.

Swizzle selections use combinations of “X,
Swizzle operations look like this:

y,” “z,” and “w” to pick components out of the input vector.

vec?2 firstVec;

72

Objects at Rest

matrix

column-major, row-major

vec4 secondVec = firstVec. xyxx;
vec3 thirdVec = secondVec. wzy;

Swizzle selection is, in graphics hardware, considered an operation so fast as to be instantaneous. That is,
graphics hardware is built with swizzle selection in mind.

A two-dimensional arrangement of numbers. Like vectors, matrices can be considered a single element.
Matrices are often used to represent the coefficients in a system of linear equations; because of this (among
other things), matrix math is often called linear algebra.

The size of amatrix, the number of columns and rows (denoted as NxM, where N is the number of columns
and M is the number of rows) determines the kind of matrix. Matrix arithmetic has specific requirements
on the two matrices involved, depending on the arithmetic operation. Multiplying two matrices together can
only be performed if the number of rows in the matrix on the l€eft is equal to the number of columnsin the
matrix on theright. For thisreason, among others, matrix multiplication is not commutative (A*B isnot B*A;
sometimes B* A is not even possible).

4x4 matricesare used in computer graphicsto transform 3 or 4-dimensional vectorsfrom one spaceto another.
Most kinds of linear transforms can be represented with 4x4 matrices.

These terms define the two ways in which amatrix can be stored as an array of values. Column-major order
means that, for an NxM matrix (columns x rows), the first N valuesin the array are the first column (top-to-
bottom), the next N values are the second column, and so forth. In row-major order, the first M valuesin the
array are the first row (left-to-right), followed by another M values for the second row, and so forth.

73

Chapter 5. Objects in Depth

In thistutorial, we will look at how to deal with rendering multiple objects, as well as what happens when multiple objects overlap.

Multiple Objects in OpenGL

The first step in looking at what happens when objects overlap is to draw more than one object. This is an opportunity to talk about a concept
that will be useful in the future.

An object, in terms of what you draw, can be considered the results of a single drawing call. Thus, an object is the smallest series of triangles
that you draw with a single set of program object state.

Vertex Array Objects

Up until now, every time we have attempted to draw anything, we needed to do certain setup work before the draw call. In particular, we have
to do the following, for each vertex attribute used by the vertex shader:

1. Usegl Enabl eVert exAttri bArray to enable this attribute.
2. Usegl Bi ndBuf f er (GL_ARRAY_BUFFER) to bind to the context the buffer object that contains the data for this attribute.

3. Use gl VertexAttri bPoi nter to define the format of the data for the attribute within the buffer object previously bound to
GL_ARRAY_BUFFER.

The more attributes you have, the more work you need to do for each object. To alleviate this burden, OpenGL provides an object that stores all
of the state needed for rendering: the Vertex Array Object (VAO).

VAOs are created with the gl GenVer t exAr r ay function. Thisworks like gl GenBuf f er s (and like most other OpenGL objects); you can
create multiple objects with one call. As before, the objects are GLuints.

VAOs are bound to the context with gl Bi ndVer t exAr r ay; this function does not take atarget the way that gl Bi ndBuf f er does. It only
takes the VAO to bind to the context.

Once the VAO is bound, callsto certain functions change the data in the bound VAO. Technically, they always have changed the VAO's state;
all of the prior tutorials have these linesin the initialization function:

gl GenVertexArrays(1l, &vao);
gl Bi ndVert exArray(vao);

This creates a single VAO, which contains the vertex array state that we have been setting. This means that we have been changing the state of
aVAO inall of thetutorials. We just did not talk about it at the time.

The following functions change VAO state. Therefore, if no VAO is bound to the context (if you call gl Bi ndVert exArray(0) or you do
not bind aVAO at dl), al of these functions, except as noted, will fail.

* gl VertexAttribPoi nter.Alsogl VertexAttri bl Poi nt er, but we have not talked about that one yet.
» gl Enabl eVertexAttri bArray/gl Di sabl eVert exAttri bArray

» gl Bi ndBuf f er (G._ELEMENT_ARRAY_BUFFER): Calling this without a VAO bound will not fail.

74

Objectsin Depth

Buffer Binding and Attribute Association

Y ou may noticethat gl Bi ndBuf f er (GL_ARRAY_BUFFER) is not on that list, even though it is part of the attribute setup for rendering.
The binding to G__ ARRAY_BUFFER is not part of a VAO because the association between a buffer object and a vertex attribute does not
happen when you call gl Bi ndBuf f er (G._ARRAY_BUFFER). This association happenswhen you call gl Vert exAt tri bPoi nt er.

Whenyoucall gl Vert exAttri bPoi nt er, OpenGL takeswhatever buffer isat the moment of thiscall boundto G._ ARRAY_BUFFER
and associates it with the given vertex attribute. Think of the GL_ARRAY_BUFFER binding as a globa pointer that
gl Vert exAttri bPoi nt er reads. So you are free to bind whatever you want or nothing at all to G._ ARRAY_BUFFER after making
agl VertexAttri bPoi nt er cal; it will affect nothing in the final rendering. So VAOs do store which buffer objects are associated
with which attributes; but they do not store the G._ ARRAY _BUFFER binding itself.

If you want to know why gl Vert exAttri bPoi nt er does not simply take a buffer object rather than requiring this bind+call
mechanism, it is again because of legacy API cruft. When buffer objects were first introduced, they were designed to impact the API as
little as possible. So the old gl Vert exAt t ri bPoi nt er simply changed its behavior depending on whether something was bound to
GL_ARRAY_BUFFERor not. Nowadays, sincethisfunctionwill fail if nothingisboundto G._ ARRAY BUFFER, itissimply an annoyance.

This allows you to setup a VAO early on, during initialization, and then simply bind it and call a rendering function to draw your object. Be
advised when using aVAO in thisway: VAOs are not immutable. Calling any of the above functions will change the data stored in the VAOQ.

Indexed Drawing

In the last tutorial, we drew a rectangular prism. If you looked carefully at the vertex data, you may have noticed that a lot of vertex data was
frequently repeated. To draw one face of the cube, we were required to have 6 vertices; the two shared vertices (along the shared line between
the two triangles) had to bein the buffer object twice.

For asimple case like ours, thisis only a minor increase in the size of the vertex data. The compact form of the vertex data could be 4 vertices
per face, or 24 vertices total, while the expanded version we used took 36 total vertices. However, when looking at real meshes, like human-like
characters and so forth that have thousands if not millions of vertices, sharing vertices becomes a major benefit in both performance and memory
size. Removing duplicate data can shrink the size of the vertex data by 2x or greater in many cases.

In order to remove this extraneous data, we must perform indexed drawing, rather than the array drawing we have been doing up until now. In
an earlier tutorial, we defined glDrawArrays conceptually as the following pseudo-code:

Example5.1. Draw Arrays Implementation

void gl DrawArrays(G.enum type, Gint start, Gint count)

{
for(Gint element = start; elenent < start + count; el enent++)
{
Vert exShader (positionAttri bArray[el enent], colorAttribArray[el enent]);
}
}

This defines how array drawing works. Y ou start with a particular index into the buffers, defined by the st ar t parameter, and proceed forward
by count vertices.

In order to share attribute data between multiple triangles, we need some way to random-access the attribute arrays, rather than sequentially
accessing them. Thisis done with an element array, also known as an index array.

Let's assume you have the following attribute array data:

Position Array: Pos0, Posl, Pos2, Pos3
Col or Array: adro, drl, dr2, dr3

Youcanusegl Dr awAr r ays to render either thefirst 3 verticesasatriangle, or thelast 3 verticesasatriangle (usingast art of 1 and count
of 3). However, with the right element array, you can render 4 triangles from just these 4 vertices:

75

Objectsin Depth

El erent Array: O, 1, 2, 0, 2, 3, 0, 3, 1, 1, 2, 3
Thiswill cause OpenGL to generate the following sequence of vertices:

(PosO, dr0), (Posl, drl), (Pos2, dr?2),

(PosO, dr0), (Pos2, dr2), (Pos3, dr3),

(PosO, dr0), (Pos3, dr3), (Posl, dr1l),

(Posl1, dr1l), (Pos2, dr2), (Pos3, dr3),

12 vertices, which generate 4 triangles.

Multiple Attributes and Index Arrays

Thereis only one element array, and the indices fetched from the array are used for all attributes of the vertex arrays. So you cannot have
an element array for positions and a separate one for colors; they all have to use the same element array.

This means that there can and often will be some duplication within a particular attribute array. For example, in order to have solid face
colors, we will still haveto replicate the color for every position of that triangle. And corner positions that are shared between two triangles
that have different colors will still have to be duplicated in different vertices.

It turns out that, for most meshes, duplication of this sort isfairly rare. Most meshes are smooth across their surface, so different attributes
do not generally pop from location to location. Shared edges typically use the same attributes for both triangles along the edges. The ssimple
cubes and the like that we use are one of the few cases where a per-attribute index would have a significant benefit.

Now that we understand how indexed drawing works, we need to know how to set it up in OpenGL. Indexed drawing requires two things: a
properly-constructed element array and using a new drawing command to do the indexed drawing.

Element arrays, as you might guess, are stored in buffer objects. They have a specia buffer object binding point,
GL_ELEMENT_ARRAY_BUFFER. You can use this buffer binding point for normal maintenance of a buffer object (allocating memory with

olBufferData, etc), just like G._ ARRAY_BUFFER. But it also has a special meaning to OpenGL: indexed drawing is only possible when a buffer
object is bound to this binding point, and the element array comes from this buffer object.

Note

All buffer objectsin OpenGL are the same, regardless of what target they are bound to; buffer objects can be bound to multiple targets.
So it is perfectly legal to use the same buffer object to store vertex attributes and element arrays (and, FY |, any datafor any other use of
buffer objects that existsin OpenGL). Obviously, the different data would be in separate regions of the buffer.
In order to do indexed drawing, we must bind the buffer to G._ ELEMENT _ARRAY_BUFFER and then call gl Dr awEl enent s.
voi d gl DrawEl ement s(GLenum node, GLsizei count, G.enum type, G.sizeiptr indices);
Thefirst parameter isthe same as the first parameter of glDrawArrays. Thecount parameter defines how many indices will be pulled from the
element array. Thet ype field defines what the basic type of theindicesin the element array are. For example, if the indices are stored as 16-bit
unsigned shorts (GLushort), then this field should be G._UNSI GNED_SHORT. This allows the user the freedom to use whatever size of index
they want. GL_UNSI GNED_BYTE and GL__UNSI GNED _| NT (32-hit) are also allowed; indices must be unsigned.

The last parameter is the byte-offset into the element array at which the index data begins. Index data (and vertex data, for that matter) should
always be aligned to its size. So if we are using 16-bit unsigned shorts for indices, theni ndi ces should be an even number.

This function can be defined by the following pseudo-code:

Example 5.2. Draw Elements I mplementation

GLvoid *el enent Array;

76

Objectsin Depth

voi d gl DrawEl ement s(GLenum type, GLint count, GLenumtype, GLsizeiptr indices)

{
GLtype *ourEl enmentArray = (type*)((G.byte *)el ement Array + indices);

for(Gint elenmentlndex = 0; elenmentlndex < count; elenentlndex++)

{

GLint el enent = ourEl ement Array[el ement | ndex] ;
Vert exShader (positionAttri bArray[el ement], colorAttribArray[el enent]);

}

Theel enent Ar r ay represents the buffer object bound to G__EL EMENT _ARRAY_BUFFER.

Multiple Objects

The tutorial project Overlap No Depth uses VAOs to draw two separate objects. These objects are rendered using indexed drawing. The setup

for this shows one way to have the attribute data for multiple objects stored in a single buffer.

For this tutorial, we will be drawing two objects. They are both wedges, with the sharp end facing the viewer. The difference between them is

that oneis horizontal and the other is vertical on the screen.

The shaders are essentially unchanged from before. We are using the perspective matrix shader from the last tutorial, with modifications to
preserve the aspect ratio of the scene. The only difference is the pre-camera offset value; in this tutoria, it is afull 3D vector, which allows us

to position each wedge in the scene.

The initialization has changed, allowing us to create our VAQOs once at start-up time, then use them to do the rendering. The initialization code

isasfollows:

Example5.3. VAO Initialization

void InitializeVertexArrayQojects()

{
gl GenVertexArrays(1l, &aoQbjectl);
gl Bi ndVert exArray(vao(hjectl);

size_t colorDataCfset = sizeof(float) * 3 * nunberOf Verti ces;

gl Bi ndBuf f er (GL_ARRAY_BUFFER, vertexBuffer hject);

gl Enabl eVertexAttri bArray(0);

gl Enabl eVertexAttri bArray(1);

gl VertexAttribPointer(0, 3, G._FLOAT, G__FALSE, 0, 0);

gl VertexAttribPointer(1, 4, G._FLOAT, G_FALSE, 0, (void*)col orDataOfset);
gl Bi ndBuf f er (GL_ELEMENT_ARRAY_BUFFER, i ndexBuffer Obj ect);

gl Bi ndVert exArray(0);

gl GenVertexArrays(1l, &aobject?2);
gl Bi ndVert exArray(vaohj ect 2);

size_t posDataOifset = sizeof(float) * 3 * (nunmberOf Vertices/2);
col or Dat aCf f set += sizeof (float) * 4 * (nunmber O Vertices/2);

//Use the same buffer object previously bound to G._ARRAY_BUFFER
gl Enabl eVertexAttri bArray(0);
gl Enabl eVertexAttri bArray(1);

77

Objectsin Depth

gl VertexAttribPointer(0, 3, G._FLOAT, G _FALSE, 0, (void*)posbhataOfset);
gl VertexAttribPointer(1, 4, G._FLOAT, G_FALSE, 0, (void*)col orDataOfset);
gl Bi ndBuf f er (GL_ELEMENT_ARRAY_BUFFER, i ndexBuffer Obj ect);

gl Bi ndVert exArray(0);
}

This code looks complicated, but it is readly just the rendering code we have seen before. The offset computations for the
gl Vert exAttri bPoi nt er calsaremorecomplex, dueto havingthe datafor 2 objectsstoredin asingle buffer. But overall itisthe same code.

The code generates 2 VAOs, binds them, then setstheir state. Recall that, while the G._ ARRAY_BUFFER hinding is not part of the VAOs state,
the GL_ELEMENT _ARRAY_ BUFFER binding is part of that state. So these VAOs store the attribute array data and the element buffer data;
everything necessary to render each object except for the actual drawing call.

In this case, both objects use the same element buffer. However, since the element buffer binding is part of the VAO state, it must be set into each
VAOQindividually. Noticethat weonly set the G._ ARRAY_BUFFERbinding once, butthe G._ ELEMENT _ARRAY_ BUFFERisset for eachVAO.

Note

If you look at the vertex position attribute in our array, we have a 3-component position vector. But the shader still uses avec4. This
works because OpenGL will fill in any missing vertex attribute components that the shader looks for but the attribute array doesn't
provide. It fills them in with zeros, except for the fourth component, which isfilled in with a 1.0.

Though the initialization code has been expanded, the rendering code is quite simple:

Example 5.4. VAO and Indexed Rendering Code

gl C ear Col or (0. 0f, 0.0f, 0.0f, 0.0f);
gl O ear (GL_COLOR BUFFER BI T);

gl UsePr ogr an(t heProgram ;

gl Bi ndVert exArray(vao(hjectl);

gl Uni f or nB8f (of fsetUniform 0.0f, 0.0f, 0.0f);

gl DrawEl ement s(GL_TRI ANGLES, ARRAY_COUNT(i ndexDat a), GL_UNSI GNED_SHORT, 0);
gl Bi ndVert exArray(vaohj ect 2);

gl Uni f or nB8f (of fsetUniform 0.0f, 0.0f, -1.0f);

gl DrawEl ement s(GL_TRI ANGLES, ARRAY_COUNT(i ndexDat a), GL_UNSI GNED_SHORT, 0);

gl Bi ndVert exArray(0);
gl UseProgran{0);

gl ut SwapBuf fers();
gl ut Post Redi spl ay();

We bind aVAO, set its uniform data (in this case, to position the object properly), and then we draw it with acall to gl Dr awEl ement s. This
step is repeated for the second object.

Running this tutoria will show the following image:

78

Objectsin Depth

Figure5.1. Overlapping Objects

The two objects are essentially flipped versions of the same one, awedge. One object appears smaller than the other because it isfarther away, in
terms of its Z distance to the camera. We are using a perspective transform, so it make sense that more distant objects appear smaller. However,
if the smaller object is behind the larger one, why is it rendered on top of the onein front?

Before we solve this mystery, there is one minor issue we should cover first.

Optimization: Base Vertex

Using VAOQOs can dramatically simplify code. However, VAQOs are not always the best case for performance, particularly if you use a lot of
separate buffer objects.

Binding aVAO for rendering can be an expensive proposition. Therefore, if thereisaway to avoid binding one, then it can provide a performance
improvement, if the program is currently bottlenecked on the CPU.

Our two objects have much in common. They use the same vertex attribute indices, since they are being rendered with the same program object.
They use the same format for each attribute (3 floats for positions, 4 floats for colors). The vertex data even comes from the same buffer object.

Indeed, the only difference between the two objectsiswhat offset each attribute uses. And even thisis quite minimal, since the difference between
the offsetsis a constant factor of the size of each attribute.

Look at the vertex datain the buffer object:

Example5.5. Vertex Attribute Data Abridged

/1 Cbject 1 positions

LEFT_EXTENT, TOP_EXTENT, REAR_EXTENT,
LEFT_EXTENT, M DDLE_EXTENT, FRONT_EXTENT,
RI GHT_EXTENT, M DDLE_EXTENT, FRONT_EXTENT,
RI GHT_EXTENT, TOP_EXTENT, REAR_EXTENT,
RI GHT_EXTENT, BOTTOM_EXTENT, REAR_EXTENT,

/1 Cbj ect 2 positions
TOP_EXTENT, Rl GHT_EXTENT, REAR_EXTENT,

79

Objectsin Depth

M DDLE_EXTENT, RI GHT_EXTENT, FRONT_EXTENT,
M DDLE_EXTENT, LEFT_EXTENT, FRONT_EXTENT,
TOP_EXTENT, RI GHT_EXTENT, REAR_EXTENT,
TOP_EXTENT, LEFT_EXTENT, REAR_EXTENT,
BOTTOM _EXTENT, LEFT_EXTENT, REAR_EXTENT,

/] Cbject 1 colors
GREEN_COLOR,
GREEN_COLOR,
GREEN_COLOR,

BROVWN_COLCR,
BROVWN_COLCR,

/1 Cbject 2 colors
RED_COLOR,
RED_COLOR,
RED_COLOR,

GREY_COLCR,
GREY_COLCR,

Notice how the attribute array for object 2 immediately follows its corresponding attribute array for object 1. So really, instead of four attribute
arrays, we really have just two attribute arrays.

If we were doing array drawing, we could simply have one VAO, which sets up the beginning of both combined attribute arrays. We would till
need 2 separate draw calls, because there is a uniform that is different for each object. But our rendering code could look like this:

Example5.6. Array Drawing of Two Objectswith One VAO

gl UsePr ogr an(t heProgram ;

gl Bi ndVert exArray(vao(hj ect);
gl Uni f or nB8f (of fset Uniform 0.0f, 0.0f, 0.0f);
gl DrawAr rays(GL_TRI ANGLES, 0, nunilri angl esl nObj ect1);

gl Uni f or nB8f (of fsetUniform 0.0f, 0.0f, -1.0f);
gl DrawAr rays(GL_TRI ANGLES, numlri angl esl nQbj ect 1, nunilri angl esl nCbj ect 2) ;

gl Bi ndVert exArray(0);
gl UsePr ogran{0);

Thisisall well and good for array drawing, but we are doing indexed drawing. And while we can control the location we are reading from in the
element buffer by using thecount andi ndi ces parameter of gl Dr awEl enment s, that only specifies which indices we are reading from the
element buffer. What we would need is away to modify the index dataitself.

This could be done by simply storing the index data for object 2 in the element buffer. This changes our element buffer into the following:
Example5.7. MultiObject Element Buffer

const GLshort indexData[] =

80

Objectsin Depth

{

/1 Cbject 1

0, 2, 1, 3, 2, 0,

4, 5, 6, 6, 7, 4,

8, 9, 10, 11, 13, 12,
14, 16, 15, 17, 16, 14,
/1 Cbject 2

18, 20, 19, 21, 20, 18,
22, 23, 24, 24, 25, 22,
26, 27, 28, 29, 31, 30,
32, 34, 33, 35, 34, 32,
b

This would work for our simple example here, but it does needlessly take up room. What would be great is away to simply add a bias value to
theindex after it is pulled from the element array, but before it is used to access the attribute data.

I'm sure you'll be surprised to know that OpenGL offers such a mechanism, what with me bringing it up and all.

The function gl Dr awEl enent sBaseVert ex provides this functionality. It works like gl Dr awEl enrent s has one extra parameter at the
end, which isthe offset to be applied to each index. The tutorial project Base Vertex With Overlap demonstrates this.

Theinitialization changes, building only one VAO.

Example5.8. Base Vertex Single VAO

gl GenVertexArrays(1l, &vao);
gl Bi ndVert exArray(vao);

size_t colorDataCfset = sizeof(float) * 3 * nunberOf Verti ces;

gl Bi ndBuf f er (GL_ARRAY_BUFFER, vertexBufferCbject);

gl Enabl eVertexAttri bArray(0);

gl Enabl eVertexAttri bArray(1);

gl VertexAttribPointer(0, 3, G._FLOAT, G._FALSE, 0, 0);

gl VertexAttribPointer(1, 4, G._FLOAT, G _FALSE, 0, (void*)col orbDataOfset);
gl Bi ndBuf f er (GL_ELEMENT_ARRAY_BUFFER, i ndexBuffer Cbj ect);

gl Bi ndVert exArray(0);

This simply binds the beginning of each array. The rendering code is as follows:
Example5.9. Base Vertex Rendering

gl UsePr ogran(t heProgranj;

gl Bi ndVertexArray(vao);

gl Uni fornBf (of fsetUniform 0.0f, 0.0f, 0.0f);
gl DrawEl enent s(GL_TRI ANGLES, ARRAY_COUNT(i ndexData), G._UNSI GNED SHORT, 0);

gl Uni fornB8f (of fsetUniform 0.0f, 0.0f, -1.0f);
gl Dr awEl enent sBaseVert ex(G._TRI ANGLES, ARRAY_COUNT(i ndexDat a) ,
GL_UNSI GNED_SHORT, 0, numberOVertices / 2);

gl Bi ndVert exArray(0);
gl UsePr ogran{ 0) ;

Thefirst draw call uses the regular gl DrawElements function, but the second uses the BaseVertex version.

81

Objectsin Depth

Note

Thisexample of BaseVertex's use is somewhat artificial, because both objects use the same index data. The more compelling way to use
it iswith objects that have different index data. Of course, if objects have different index data, you may be wondering why you would
bother with BaseV ertex when you could just manually add the offset to the indices themselves when you create the element buffer.

There are several reasons not to do this. One of these is that GL_UNSI GNED | NT is twice as large as G__UNSI GNED_SHORT. If
you have more than 65,536 entries in an array, whether for one object or for many, you would need to use ints instead of shorts for
indices. Using ints can hurt performance, particularly on older hardware with less bandwidth. With BaseVertex, you can use shorts for
everything, unless a particular object itself has more than 65,536 vertices.

The other reason not to manually bias the index data is to more accurately match the files you are using. When loading indexed mesh
data from files, the index data is not biased by a base vertex; it is all relative to the model's start. So it makes sense to keep things that

way where possible; it just makes the loading code simpler and faster by storing a per-object BaseVertex with the object rather than
biasing all of the index data.

Overlap and Depth Buffering

Regardless of how we render the objects, thereis a strange visual problem with what we're rendering:

If the smaller object is truly behind the larger one, why is it being rendered on top of the larger one? Well, to answer that question, we need
to remember what OpenGL is.

The OpenGL specification defines a rasterization-based renderer. Rasterizers offer great opportunities for optimizations and hardware
implementation, and using them provides great power to the programmer. However, they're very stupid. A rasterizer is basically just atriangle
drawer. Vertex shaders tell it what vertex positions are, and fragment shaders tell it what colors to put within that triangle. But no matter how
fancy, arasterization-based render isjust drawing triangles.

That's finein general because rasterizers are very fast. They are very good at drawing triangles.

But rasterizers do exactly and only what the user says. They draw each triangle in the order given. This means that, if there is overlap between
multiple triangles in window space, the triangle that is rendered last will be the one that is seen.

This problem is called hidden surface elimination.

Thefirst thing you might think of when solving this problem isto simply render the most distant objectsfirst. Thisis called depth sorting. Asyou
might imagine, this“ solution” scalesincredibly poorly. Doing it for each triangleis prohibitive, particularly with sceneswith millions of triangles.

82

Objectsin Depth

And the worst part isthat even if you put in al the effort, it does not actually work. Not all the time at any rate. Many trivial cases can be solved
via depth sorting, but non-trivial cases have real problems. Y ou can have an arrangement of 3 triangles where each overlaps the other, such that
there simply is no order you can render them in to achieve the right effect.

Figure5.2. Three Overlapping Triangles

Even worse, it does nothing for inter-penetrating triangles; that is, triangles that pass through each other in 3D space (as opposed to just from
the perspective of the camera).

Depth sorting is not going to cut it; clearly, we need something better.

One solution might be to tag fragments with the distance from the viewer. Then, if afragment that is about to be written has afarther distance (ie:
the fragment is behind what was already drawn), we simply do not write that fragment to the output image. That way, if you draw atriangle behind
other triangles, the fragment distances that were aready written will be closer to the camera than the fragment distances of the new triangle. And
thus, the particular fragments of that triangle will not be drawn. And sincethisworks at the fragment level, it will work just aswell for intersecting
triangles or the 3 triangle arrangement depicted above.

The“tag” is the window-space Z value. Y ou may recall from the introduction that the window-space Z position of afragment ranges from 0 to
1, where O isthe closest and 1 is the farthest.

Colors output from the fragment shader are output into the color image buffer. Therefore it naturally follows that depth values would be stored
in a depth buffer (also called a z buffer, because it stores Z values). The depth buffer is an image that is the same size as the main color buffer,
that stores depth values as pixels rather than colors. Where a color is a4-component vector, adepth is just a single floating-point value.

Like the color buffer, the depth buffer for the main window is created automatically by OpenGL when OpenGL isinitialized. OpenGL can even
be created without a depth buffer. Since FreeGLUT takes care of initializing OpenGL for us, wetell it in the standard initialization code to create
OpenGL with a depth buffer.

Writing the depth is not enough. The suggested idea requires stopping the fragment from writing anything if the current depth at that location is
infront of thisfragment'sdepth. Thisis called the depth test. In OpenGL, the test does not have to be in any particular direction; any of the typical
numerical relation operator (greater than, less than, etc) will work fine. If the test passes, then the fragment's outputs (both color and depth) will
be written to their appropriate buffer. If it fails, then they will not.

To activate depth testing, we must call gl Enabl e(G._DEPTH_TEST); the corresponding gl Di sabl e call will cause depth testing to cease.
After activating testing, we need to call gl Dept hFunc to set the relation of the depth test. When thetest istrue, theincoming fragment iswritten.

83

Objectsin Depth

The test functions can be GL_ALWAYS (always write the fragment), G._NEVER (no fragments are written), GL_LESS, G._ GREATER,
GL_LEQUAL (<=), G._GEQUAL (>=), G._EQUAL, or GL_NOTEQUAL. The test function puts the incoming fragment's depth on the left of the
equation and on the right is the depth from the depth buffer. So GL_L ESS means that, when the incoming fragment's depth is less than the depth
from the depth buffer, the incoming fragment is written.

With the fragment depth being something that is part of a fragment's output, you might imagine that this is something you have to computein a
fragment shader. Y ou certainly can, but the fragment's depth is normally just the window-space Z coordinate of the fragment. Thisis computed
automatically when the X and Y are computed.

Using the window-space Z value asthe fragment's output depth is so common that, if you do not deliberately write adepth value from the fragment
shader, this value will be used by default.

Depth and the Viewport

Speaking of window coordinates, there is one more issue we need to deal with when dealing with depth. The gl Vi ewport function defines
the transform between normalized device coordinates (the range [-1, 1]) to window coordinates. But gl Vi ewport only defines the transform
for the X and Y coordinates of the NDC-space vertex positions.

The window-space Z coordinate ranges from [0, 1]; the transformation from NDC's [-1, 1] range is defined with the gl Dept hRange function.
Thisfunction takes 2 floating-point parameters; therange zZNear and therange zFar. These valuesarein window-space; they defineasimplelinear
mapping from NDC space to window space. So if zNear is0.5 and zFar is 1.0, NDC values of -1 will map to 0.5 and values of 1 will result in 1.0.

Note

Do not confuse the range zNear/zFar with the camera zNear/zFar used in the perspective projection matrix computation.

The range zNear can be greater than the range zFar; if it is, then the window-space values will be reversed, in terms of what constitutes closest
or farthest from the viewer.

Earlier, it was said that the window-space Z value of 0 is closest and 1 isfarthest. However, if our clip-space Z values were negated, the depth of
1 would be closest to the view and the depth of 0 would be farthest. Y et, if we flip the direction of the depth test (GL_LESSto GL_GREATER,
etc), we get the exact sameresult. Similarly, if we reverse the glDepthRange so that 1 isthe depth zZNear and 0 is the depth zFar, we get the same
result if we use GL_GREATER. So it's really just a convention.

Objectsin Depth

Z-Flip: Never Do This

In the elder days of graphics cards, calling gl Cl ear was a slow operation. And this makes sense; clearing images means having to go
through every pixel of image data and writing a value to it. Even with hardware optimized routines, if you can avoid doing it, you save
some performance.

Therefore, game developers found clever ways to avoid clearing anything. They avoided clearing the image buffer by ensuring that they
would draw to every pixel on the screen every frame. Avoiding clearing the depth buffer was rather more difficult. But depth range and
the depth test gave them away to do it.

The technique is quite simple. They would need to clear the buffers exactly once, at the beginning of the program. From then on, they
would do the following.

They would render the first frame with a GL_ LESS depth test. However, the depth range would be [0, 0.5]; this would only draw to half
of the depth buffer. Since the depth test is less, it does not matter what values just so happened to be between 0.5 and 1.0 in the depth
buffer beforehand. And since every pixel was being rendered to as above, the depth buffer is guaranteed to be filled with values that are
lessthan 0.5.

On the next frame, they would render with a G._ GREATER depth test. Only this time, the depth range would be [1, 0.5]. Because the last
frame filled the depth buffer with values less than 0.5, all of those depth values are automatically “behind” everything rendered now. This
fills the depth buffer with values greater than 0.5.

Rinse and repeat. This ultimately sacrifices one bit of depth precision, since each rendering only uses half of the depth buffer. But it results
in never needing to clear the depth or color buffers.

Oh, and you should never do this.

See, hardware developers got really smart. They realized that a clear did not really have to go to each pixel and write avalueto it. Instead,
they could simply pretend that they had. They built special logic into the memory architecture, such that attempting to read from locations
that have been “cleared” results in getting the clear color or depth value.

Because of that, this z-flip technique is useless. But it's rather worse than that; on most hardware made in the last 7 years, it actually slows
down rendering. After all, getting a cleared value doesn't require actually reading memory; the very first value you get from the depth
buffer isfree. There are other, hardware-specific, optimizations that make z-flip actively damaging to performance.

Rendering with Depth

The Depth Buffering project shows off how to turn on and use the depth buffer. It is based on the BaseVertex rendering of the objects.

Theinitiaization routine has all of the basic depth testing codeinit:

Example 5.10. Depth Buffer Setup

gl Enabl e(G._DEPTH_TEST) ;
gl Dept hMask(G._TRUE) ;

gl Dept hFunc(GL_LEQUAL) ;

gl Dept hRange(0. Of, 1.0f);

These are the most common depth testing parameters. It turns on depth testing, sets the test function to less than or equal to, and sets the range

mapping to the full accepted range.

It is common to use GL_LEQUAL instead of GL_LESS. This allows for the use of multipass algorithms, where you render the same geometry

with the same vertex shader, but linked with a different fragment shader. We'll look at those much, much later.

Thecall togl Dept hMask causesrendering to write the depth value from the fragment to the depth buffer. The activation of depth testing aloneis
not sufficient to actually write depth values. Thisallows usto have depth testing for objects where their own depth (the incoming fragment's depth)
isnot written to the depth buffer, even when their color outputs are written. We do not use this here, but aspecial algorithm might need thisfeature.

85

Objectsin Depth

Note

Due to an odd quirk of OpenGL, writing to the depth buffer isalwaysinactive if G._DEPTH_TEST is disabled, regardless of the depth
mask. If you just want to write to the depth buffer, without actually doing atest, you must enable G._ DEPTH_TEST and use the depth
function of GL_ALWAYS.

There is one more issue. We know what the depth value is in the depth buffer after a fragment is written to it. But what is its value before any
rendering is done at all? Depth buffers and color buffers are very similar; color buffers get their initial colors from calling gl Cl ear . So you
might imagine asimilar call for depth buffers.

As it turns out, they share the same clearing call. If you recall, gl O ear Col or sets the color for clearing color buffers. Similarly,
gl C ear Dept h sets the depth value that the depth buffer will be cleared to.

In order to clear the depth buffer with gl C ear , you must use the G._ DEPTH _BUFFER_BI T. So, the drawing function's clearing, at the top
of the function, happens as follows:

Example 5.11. Depth Buffer Clearing

gl C ear Col or (0. 0f, 0.0f, 0.0f, 0.0f);
gl C ear Dept h(1. 0f);
gl O ear (G._COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);

Thiswill set al of the depth values in the depth buffer to 1.0, which is our range zFar.

Note

Thisisall that is necessary to do depth buffering, as far as OpenGL proper is concerned. However, in order to use depth buffering, the
framebuffer must include adepth buffer in addition to an image buffer. Thisinitialization codeis platform-specific, but FreeGLUT takes
care of it for us. If you do graduate from FreeGLUT, make sure that you use the appropriate initialization mechanism for your platform
to create a depth buffer if you need to do depth buffering.

Our new image looks like this:

Figure5.3. Depth Buffering

Which makes alot more sense. No matter what order we draw the objects in, we get a reasonable resullt.

L et'stest our depth buffering abit more. Let's create alittle overlap between thetwo objects. Changethefirst offset uniform statementindi spl ay
to be this:

gl Uni f or n8f (of fset Uniform 0.0f, 0.0f, -0.75f);

86

Objectsin Depth

We now get some overlap, but the result is still reasonable;

Figure5.4. Mild Overlap

We can even change the line to cause major overlap without incident:
gl Uni f or nB8f (of fsetUniform 0.0f, 0.0f, -1.0f);

Which gives us:

Figure5.5. Major Overlap

No amount of depth sorting will help with that.

Boundaries and Clipping

If you recall back to the Perspective projection tutorial, we choose to use some special hardware in the graphics chip to do the final division of
the W coordinate, rather than doing the entire perspective projection ourselves in the vertex shader. At the time, it was promised that we would
see why thisis hardware functionality rather than something the shader does.

87

Objectsin Depth

Let usreview the full math operation we are computing here:

Equation 5.1. Per spective Computation

ﬁ:%%

R is the perspective projected position, P is the camera-space position, E, is the Z-position of the eye relative to the plane (assumed to be -1),
and P, is the camera-space Z position.

One question you should always ask when dealing with equations is this: can it divide by zero? And this equation certainly can; if the camera-
space position of any vertex is ever exactly 0, then we have a problem.

This is where clip-space comes in to save the day. See, until we actually do the divide, everything is fine. A 4-dimensional vector that will be
divided by the fourth component but has not yet is still valid, even if the fourth component is zero. This kind of coordinate system is called a
homogeneous coordinate system. It isaway of talking about things that you could not talk about in anormal, 3D coordinate system. Likedividing
by zero, which in visual terms refers to coordinates at infinity.

Thisis al nice theory, but we still know that the clip-space positions need to be divided by their W coordinate. So how to we get around this
problem?

First, we know that a W of zero means that the camera-space Z position of the point was zero as well. We also know that this point must lie
outside of the viable region for camera space. That is because of the camera Z range: camera zNear must be strictly greater than zero. Thus any
point with a camera Z value of 0 must be in front of the zNear, and therefore outside of the visible world.

Since the vertex coordinate is not going to be visible anyway, why bother drawing it and dividing by that pesky 0? Well, because that vertex
happens to be part of atriangle, and if part of the triangle is visible, we have to draw it.

But we do not have to draw all of it.

Clipping is the process of taking atriangle and breaking it up into smaller triangles, such that only the part of the original triangle that is within
the viewable region remains. This may generate only onetriangle, or it may generate multiple triangles.

Any vertex attributes associated with that vertex are interpolated (based on the vertex shader's interpolation qualifiers) to determine the relative
value of the post-clipping vertex.

As you might have guessed, clipping happens in clip space, not NDC space. Hence the name. Since clip-space is a homogeneous coordinate
system, we do not have to worry about those pesky zeros. Unfortunately, because homogeneous spaces are not easy to draw, we cannot show you
what it would look like. But we can show you what it would look like if you clipped in camera space, in 2D:

88

Objectsin Depth

Figure5.6. Triangle Clipping

To seetheresults of clipping in action, run the Vertex Clipping tutorial. It is the same as the one for depth buffering, except one object has been
moved very closeto the zNear plane. Close enough that part of it is beyond the zNear and therefore is not part of the viewable area:

89

Objectsin Depth

Figure5.7. Near Plane Clipping

90

Objectsin Depth

A Word on Clipping Performance

We have phrased the discussion of clipping as a way to avoid dividing by zero for good reason. The OpenGL specification states that
clipping must be done against al sides of the viewable region. And it certainly appears that way; if you move objects far enough away
that they overlap with zFar, then you will not see the objects.

You can also see apparent clipping with objects against the four sides of the view frustum. To see this, you would need to modify the
viewport with gl Vi ewpor t , so that only part of the window is being rendered to. If you move objects to the edge of the viewport, you
will find that part of them does not get rendered outside this region.

So clipping is happening all the time?

Of course not. Clipping takes triangles and breaks them into pieces using 4-dimensional homogeneous mathematics. One triangle can be
broken up into several; depending on the location of the triangle, you can get quite a few different pieces. The simple act of turning one
triangle into several is hard and time consuming.

So, if OpenGL states that this must happen, but supposedly OpenGL-compliant hardware does not do it, then what's going on?

Consider this: if we had not told you just now that the hardware does not do clipping most of the time, could you tell? No. And that's the
point: OpenGL specifies apparent behavior; the spec does not care if you actually do vertex clipping or not. All the spec cares about is
that the user cannot tell the difference in terms of the output.

That's how hardware can get away with the early-z optimization mentioned before; the OpenGL spec says that the depth test must happen
after the fragment program executes. But if the fragment shader does not modify the depth, then would you be able to tell the difference if
it did the depth test before the fragment shader? No; if it passes, it would have passed either way, and the same goes for failing.

Instead of clipping, the hardware usualy just lets the triangles go through if part of the triangle is within the visible region. It generates
fragmentsfrom thosetriangles, andif afragment isoutside of the visiblewindow, it isdiscarded before any fragment processing takes place.

Hardware usually cannot do this however, if any vertex of the triangle has a clip-space W <= zero. In terms of a perspective projection,
this means that part of the triangle is fully behind the eye, rather than just behind the camera zNear plane. In these cases, clipping is much
more likely to happen.

Even so, clipping only happensif the triangleis partialy visible; atriangle that is entirely in front of the zZNear plane is dropped entirely.
In general, you should try to avoid rendering things that will clip against the eye plane (clip-space W <= 0, or camera-space Z >= 0).

You do not need to be pedantic about it; long walls and the like are fine. But, particularly for low-end hardware, a lot of clipping can
really kill performance.

Depth Clamping

That's all well and good, but this:

91

Objectsin Depth

Thisis never agood thing. Sure, it keeps the hardware from dividing by zero, which | guessisimportant, but it looks really bad. It's showing the
inside of an object that has no insides. Plus, you can aso see that it has no backside (since we're doing face culling); you can see right through
to the object behind it.

If computer graphicsis an elaborate illusion, then clipping utterly shattersthisillusion. It's abig, giant hole that screams, “thisis fake!” asloud
as possible to the user. What can we do about this?

The most common technique is to simply not allow it. That is, know how close objects are getting to the near clipping plane (ie: the camera)
and do not let them get close enough to clip.

And while this can “function” as a solution, it is not exactly good. It limits what you can do with objects and so forth.

A more reasonable mechanism is depth clamping. What this doesisturn off cameranear/far plane clipping altogether. Instead, the depth for these
fragments are clamped to the [-1, 1] range in NDC space.

We can see this in the Depth Clamping tutorial. This tutorial is identical to the vertex clipping one, except that the keyboar d function has
changed as follows:

Example 5.12. Depth Clamping On/Off

voi d keyboard(unsi gned char key, int x, int vy)
{
static bool bDepthd anmpi ngActive = fal se;
switch (key)
{
case 27:
gl ut LeaveMai nLoop() ;
br eak;
case 32:
i f (bDept hdl anpi ngActi ve)
gl D sabl e(G._DEPTH_CLAMP) ;
el se

92

Objectsin Depth

gl Enabl e(G._DEPTH_CLAMP) ;

bDept hCl anmpi ngActi ve = ! bDept hC anpi ngActi ve;
br eak;

}

When you press the space bar (ASCI| code 32), the code will toggle depth clamping, with the gl Enabl e/gl Di sabl e(G._DEPTH_CLAMP)
cals. It will start with depth clamping off, since that is the OpenGL default.

When you run the tutorial, you will see what we saw in the last one; pressing the space bar shows this;

Figure 5.8. Depth Clamping

Thislooks correct; it appears asif all of our problems are solved.

Appearances can be deceiving. Let's see what happens if you move the other object forward, so that the two intersect like in the earlier part of
the tutorial:

Objectsin Depth

Figure 5.9. Depth Clamp With Overlap

Oops. Part of it looksright, just not the part where the depth is being clamped. What's going on?

Well, recall what depth clamping does; it makes fragment depth values outside of the range be clamped to within the range. So depth values
smaller than depth zNear become depth zNear, and values larger than depth zFar become depth zFar.

Therefore, when you go to render the second object, some of the clamped fragments from the first are there. So the incoming fragment from the
new object has a depth of 0, and some of the values from the depth buffer also have adepth of 0. Since our depth test isGL_ LESS, the incoming
0 isnot less than the depth buffer's 0, so the part of the second object does not get rendered. Thisis pretty much the opposite of where we started:
previous rendered objects are in front of newer ones. We could change it to GL_ LEQUAL, but that only gets usto exactly where we started.

So aword of warning: be careful with depth clamping when you have overlapping objects near the planes. Similar problems happen with the far
plane, though backface culling can be a help in some cases.

Note

We defined depth clamping as, in part, turning off clipping against the camera near and far planes. If you're wondering what happens
when you have depth clamping, which turns off clipping, and a clip-space W <= 0, it's simple. In camera space, near and far clipping
is represented as turning a pyramid into a frustum: cutting off the top and bottom. If near/far clipping is not active, then the frustum
becomes a pyramid. The other 4 clipping planes are still fully in effect. Clip-space vertices with a W of less than 0 are al outside of
the boundary of any of the other four clipping planes.

The only clip-space point with aW of 0 that iswithin this volume is the homogeneous origin point: (0, O, O, 0); everything else will be
clipped. And a triangle made from three positions that all are at the same position would have no area; it would therefore generate no
fragments anyway. It can be safely eliminated before the perspective divide.

In Review

In thistutorial, you have learned about the following:

» Vertex array objects encapsulate all of the state necessary to render objects. This includes vertex attribute arrays, buffer objects to feed those
arrays, and the element buffer, if present.

Objectsin Depth

« Indexed rendering pullsdatafrom the current vertex arrays by using aseparate sequence of indices. The sequence of indices definesthe sequence
that OpenGL seesthe verticesin. Indexed rendering can be performed by storing index datain abuffer object, and using gl Dr awEl enent s.

* Indicesin indexed rendering calls can be offset by avalue using the gl Dr awEl enent sBaseVer t ex function.

 Hidden surface elimination can be performed by using a depth buffer and properly setting up the depth test.

» Triangles that are outside of the camera zNear and zFar range are clipped against this range. This can open up holes in models if they are

too close to the camera.

* Clipping holes can be repaired to a degree by activating depth clamping, so long as there is no overlap. And as long as the triangles do not
extend beyond 0 in camera space.

OpenGL Functions of Note

olGenVertexArrays/
olDeleteVertexArrays

glBindVertexArray

glDrawElements

glDrawElementsBaseV ertex

glEnable/
glDisable(GL_DEPTH_TEST)

ol DepthMask
glDepthFunc

glDepthRange

glClearDepth

glEnable/
glDisable(GL_DEPTH_CLAMP)

Glossary

vertex array object (VAO)

array drawing

indexed drawing

Creates/destroys one or more vertex array objects.

Binds avertex array object to the G._ VERTEX ARRAY target.

Performs indexed rendering with the currently bound G EL EMENT _ARRAY_BUFFER (provided via the
VAOQO) and the current attribute arrays.

Performs indexed rendering as gl Dr awEl enent s, except that each element index is offset by a constant
value before performing the array lookup. This is useful for minimizing the number of buffer object binds
performed in a program.

Enables/disables the per-fragment depth test. If the depth test is enabled, then the result of applying the depth
function, set by gl Dept hFunc, to the incoming fragment's depth and the destination pixel's depth will
determine if the incoming fragment is written or not.

Sets or unsets the writing of valuesto the depth buffer.
Sets the depth comparison function for depth testing. Has no effect if G._ DEPTH_TEST is not enabled.

Sets the mapping between NDC space and window space for the Z coordinate of the position. The XY
counterpart to this function isgl Vi ewpor t . The range for the window-space depth must be [0, 1], though
the near does not haveto belessthan thefar. Therange zNear value, thefirst value, isthe window-space value
that will map to -1 in NDC space. The range zFar is the window-space value that mapsto +1 in NDC space.

Sets the clear depth value. Thisis the value that the depth buffer will be cleared to when calling gl Cl ear
with the G_._DEPTH_BUFFER_BI T bhit set.

Enables/disables depth clamping behavior. When enabled, clipping is deactivated, and any fragments that an
object would render that are outside of the [-1, 1] range in NDC space are clamped to this range.

Vertex array objects are OpenGL Objects that store al of the state needed to make one or more draw calls.
This includes attribute array setup information (from gl Vert exAt t ri bArr ay), buffer objects used for
attribute arrays, and the GL_ ELEMENT _ARRAY_BUFFER binding, which is a buffer object that stores the
index arrays, if needed.

Rendering a contiguous range of vertices pulled from the currently bound attribute arrays (within the vertex
array object). The vertices are sent in order from first to last in the range.

Rendering an arbitrary set of vertices pulled from the currently bound attribute arrays. The set of verticesis
defined by the element array. The vertices are rendered in the order specified by the element array.

95

Objectsin Depth

element array, index array

hidden surface elimination

depth sorting

depth buffer, z-buffer

depth test

range zNear, range zFar

homogeneous coordinate

system

clipping

depth clamping

A list of indices, stored within a buffer object, that refer to elements in the currently bound attribute arrays.

The ability to render a scene such that objects that are behind other objects do not show through them. There
are several methods available for achieving this.

Rendering objects or triangles in an order based on their Z-depth from the camera. An attempt at hidden
surface elimination.

Animage in the framebuffer that conceptually stores the distance of the pixel from the camera zNear plane.
The depth buffer stores only one-dimensional values, instead of the 4-dimensional colors of the regular image
buffer. Depth values are usually restricted to the range [0, 1].

The process of testing the incoming fragment's depth value against the depth value from the depth buffer for
the pixel that the fragment would overwrite. If the test passes, then the fragment is written. If the test fails,
the fragment is not written. This, combined with a depth buffer, can be used as a good method of hidden
surface elimination.

The mapping from NDC-space Z coordinate[-1, 1] to window-space Z coordinates [0, 1]. Thismapping is set
with the gl Dept hRange function. These are specified in window-space coordinates. The -1 Z coordinate
in NDC space maps to range zNear, and the 1 mapsto range zFar. The range zZNear does not have to be less
than the range zFar.

A 4-dimensional coordinate system used to represent a 3-dimensional position. To compute the 3D position,
thefourth coordinateisdivided into the other 3. Thiskind of coordinate system allows mathematicsto function
in the presence of what would be undefined values otherwise. Namely division by zero.

The act of breaking asingletriangleinto one or more smaller ones so that they all fit within the visible region.
Actua clipping, generating new vertices and such, is not often done by hardware; instead they usually try to
cull fragments that are outside of the viewing area.

A rendering mode where clipping is turned off and the Z value of fragments is clamped to the depth range.
Thisis used to prevent clipping from punching holesin objects, though it is not afool proof solution.

96

Chapter 6. Objects in Motion

In this tutorial, we will look at a number of ways to transform objects, rendering them in different locations and orientations in the world. And
we will also solve the secret of why we overcomplicated everything with those matrices.

Spaces

Throughout this series of tutorials, we have discussed anumber of different spaces. We have seen OpenGL -defined spaces like normalized device

coordinate (NDC) space, clip-space, and window space. And we have seen user-defined spaces like camera space. But we have yet to formally

discuss about what a space actually is.

A spaceisashorthand term for a coordinate system. For the purposes of this conversation, a coordinate system or space consists of the following:

» Thedimensionality of the space. 2D, 3D, 4D, etc.

» A series of vectors in those dimensions that define the axes of the space. The directions do not have to be orthogonal (at right-angles) to one
another, but there must be one axis per dimension. Each axis vector in the space has a name, like X, Y, Z, etc. These are called the basis
vectors of a space.

» A location in the space that defines the central origin point. The origin is the point from which all other pointsin the space are derived.

» An area within this space in which points are valid. Outside of this range, positions are not valid. The range can be infinite depending on
the space.

A position or vertex in aspaceis defined asthe sum of the basis vectors, where each basisvector ismultiplied by ascalar value called a coordinate.
Geometrically, thislooks like the following:

97

Objectsin Mation

A

Figure 6.1. Two 2D Coording

te Systems

98

Objectsin Mation

These are two different coordinate systems. The same coordinate, in this case (2, 2) (each basis vector is added twice) can have two very different
positions, from the point of view of aneutral observer. What is interesting to noteisthat (2, 2) is the same value in their own coordinate system.
This means that a coordinate itself is not enough information to know what it means; one must also know what coordinate system it isin before
you can know anything about it.

The numerical version of the coordinate system equation is as follows:

Equation 6.1. Coordinate System

(Ao Ay A
Basis Vectors. {(Bx By, B))
(Cur Gy C)
Origin Vectors: (O, Oy, O,)
Al [B] Ic] [0,
Coordinate Equation: |Ay|X +|BylY +|Cy|z +|Oy
LA, B, C, O,

The geometric version isall well and good when dealing with the geometric basis vectors and origin point. The origin point isjust a position, and
the basis vectors are simply drawn. But what does it mean to give actual numbers to these concepts in the numerical version? A position, like the
origin point, isitself a coordinate. Which means that it must be defined relative to some coordinate system. The same goes for the basis vectors.

Ultimately, this means that we cannot look numerically at a single coordinate system. Since the coordinate values themselves are meaningless
without a coordinate system, a coordinate system can only be numerically expressed in relation to another coordinate system.

Technically, the geometric version of coordinate systems works the same way. The length of the basis vectors in the geometric diagrams are
relative to our own self-imposed sense of length and space. Essentially, everything is relative to something, and we will explore this in the near
future.

Transformation

In the more recent tutorials, the ones dealing with perspective projections, we have been taking positions in one coordinate system (space) and
putting them in another coordinate system. Specifically, we had objects in camera space that we moved into clip space. The process of taking
a coordinate in one space and specifying it as a coordinate in another space is called transformation. The coordinate's actual meaning has not
changed; all that has changed is the coordinate system that this coordinateis relative to.

We have seen a number of coordinate system transformations. OpenGL implements the transformation from clip-space to NDC space and the
transformation from NDC to window space. Our shaders implement the transformation from camera space to clip-space, and this was done using
amatrix. Perspective projection (and orthographic, for that matter) are simply a special kind of transformation.

Thistutorial will cover alarge number of different kinds of transform operations and how to implement them in OpenGL.

Model Space

Before we begin, we must define anew kind of space: model space. Thisis a user-defined space, but unlike camera space, model space does not
have a single definition. It isinstead a catch-all term for the space that a particular object begins in. Coordinates in buffer objects, passed to the
vertex shaders as vertex attributes are de facto in model space.

There are an infinite variety of model spaces. Each object one intends to render can, and often does, have its own model space, even if the
difference between these spacesis only in the origin point. Model spaces for an object are generally defined for the convenience of the modeller
or the programmer who intends to use that model.

The transformation operation being discussed in this tutorial is the transform from model space to camera space. Our shaders aready know how
to handle camera-space data; all they need is away to transform from model space to camera space.

99

Objectsin Mation

Translation

The simplest space transformation operation is trandation. Indeed, we have not only seen this transform before, it has been used in all of the
tutorials with a perspective projection. Recall thisline from the vertex shaders:

vec4 cameraPos = position + vec4(offset.x, offset.y, 0.0, 0.0);

Thisis atrandation transformation: it is used to position the origin point of the initial space relative to the destination space. Since all of the
coordinates in a space are relative to the origin point of that space, all a translation needs to do is add a vector to al of the coordinates in that
space. The vector added to these values is the location of where the user wants the origin point relative to the destination coordinate system.

Figure 6.2. Coordinate System Trandlation in 2D

A A
/\
AN
< > > -
Y Y

Here is a more concrete example. Let us say that an object which in its model space is near its origin. This means that, if we want to see that
object in front of the camera, we must position the origin of the model in front of the camera. If the extent of the model isonly [-1, 1] in model
space, we can ensure that the object is visible by adding this vector to all of the model space coordinates: (0, 0, -3). This puts the origin of the
model at that position in camera space.

Trandation is ultimately just that simple. So let's make it needlessly complex. And the best tool for doing that: matrices. Oh, we could just use a
3D uniform vector to pass an offset to do the transformation. But matrices have hidden benefits we will explore very soon.

All of our position vectors are 4D vectors, with a final W coordinate that is always 1.0. In Tutorial 04, we took advantage of this with our
perspective transformation matrix. The equation for the Z coordinate needed an additive term, so we put that term in the W column of the
transformation matrix. Matrix multiplication causes the value in the W column to be multiplied by the W coordinate of the vector (which is 1)
and added to the sum of the other terms.

But how do we keep the matrix from doing something to the other terms? We only want this matrix to apply an offset to the position. We do
not want to have it modify the position in some other way.

This is done by modifying an identity matrix. An identity matrix is a matrix that, when performing matrix multiplication, will return the matrix
(or vector) it was multiplied with. It is sort of like the number 1 with regular multiplication: 1* X = X. The 4x4 identity matrix looks like this:

100

Objectsin Mation

Equation 6.2. Identity Matrix

1000
0100
0010
000

To modify the identity matrix into one that is suitable for tranglation, we simply put the offset into the W column of the identity matrix.

Equation 6.3. Trandation Matrix

Trandation = (X, Y, 2)
100 X
010y
001z
00O

Thetutorial project cleverly titled Trandation performs translation operations.

This tutorial renders 3 of the same object, al in different positions. One of the objects is positioned in the center of the screen, and the other
two's positions orbit it at various speeds.

Because of the prevalence of matrix math, this is the first tutorial that uses the GLM math library. So let's take a look at the shader program
initialization code to seeit in action.

Example 6.1. Trandlation Shader Initialization

void InitializeProgran()

{

std: :vector<@G.ui nt> shaderLi st;

shader Li st. push_back(Franmewor k: : LoadShader (G._VERTEX_SHADER,
"PosCol orLocal Transformvert"));

shader Li st . push_back(Fr anewor k: : LoadShader (G._FRAGVENT_SHADER,
" Col or Passt hrough. frag"));

t heProgram = Franewor k: : Cr eat ePr ogr am(shader Li st) ;

positionAttrib = gl GetAttribLocati on(theProgram "position");
colorAttrib = gl GetAttri bLocation(theProgram "color");

nodel ToCaneraMat ri xUni f = gl Get Uni f or mLocat i on(t hePr ogram
"nodel ToCanmeraMatri x");

canmeraTod i pMatrixUnif = gl Get Uni fornlLocati on(theProgram
"caneraTod i pMatrix");

float fzNear = 1.0f; float fzFar = 45. 0f;

canmeraTod i pMatri x[0]. x
canmeraTod i pMatrix[1].y
canmeraTod i pMatrix[2].z
canmeraTod i pMatrix[2].w
canmeraTod i pMatrix[3].z

f Frust untcal e;

f Frust untcal e;

(fzFar + fzNear) / (fzNear - fzFar);

- 1. 0f;

(2 * fzFar * fzNear) / (fzNear - fzFar);

gl UseProgramt heProgranj ;
gl Uni f or mvat ri x4f v(cameraTod i pMatri xUni f, 1, G._FALSE,

101

Objectsin Mation

gl m:val ue_ptr(caneraToC i pMatri x));
gl UsePr ogranm(0);
}

GLM takes a unique approach for a vector/matrix math library. It attempts to emulate GLSL's approach to vector operations where possible. It
uses C++ operator overloading to effectively emulate GLSL. In many cases, GLM-based expressions would compilein GLSL.

The matrix camer aToCl i pMat ri x is defined as a gim::mat4, which has the same properties as a GLSL mat4. Array indexing of a mat4,
whether GLM or GLSL, returns the zero-based column of the matrix as a vec4.

Thegl m : val ue_ptr function is used to get a direct pointer to the matrix data, in column-major order. Thisis useful for uploading data to
OpenGL, as shown with the call to gl Uni f or mivat ri x4f v.

With the exception of getting a second uniform location (for our model transformation matrix), this code functions exactly asit did in previous
tutorials.

Thereisoneimportant note; f Fr ust unscal e isnot 1.0 anymore. Until now, therelative sizes of objectswere not particularly meaningful. Now
that we are starting to deal with more complex objects that have a particular scale, picking a proper field of view for the perspective projection
isvery important.

Thenew f Fr ust untScal e is computed with this code;

Example 6.2. Frustum Scale Computation

float Cal cFrustuntscal e(fl oat fFovDeg)

{
const float degToRad = 3. 14159f * 2.0f / 360. Of;
float fFovRad = fFovDeg * degToRad;
return 1.0f / tan(fFovRad / 2.0f);

}

const float fFrustuntcal e = Cal cFrustunfscal e(45. 0f);

The function Cal cFr ust unScal e computes the frustum scale based on a field-of-view angle in degrees. The field of view in this case is the
angle between the forward direction and the direction of the farmost-extent of the view.

This project, and many of the others in this tutorial, uses a fairly complex bit of code to manage the transform matrices for the various object

instances. Thereisan | nst ance object for each actual object; it has afunction pointer that is used to compute the object's offset position. The
| nst ance object then takes that position and computes a transformation matrix, based on the current elapsed time, with this function:

Example 6.3. Trandation Matrix Gener ation

glm:mat4 ConstructMatrix(float fEl apsedTi ne)

{
glm:mat4 theMat (1.0f);
theMat[3] = gl m:vec4(Cal cOfset(fEl apsedTinme), 1.0f);
return thehat;

}

The gim::mat4 constructor that takes only a single value constructs what is known as a diagona matrix. That isamatrix with al zeros except for
along the diagonal from the upper-l€ft to the lower-right. The values along that diagonal will be the value passed to the constructor. An identity
matrix is just adiagona matrix with 1 as the value along the diagonal.

This function simply replaces the W column of that identity matrix with the offset value.

This all produces the following:

102

Objectsin Mation

Figure 6.3. Trandation Project

Scale

Another kind of transformation is scaling. In terms of our previous definition of a coordinate system, this means that our basis vectors are getting
shorter or longer.

Objectsin Mation

Figure 6.4. Coordinate System Scalingin 2D

A A
AN N\
AN AN
- > > - >
Y Y

Scaling can be uniform, which means each basis vector is scaled by the same value. A non-uniform scale meansthat each basis can get adifferent
scale or none at al.

Uniform scales are used to allow objects in model space to have different units from the units used in camera space. For example, a modeller
may have generated the model in inches, but the world uses centimeters. This will require applying a uniform scale to all of these models to
compensate for this. This scale should be 2.54, which is the conversion factor from inches to centimeters.
Note that scaling always happens relative to the origin of the space being scaled.
Recall how we defined the way coordinate systems generate a position, based on the basis vectors and origin point:

A By [C4] [O«x
X|Ay| +Y|By| +Z|Cy| +[Oy

AZ BZ CZ OZ

If you are increasing or decreasing the length of the basis vectors, this is the same as multiplying those basis vectors by the new length. So we
can re-express this equation as follows:

A S Bx ™ Sy Cx* S [Oy]
A*S| x + [B*S| v + [cy*s| z + |0,
A" Sy B S C.* S O
A By Cx (O,
Al*St X+ [Byless v+ (Cylrsx z + |0,
A, LB, C, .02

Objectsin Mation

Since scalar-vector multiplication is both associative and commutative, we can multiply the scales directly into the coordinate values to achieve
the same effect. So a scaled space can be reexpressed as simply multiplying the input coordinate values.

Thisiseasy enough to do in GLSL, if you pass avector uniform containing the scale values. But that's just not complicated enough. Obviously,
we need to get matrices involved, but how?

This gets ahit technical, in terms of how a matrix multiplication works. But look back at the identity matrix:

0
0
0

O OO
OO o
OoOpR OO0

This matrix selects each coordinate in turn from the vector it is being multiplied into. Each row is multiplied with the column of the vector; all
of the zeros remove the components of the vector that we do not want. The 1 value of each row multiplies into the component we do want, thus
selecting it. This produces the identity result: the vector we started with.

We can see that, if the ones were some other value, we would get a scaled version of the original vector, depending on which ones were changed.
Thus, a scaling transformation matrix looks like this:

Equation 6.4. Scaling Transformation Matrix

Scale = (X%, Y, 2)

x 00O
Oy 0O
00zO
00O

You may start to see a pattern emerging here, something that begins to suggest why matrices are very, very useful. | will not spoil it for you
yet though.

The tutorial project Scale will display 5 objects at various scales. The objects are al at the same Z distance from the camera, so the only size
difference between the objects is the scale effects applied to them. The object in the center is unscaled; each of the other objects has a scale
function of some kind applied to them.

105

Objectsin Mation

Figure 6.5. Scale Project

Other than the way the tutorial builds its matrices, there is no difference between this tutorial project and the previous one. The matrix building
code works as follows:

glm:mat4 ConstructMatrix(float fEl apsedTi ne)
{
gl m:vec3 theScal e = Cal cScal e(fEl apsedTi ne);
glm:mat4 theMat (1.0f);
t heMvat [0] . x t heScal e. x;
themvat [1] . t heScal e. y;
t heMat [2] . t heScal e. z;
t heMat [3] gl m:vec4(offset, 1.0f);

Objectsin Mation

return theMat;
}

Asbefore, the scale is supplied by anumber of scale functions, depending on which instanceis being rendered. The scaleis stored in the columns
of the identity matrix. Then the trandlation portion of the matrix isfilled in.

The of f set variable is aso a member of the | nst ance object. Unlike the last tutorial, the offset is a fixed value. We will discuss the
ramifications of applying multiple transforms later; sufficeit to say, this currently works.

Scaling is only slightly more complicated than translation.

Perspective and Scaling

The way we construct a scal e transformation matrix may seem familiar to you. Back in Tutorial 4, the perspective transformation involved
afrustum scale value. This was used to make up for the fact that our projection defined a specific location for the plane of projection and
camera eye point. Using this frustum scale, we could give the appearance of having alarger or smaller viewing size. Indeed, we later used
this to define the aspect ratio as well asthefield of view, using the function defined earlier in this tutorial.

This frustum scale was ultimately nothing more than a scale factor applied the X and Y positions. When we constructed the perspective
matrix, we used the frustum scale as a uniform scaling in the X and Y dimensions. The aspect ratio compensation code was nothing more
than applying a nonuniform scale.

Inversion and Winding Order

Scales can be theoretically negative, or even 0. A scale of 0 causes the basis vector in that direction to become 0 entirely. An basis vector with
no length means that a dimension has effectively been lost. The resulting transform sgquashes everything in that direction down to the origin. A
3D space becomes a 2D space (or 1D or 0D, depending on how many axes were scaled).

A negative scale changes the direction of an axis. This causes vertices transformed with this scale to flip across the origin in that axis's direction.
Thisis caled an inversion. This can have certain unintended consequences. In particular, it can change the winding order of vertices.

Back in Tutorial 4, weintroduced the ability to cull triangles based on the order in which the vertices appeared in window space. Depending on
which axis you negate, relative to camera space, an inversion can flip the expected winding order of vertices. Thus, triangles that were, in model
space, forward-facing now in camera space are backwards-facing. And vice-versa.

Negative scaling can have other problems aswell. Thisis not to say that inversions cannot be used, but they should be used with care.

Rotation

A rotation transformation is the result of the orientation of the initial space being different from the orientation of the destination space. The
basis vectors of the space do not change orientation relative to one another, but relative to the destination coordinate system, they are pointed in
different directions than they were in their own coordinate system.

A rotation looks like this:

107

Objectsin Mation

Figure 6.6. Coordinate Rotation in 2D

A A
N\
AN
- > - -
Y Y

Rotations are usually considered the most complex of the basic transformations, primarily because of the math involved in computing the
transformation matrix. Generally, rotations are looked at as an operation, such as rotating around a particul ar basis vector or some such. The prior
part of the tutorial laid down some of the groundwork that will make this much simpler.

First, let'slook back at our equation for determining what the position of a coordinate is relative to certain coordinate space:
A Bq [C« [Ox

X[Ay[+Y|By| +Z|Cy| +|Oy
A, B, Cid 1O,

Does not thislook a bit familiar? No? Maybe thislook at vector-matrix multiplication will jog your memory:

mil m21 m31 mdllrx Xx*mll + y*m2l + z*m31 + w* m4l
m12 m22 m32 md2|ly| _[X*ml2 + y*m22 + z*m32 + w*m42
m13 m23 m33 m43[Z| |x*ml13 + y*m23 + z*m33 + w*m43
ml4 m24 m34 mad™ Lemia 4 oyrm24 + z*m34 + wrm

Still nothing? Perhaps an alternate look would help:

Equation 6.5. Vectorized Matrix Multiplication

mll m21 m31 m4l]rx mll’ m21 m31 m4l
ml2 m22 m32 md2||y _Xm12 + m22 +Zm32 +Wm42
m13 m23 m33 md3|[z| T {m13| " Y| m23| T 4 m33| T Wm43

ml4 m24 m34 mad*W m1. m2 m m

108

Objectsin Mation

Does it look familiar now?

What thistells usisthat the columns of our transformation matrices are, and have always been, nothing more than the axes of acoordinate system.
Except for the fourth column; because the input position hasa 1 in the W, it acts as an offset.

Transformation from one space to another ultimately meansthis: taking the basis vectors and origin point from the original coordinate system and
re-expressing them relative to the destination coordinate system. The transformation matrix from one space to another contains the basis vectors
and origin of the original coordinate system, but the values of those basis vectors and origin are relative to the destination coordinate system.

Earlier, we said that numerical coordinates of a space must be expressed relative to another space. A matrix is a numerical representation of
a coordinate system, and its values are expressed in the destination coordinate system. Therefore, a transformation matrix takes values in one
coordinate system and transformsthem into another. It doesthis by taking the basisvectorsand origin of theinput coordinate system and represents
them relative to the output space. To put it another way, the transformation from space A to space B iswhat space A looks like from an observer
in space B.

A rotation matrix is just atransform that expresses the basis vectors of the input space in a different orientation. The length of the basis vectors
will bethe same, and the origin will not change. Also, the angle between the basis vectorswill not change. All that changesistherelative direction
of al of the basis vectors.

Therefore, arotation matrix isnot really a“rotation” matrix; it isan orientation matrix. It defines the orientation of one space relative to another
space. Remember this, and you will avoid many pitfalls when you start dealing with more complex transformations.

For any two spaces, the orientation transformation between then can be expressed as rotating the source space by some angle around a particular
axis (specified in the initial space). Thisistrue for any change of orientation.

A common rotation question is to therefore compute a rotation around an arbitrary axis. Or to put it more correctly, to determine the orientation
of aspaceif it isrotated around an arbitrary axis. The axis of rotation is expressed in terms of theinitial space. In 2D, thereis only one axis that
can be rotated around and still remain within that 2D plane: the Z-axis.

In 3D, there are many possible axes of rotation. It does not have to be one of the initial space's basis axes; it can be any arbitrary direction. Of
course, the problem is made much simpler if one rotates only around the primary axes.

Deriving these matrix equations is beyond the scope of this tutorial; so instead, we will simply provide them. To perform rotations along the
primary axes, use the following matrices:

Equation 6.6. Axial Rotation M atrices

Rotation Angle = #

1 0 0 0

. 0O cos(#) -sin(#) O

X Rotation 1 g cos@) 0
0O O 0 1

cos(# 0 sn#) O

. 0 1 0 O

Y Rotation | sn#) 0 cos@) 0
0 0O O 1

cos(#) -sn#) 0 O

7 Rotation sin(#) cos(# 0 O
0 0 10

0 0 0 1

When using the standard C/C++ library si n and cos functions, the angles must be in radians.

As useful as these are, the more generic equation for rotation by an angle about an arbitrary axisis as follows.

109

Objectsin Mation

Equation 6.7. Angle/Axis Rotation Matrix
Axis = (X, Yy, 2) Angle =#
C = cos(#) S=sn(#)
iC=1- cos(#) iS=1-sn(#
x+(1- x¥)C iCxy- S iCxz+yS 0
iCxy+zS y?+(1- y)C iCyz-xS 0
iCxz- yS iCyz+xSs Z+(1- Ac 0
0 0 0

All of these matrices are such that, from the point of view of an observer looking down the axis of rotation (the positive direction of the axisis
pointed into the eye of the observer), the object rotates counter-clockwise with positive angles.

The Rotations tutorial shows off each of these rotation matrix functions. Similar to how the others work, there are multiple instances rendered
based on functions.

110

Objectsin Mation

Figure 6.7. Rotation Project

The function that builds the transformation matrix looks like this:

Example 6.4. Rotation Transformation Building

glm:mat4 ConstructMatrix(fl oat fEl apsedTi ne)

{
const glm:mat3 & otMatrix = Cal cRotation(fEl apsedTi ne);

glm:mat4 theMat (rot Matrix);
thevat[3] = gl m:vec4(offset, 1.0f);

return theMat;

Objectsin Mation

The constructor of glm::mat4 that takes a glm::mat3 generates a 4x4 matrix with the 3x3 matrix in the top-left corner, and all other positions 0
except the bottom-left corner, which is set to 1. As with much of GLM, thisworksin GLSL aswell.

Fun with Matrices

In al of the previous examples except for the trang ation one, we always combined the transformation with a translation operation. So the scale
transform was not a pure scale transform,; it was a scale and translate transformation matrix. The translation was there primarily so that we could
see everything properly.

But these are not the only combinations of transformations that can be performed. Indeed, any combination of transformation operations is
possible; whether they are meaningful and useful depends on what you are doing.

Successive transformations can be seen as doing successive multiplication operations. For example, if S is a pure scale matrix, T is a pure
tranglation matrix, and R is a pure rotation matrix, then the shader can compute the result of atransformation as follows:

vec4d tenp;
tenp = T * position;
temp = R * tenp;

tenp = S * tenp;
gl _Position = canmeraTod ipMatrix * tenp;

In mathematical terms, this would be the following series of matrix operations: Final = C* S*R* T* position, where C is the camera-to-clip space
transformation matrix.

Thisisfunctional, but not particularly flexible; the series of transformsis baked into the shader. It is also not particularly fast, what with having
to do four vector/matrix multiplications for every vertex.

Matrix math gives us an optimization. Matrix math is not commutative: S*R is not the same as R*S. However, it is associative: (S*R)*T is the
same as S*(R*T). The usua grouping for vertex transformation is this: Final = C*(S*(R*(T*position))). But this can easily be regrouped as:
Final = (((C*S)*R)*T)* position.

This would in fact be slower for the shader to compute, since full matrix-to-matrix multiplication is much slower than matrix-to-vector
multiplication. But the combined matrix (((C*S)*R)*T) isfixed for al of agiven object's vertices. This can be computed on the CPU, and al we
have to do is upload a single matrix to OpenGL. And since we're aready uploading a matrix to OpenGL for each object we render, this changes
nothing about the overall performance characteristics of the rendering (for the graphics hardware).

This is one of the main reasons matrices are used. You can build an incredibly complex transformation sequence with dozens of component
transformations. And yet, al it takes for the GPU to use this to transform positions is a single vector/matrix multiplication.

Order of Transforms

As previoudly stated, matrix multiplication is not commutative. This means that the combined transform S*T is not the same as T*S. Let us
explore this further. Thisiswhat these two composite transform matrices ook like:

112

Objectsin Mation

Equation 6.8. Order of Transformation

2 0 00
s-loos00
oo 10
0 0 0
110 0 2
~lo101
T =10010
0 0 0
2 0 0 4
_lo 05 0 05
SXT =100 1 0
0 0 0 1
2 0 0 2
_loos0 1
TS =100 10
0 0 0

Thetransform S*T actually scalesthe trandlation part of the resulting matrix. This meansthat the verticeswill not just get farther from each other,
but farther fromthe origin of the destination space. It is the difference between these two transforms:

113

Objectsin Mation

Figure 6.8. Transform Order Diagram
A A

Y Y

If you think about the order of operations, this makes sense. Even though one can think of the combined transform S*T as a single transform, it
is ultimately a composite operation. The transformation T happens first; the object is trandated into a new position.

What you must understand is that something special happens between Sand T. Namely, that Sisnow being applied to positions that are not from
model space (the space the original vertices were in), but are in post transation space. Thisis an intermediate coordinate system defined by T.
Remember: a matrix, even atrandation matrix, defines a full-fledged coordinate system.

So S now acts on the T-space position of the vertices. T-space has an origin, which in T-space is (0, 0, 0). However, this origin back in model
spaceisthetrandation part of the matrix T. A scaling transformation matrix performs scaling based on the origin point in the space of the vertices

114

Objectsin Mation

being scaled. So the scaling matrix Swill scale the points away from the origin point in T-space. Since what you (probably) actually wanted was
to scale the points away from the origin point in model space, S needsto comefirst.

Orientation (rotation) matrices have the sameissue. The orientation isalwayslocal to the origin in the current space of the positions. So arotation
matrix must happen before the trandlation matrix. Scales generally should happen before orientation; if they happen afterwards, then the scale will
be relative to the new axis orientation, not the model-space one. Thisisfineif it isauniform scale, but a non-uniform scale will be problematic.

There are reasons to put a translation matrix first. If the model-space origin is not the point that you wish to rotate or scale around, then you will
need to perform atrand ation first, so that the vertices are in the space you want to rotate from, then apply a scale or rotation. Doing this multiple
times can allow you to scale and rotate about two completely different points.

Hierarchical Models

In more complex scenes, it is often desirable to specify the transform of one model relative to the model space transform of another model. This
isuseful if you want one object (object B) to pick up another object (object A). The object that gets picked up needs to follow the transform of
the object that picked it up. So it is often easiest to specify the transform for object B relative to object A.

A conceptually single model that is composed of multiple transforms for multiple rendered objects is called a hierarchical model. In such a
hierarchy, the final transform for any of the component pieces is a sequence of all of the transforms of its parent transform, plus its own model
space transform. Models in this transform have a parent-child relationship to other objects.

For the purposes of this discussion, each complete transform for amodel in the hierarchy will be called anode. Each node is defined by a specific
series of transformations, which when combined yield the complete transformation matrix for that node. Usually, each node has a trandation,
rotation, and scale, though the specific transform can be entirely arbitrary. What matters is that the full transformation matrix is relative to the
space of its parent, not camera space.

So if you have a node who's trandation is (3, 0, 4), then it will be 3 X-units and 4 Z-units from the origin of its parent transform. The node itself
does not know or care what the parent transform actualy is; it smply stores atransform relative to that.

Technically, a node does not have to have amesh. It is sometimes useful in a hierarchical model to have nodes that exist solely to position other,
visible nodes. Or to act as key points for other purposes, such asidentifying the position of the gun's muzzle to render amuzzle flash.

The Hierarchy tutorial renders a hierarchical model of an arm. This tutorial is interactive; the relative angles of the nodes can be changed with

keyboard commands. The angles are bound within certain values, so the model will stop bending once these values are exceeded. These commands
are asfollows:

Table6.1. Hierarchy Tutorial Key Commands

Node Angle I ncrease/L eft Decrease/Right
Base Spin A D
Arm Raise w S
Elbow Raise R F
Wrist Raise T G
Wrist Spin y4 C
Finger Open/Close Q E

115

Objectsin Mation

Figure 6.9. Hierarchy Project

The structure of the tutorial is very interesting and shows off a number of important data structures for doing this kind of rendering.

The class Hi er ar chy stores the information for our hierarchy of nodes. It stores the relative positions for each node, as well as angle
information and size information for the size of each rectangle. The rendering code in di spl ay simply does the usual setup work and calls
Hi erar chy: : Draw() , wheretherea work happens.

The Dr aw function looks like this:

Example 6.5. Hierarchy::Draw

void Draw()

{
Mat ri xSt ack nodel ToCamer aSt ack;

Objectsin Mation

gl UsePr ogr an(t heProgram ;
gl Bi ndVert exArray(vao);

nodel ToCaner aSt ack. Tr ansl at e(posBase) ;
nodel ToCaner aSt ack. Rot at eY(angBase) ;

//Draw | eft base.

{
nodel ToCaner aSt ack. Push() ;
nodel ToCaner aSt ack. Tr ansl at e(posBaselLeft);
nodel ToCaner aSt ack. Scal e(gl m :vec3(1.0f, 1.0f, scal eBasez));
gl Uni f or mvat r i x4f v(model ToCanerahMatri xUni f, 1, G._FALSE,
gl m : val ue_ptr (nodel ToCaner aSt ack. Top()));
gl Drawkl enent s(G__TRI ANGLES, ARRAY_COUNT(i ndexDat a) ,
GL_UNSI GNED_SHORT, 0);
nodel ToCaner aSt ack. Pop() ;
}
/1 Draw right base.
{
nodel ToCaner aSt ack. Push() ;
nodel ToCaner aSt ack. Tr ansl at e(posBaseRi ght) ;
nodel ToCaner aSt ack. Scal e(gl m :vec3(1.0f, 1.0f, scal eBasez));
gl Uni f or mvat r i x4f v(model ToCanerahMatri xUni f, 1, G._FALSE,
gl m: val ue_ptr (nodel ToCaner aSt ack. Top()));
gl Drawkl enent s(G__TRI ANGLES, ARRAY_COUNT(i ndexDat a) ,
GL_UNSI GNED_SHORT, 0);
nodel ToCaner aSt ack. Pop() ;
}

//Draw main arm
Dr awpper Ar m nodel ToCaner aSt ack) ;

gl Bi ndVert exArray(0);
gl UseProgran{0);
}

The program and VAO binding code should look familiar, but most of the code should be fairly foreign.

The Mat ri xSt ack object created in the very first lineisaclass that is also a part of this project. It implements the concept of a matrix stack.
The matrix stack is a method for dealing with transformations in hierarchical models.

A stack is a particular data structure concept. Stacks store a controlled sequence of objects. But unlike arrays, linked lists, or other general data
structures, there are only 3 operations available to the user of astack: push, pop, and peek. Push places avalue on the top of the stack. Pop removes
the value on the top of the stack, making the previous top the current top. And peek simply returns the current value at the top of the stack.

A matrix stack is, for the most part, a stack where the values are 4x4 transformation matrices. Matrix stacks do have a few differences from
regular stacks. C++ hasan object, st d: : st ack, that implements the stack concept. Mat r i xSt ack isawrapper around that object, providing
additional matrix stack functionality.

A matrix stack has a current matrix value. An initially constructed matrix stack has an identity matrix. There are a number of functions on the
matrix stack that multiply the current matrix by a particular transformation matrix; the result becomes the new current matrix. For example, the
Mat ri xSt ack: : Rot at eX function multiplies the current matrix by arotation around the X axis by the given angle.

The Mat ri xSt ack: : Push function takes the current matrix and pushes it onto the stack. The Mat ri xSt ack: : Pop function makes the
current matrix whatever the top of the stack is, and removes the top from the stack. The effect of theseisto allow you to save amatrix, modify the
current matrix, and then restore the old one after you have finished using the modified one. And you can store an arbitrary number of matrices,

117

Objectsin Mation

all in aspecific order. Thisisinvaluable when dealing with a hierarchical model, asit allows you to iterate over each element in the model from
root to the leaf nodes, preserving older transforms and recovering them as needed.

Inthe Dr awcode, thetrandation is applied to the stack first, followed by an X rotation based on the current angle. Note that the order of operations
is backwards from what we said previously. That's because the matrix stack looks at transforms backwards. When we said earlier that the rotation
should be applied before the tranglation, that was with respect to the position. That is, the equation should be T*R*v, where v is the position.
What we meant was that R should be applied to v before T. This means that R comesto the right of T.

Rather than applying matrices to vertices, we are applying matrices to each other. The matrix stack functions all perform right-multiplication; the
new matrix being multiplied by the current ison theright side. The matrix stack startswith theidentity matrix. To haveit store T* R, you must first
apply the T transform, which makesthe current matrix the current matrix is1* T. Then you apply the R transform, making the current matrix I* T*R.

Right-multiplication is necessary, as the whole point of using the matrix stack is so that we can start at the root of a hierarchical model and save
each node's transform to the stack as we go from parent to child. That simply would not be possible if matrix stacks left-multiplied, since we
would have to apply the child transforms before the parent ones.

The next thing that happens is that the matrix is preserved by pushing it on the stack. After this, atranslation and scale are applied to the matrix
stack. The stack’s current matrix is uploaded to the program, and a model is rendered. Then the matrix stack is popped, restoring the original
transform. What is the purpose of this code?

What we see here is a difference between the transforms that need to be propagated to child nodes, and the transforms necessary to properly
position the model(s) for rendering this particular node. It is often useful to have source mesh data where the model space of the mesh is not
the same space that our node transform requires.

In our case, we do this because we know that al of our pieces are 3D rectangles. A 3D rectangleisreally just a cube with scales and tranglations
applied to them. The scale makes the cube into the proper size, and the trandlation positions the origin point for our model space.

Rather than have this extra transform, we could have created 9 or so actua rectangle meshes, one for each rendered rectangle. However, this
would have required more buffer object room and more vertex attribute changes when these were simply unnecessary. The vertex shader runs no
slower thisway; it's still just multiplying by matrices. And the minor CPU computation time is exactly that: minor.

This concept is very useful, even though it is not commonly talked about to the point where it gets a special name. As we have seen, it alows
easy model reuse, but it has other properties as well. For example, it can be good for data compression. There are ways to store values on the
range[O, 1] or [-1, 1] in 16 or 8 hits, rather than 32-bit floating point values. If you can apply a simple scal et+translation transform to go from this
[-1, 1] spaceto the original space of the model, then you can cut your datain half (or less) with virtually no impact on visual quality.

Each section of the codewhereit usesan extratransform happensbetweenalMat ri xSt ack: : Push andMat ri xSt ack: : Pop. Thispreserves
the node's matrix, so that it may be used for rendering with other nodes.

At the bottom of the base drawing function is a call to draw the upper arm. That function looks similar to this function: apply the model space
matrix to the stack, push, apply a matrix, render, pop, call functions for child parts. All of the functions, to one degree or another, look like this.
Indeed, they all looks similar enough that you could probably abstract this down into a very generalized form. And indeed, this is frequently
done by scene graphs and the like. The major difference between the child functions and the root one is that this function has a push/pop wrapper
around the entire thing. Though since the root creates a MatrixStack to begin with, this could be considered the equivalent.

Matrix Stack Conventions

There are two possible conventions for matrix stack behavior. The caller could be responsible for pushing and popping the matrix, or the
callee (the function being called) could be responsible for this. These are called caller-save and callee-save.

In caller-save, what it is saying is that a function that takes a matrix stack should feel free to do whatever they want to the current matrix,
as well as push/pop as much as they want. However, the callee must not pop more than they push, though this is a general requirement
with any function taking amatrix stack. After all, astack does not report how many elementsit has, so you cannot know whether someone
pushed anything at all.

In callee-save, what the convention is saying is that a function must be responsible for any changes it wants to make to the matrix stack.
If it wants to change the matrix stack, then it must push first and pop after using those changes.

Callee-saveis probably a better convention to use. With caller-save, afunction that takes a matrix stack must be assumed to modify it (if it
takes the object as a non-const reference), so it will have to do a push/pop. Whereas with callee-save, you only push/pop as you explicitly
need: at the site where you are modifying the matrix stack. It groups the code together better.

118

Objectsin Mation

In Review

In thistutorial, you have learned the following:

Coordinate systems (spaces) are defined by 3 basis axes and a position.
The transformation from one 3D space to another can be defined by a 4x4 matrix, which is constructed from the 3 basis axes and the position.

Model space is the coordinate system that a particular model occupies, relative to camera space. Other models can have model spaces that
depend on the model space of other models.

Scale, trand ation, and rotation transformations have specific matrix forms.

Transformations can be composed viamatrix multiplication. All transformations for amodel can be folded into a single matrix, which avertex
shader can execute at afixed rate. Therefore, complex transforms are no slower to execute (for the graphics chip) than simple ones.

The order that successive transforms are applied in matters. Matrix multiplication is not commutative, and neither is object transformation.

Successive transformations can be used to build hierarchies of objects, each dependent on the accumulated transformations of lower ones. This
isdone using a matrix stack.

Further Study

Try doing these things with the given programs.

In the Trandation tutorial, we had two objects that rotated around a specific point. This was achieved by computing the offset for the rotated
position on the CPU, not through the use of arotation transformation. Change this code to use rotation transformations instead. Make sure that
the orientation of the objects do not change as they are being rotated around; this will require applying more than one rotation transformation.

Reverse the order of rotations on the wrist in the Hierarchy tutorial. Note how this affects the ability to adjust the wrist.

Reimplement the Hierarchy tutorial, instead using a more generic data structure. Have each node be a struct/class that can be attached to an
arbitrary node. The scene will simply be the root node. The individual angle values should be stored in the node object. The node should have
arender function that will render this node, given the matrix stack. It would render itself, then recursively render its children. The node would
aso have away to define the size (in world-space) and origin point of the rectangle to be drawn.

Given the generalized Hierarchy code, remove the matrix stack. Use matrix objects created on the C++ stack instead. The node render function
would take a const& to amatrix rather than a matrix stack reference.

Glossary

space, coordinate system This defines what the coordinates used to refer to positions actually mean. Coordinate systems have a
dimensionality (the number of coordinates), an basisvector for each of the dimensions, and an origin position.
A coordinate system of 3 dimensions therefore is defined by 3 vectors and a position. The X, Y and Z
coordinates in that coordinate system refer to the value you get when you multiply the X, Y, Z values into
the X, Y, and Z axes, then add the origin position to those values.

basis vector One of the vectors that define a coordinate system. The basis vectors of a coordinate system do not have to
be orthogonal or of unit length.

transformation The process of moving objects defined in one space to be defined in another space.

model space The space that a particular model is expected to be in. Vertex data stored in buffer objects is expected to be
in model space.

trandlation transform A transform between two spaces, where the origin of the spaces are not in the same location. This causes

objects to shift asthey are transformed between the two spaces.

119

Objectsin Mation

identity matrix

scale transform

scaleinversion

orthogonal

rotation transform, orientation
transform

hierarchical model

node

The matrix | such that the following istrue: MI = M, for any matrix M. ldentity matrices only exist for square
matrices (a matrix with the same number of columns and rows). An identity matrix consists of a matrix with
ones along the diagonal from the top-l€ft to the lower-right, and zeros everywhere el se.

A transform between two spaces where the axis vectors of the source space are longer or shorter than the
corresponding axis vectorsin the destination space. This causes objects to stretch or shrink along the axes as
they are transformed between the two spaces.

Performing a scale by a negative value. Thisis perfectly allowed, though it can change the winding order of
triangles, depending on the axis being scaled.

Two vectors are orthogonal if they are perpendicular to each other. Three vectors are othogonal if each vector
is perpendicular to the other two.

A transform between two spaces, where the axis vectors of the two spaces are not pointed in the same
direction, but the angle between the axis vectors stay the same. This cause a reorientation of objects as they
are transformed from the initial space to the destination space.

Models can be conceptually composed of multiple independent pieces in a hierarchy. The space of each
component of that hierarchy is stored relative to its parent in the hierarchy.

A singlemodel spacetransform within ahierarchy of model transforms. Thenode'stransformisstored relative
to the transform of the node beneath it, called the parent. Nodes can have a single parent node and multiple
child nodes; the child nodes' transforms are relative to this node's space.

120

Chapter 7. World in Motion

In thistutorial, we will show how to build aworld of objects with a dynamic, moving camera.

World Space

In the perspective projection tutorial, we defined a projection matrix that transforms objects from a specific camera space to clip-space. This
camera space was defined primarily to make our perspective transformation as simple as possible. The camera itself sitsimmobile at the origin
(O, 0, 0). The camera always looks down the Z axis, with objects that have anegative Z being considered in front of the camera.

All of the tutorials we have seen since then have had model transformations that go directly to camera space. While this functions, it is not as
useful asit could be. Camera spaceisnot aparticularly flexible space. If we want to have amoving camera, obviously something needsto change.

We could modify our perspective matrix generation functions, so that we can project onto a camerathat has an arbitrary position and orientation.
But really, that'stoo much work; camera spaceitself worksjust fine for our needs. It would be easier to just introduce an additional transformation.

Defining the World

Right now, the problem is that we transform all of the objects from their individual model spaces to camera space directly. The only time the
objects arein the same space rel ative to one another iswhen they arein camera space. So instead, wewill introduce an intermediate space between
model and camera space; let us call this space world space.

All objects will be transformed into world space. The cameraitself will also have a particular position and orientation in world space. And since
the camera has a known space, with a known position and orientation relative to world space, we have a transformation from world space to
camera space. This also neatly explains why camera space is so named: it is the space where the world is expressed relative to the camera.

So, how do we define world space? Well, we defined model space by fiat: it's the space the vertex positions are in. Clip-space was defined
for us. The only space thus far that we have had a real choice about is camera space. And we defined that in a way that gave us the simplest
perspective projection matrix.

The last part gives us a hint. What defines a space is not the matrix that transforms to that space, but the matrix that transforms from that space.
And this makes sense; atransformation matrix contains the basis vector and origin of the source space, as expressed in the destination coordinate
system. Defining world space means defining the world-to-camera transform.

We can define this transform with a matrix. But something said earlier gives us a more user-friendly mechanism. We stated that one of the
properties of world space is that the cameraitself has a position and orientation in world space. That position and orientation, expressed in world
space, comprises the camera-to-world transform; do note the order: “camera-to-world.” We want the opposite: world-to-camera.

The positioning is quite simple. Given the position of the camerain world space, the translation component of the world-to-camera matrix is the
negation of that. This translates world space positions to be relative to the camera's position. So if the camera's position in world spaceis (3, 15,
4), then the trandation component of the world-to-camera matrix is (-3, -15, -4).

The orientation is a bit more troublesome. There are many ways to express an orientation. In the last tutorial, we expressed it as a rotation about
an axis. For acamera, it is much more natural to express the orientation relative to something more basic: a set of directions.

What a user most wants to do with a camerais look at something. So the direction that is dead center in camera space, that is directly aong the
-Z axis, isone direction vector. Another thing users want to do with camerasis rotate them around the viewing direction. So the second direction
isthe direction that is “up” in camera space. |n camera space, the up directionis+Y.

We could specify athird direction, but that isunnecessary; it isimplicit based on the other two and a single assumption. Because we want thisto be
apure orientation matrix, the three basis vectors must be perpendicular to one another. Therefore, the third direction is the direction perpendicular
to the other two. Of course, there are two vectors perpendicular to the two vectors. One goes | ft relative to the camera's orientation and the other
goes right. By convention, we pick the direction that goes right.

So we define the camera's orientation (in world space) as being the viewing direction and the up direction. Oftentimes, aview direction is not the
most useful way to orient acamera; it is often useful to select a point in world space to look at.

Therefore, we can define the camera-to-world (again, note the order) transform based on the camera’s position in the world, atarget point to look
at in the world, and an up direction in the world. To get the world-to-camera transform, we need to expend some effort.

121

World in Motion

For the sake of reference, here is a diagram of the full transform for vertex positions, from the initial attribute loaded from the buffer object,
to the final window-space position.

Figure 7.1. Full Vertex Transformation Pipeline

= User-Defined = OpenGL
Transformations Transformations

Attribute O

i
I\S/Ip?ac::eel NDC Space
World -
Space Clipping l
‘ Window
Space
| Camera

Space

| Position
5! Clip Space 9_ Render

Aerial View

Thetutorial project World Space demonstrates the use of a mobile camerain aworld-space scene.

122

World in Motion

Figure 7.2. World Space Scene

The controls for this tutorial are asfollows:

Table7.1. World Space Controls

Move cameratarget horizontally
Vowoneamgvetcaly W
T N -

Rotate camera vertically around target

World in Motion

Function I ncrease/L eft Decrease/Right
Move camera towards/away from target U 0]

In addition, if you hold down the shift key while pressing any of these keys, then the affected control will be much slower. This allows for more
precision movements. The spacebar will toggle the appearance of an object indicating the position of the camera point.

Thisworld is more complicated than anything we've seen up until now. There are alot of objects being rendered, and most of them are composed
out of multiple objects.

This tutoria is the first to incorporate some of the features of the Unofficial OpenGL SDK. Specifically, it uses the GL Util library's
glutil::MtrixStack class, which implements a matrix stack very much like we saw in the last tutorial. The main difference is that we
do not use explicit push/pop functions. To push amatrix onto the stack, we instead use a stack object, gl uti | : : PushSt ack. The constructor
pushes the matrix and the destructor automatically popsit. Thisway, we can never stack overflow or underflow.!

The tutorial also is the first to use the Framework's mesh class. Fr amewor k: : Mesh. It implements mesh loading from an XML-based file
format. We will discuss some of the functioning of this classin detail in the next section. For now, let us say that this class's Mesh: : Render
function is equivalent to binding a vertex array object, rendering with one or more gl Dr aw* calls, and then unbinding the VAO. It expects a
suitable program object to be bound to the context.

Multiple Programs

Speaking of suitable program objects, this will be the first tutoria that uses more than one program object. This is the perfect time to bring up
an important issue.

Separate programs do not share uniform locations. That is, if you call gl Get Uni f or mLocat i on on one program object, it will not necessarily
return the same value from a different program object. Thisisregardless of any other circumstance. Y ou can declare the uniforms with the same
name, with the same types, in the same order, but OpenGL will not guarantee that you get the same uniform locations. It does not even guarantee
that you get the same uniform locations on different run-through of the same executable.

This means that uniform locations are local to a program object. Uniform datais also local to an object. For example:

Example 7.1. Window Resizing

void reshape (int w, int h)
{
glutil::MtrixStack persMatrix;
pershatri x. Perspective(45.0f, (w/ (float)h), g_fzNear, g_fzFar);

gl UsePr ogr am(Uni f or mCol or .t hePr ogram ;

gl Uni f or mvat ri x4f v(Uni f or nCol or. camer aTod i pMatri xUni f, 1, G._FALSE, gl m:value_ptr(pershatrix.
gl UsePr ogr am(Onj ect Col or. t hePr ogram ;

gl Uni f or mvat r i x4f v(Cbj ect Col or. caneraTod i pMatrixUnif, 1, G._FALSE, glm:value_ptr(persiatrix.T
gl UsePr ogr am(Uni f or mCol or Ti nt . t hePr ogram ;

gl Uni f or mvat r i x4f v(Uni f or nCol or Ti nt. caneraToC i pMatri xUnif, 1, G._FALSE, gl m:value_ptr(pershiat
gl UseProgram(0);

gl Viewport (0, O, (Gsizei) w, (Gsizei) h);
gl ut Post Redi spl ay() ;
}

Here's our new function of the window reshaping function, using the Mat ri xSt ack: : Per specti ve function to generate the correct
perspective projection matrix. Notice that we must bind the 3 separate programs and individually update each one's uniform for the camera-to-
clip matrix.

This technique, using constructors and destructors to do this kind of scope-bounded work, is called Resource Acquisition Is Initiaization (RAII). It is a common C++ resource
management technique. Y ou can find more information about it online [http://www.hackcraft.net/raii/]. If you are unfamiliar with it, | suggest you become familiar with it.

124

http://www.hackcraft.net/raii/
http://www.hackcraft.net/raii/

World in Motion

Attributes and Programs

Our three programs are made from 2 vertex shaders and 3 fragment shaders. The differences between these shaders is based on where they get
their color information from.

We create three programs. One that expects a per-vertex color and uses that to write the fragment color. One that expects a per-vertex color and

multiplies that with a uniform color to determine the fragment color. And one that does not take a per-vertex color; it smply uses the uniform
color as the fragment's color. All of these do the same positional transformation, which is a series of three matrix multiplications:

Example 7.2. Position-only Vertex Shader
#versi on 330

| ayout (l ocation = 0) in vec4 position;
uni form mat 4 caneraTod i pMatri x;

uni form mat 4 wor | dToCaner aMat ri x;

uni form nat 4 nodel ToWwbr | dMVatri x;

voi d main()

{
vecd tenp = nodel ToWrl dvatrix * position;
tenp = worl dToCaneraMatrix * tenp;
gl _Position = cameraTod ipMatrix * tenp;

}

Mismatched Attributes and Programs

You may be wondering what happens if there is a mis-match between the attributes provided by a VAO and the vertex shader inputs.
For example, we could use the position-only vertex shader with a mesh that provides attributes 0 and 1, with 0 being the position and 1
being the color.

OpenGL isactually very lenient about this sort of thing. It also goes through some effort to fully define what information the vertex shader
gets in the event of a mismatch.

A VAO can provide attributes that a vertex shader does not use without penalty. Well, there may be a performance penalty for reading
unused information, but it will still render correctly.

If a vertex shader takes attributes that the VAO does not provide, then the value the vertex shader gets will be a vector of (0, 0, O, 1).
If the vertex shader input vector has fewer than 4 elements, then it fills them in in that order. A vec3 input that is not provided by the
VAO will be (0, 0, 0).

Speaking of which, if aVAO provides more components of an attribute vector than the vertex shader expects (the VA O provides 4 elements,
but the vertex shader input is avec2), then the vertex shader input will be filled in as much asit can be. If the reverseistrue, if the VAO
does not provide enough components of the vector, then the unfilled values are always filled in from the (0, 0, O, 1) vector.

Camera of the World

The main rendering function implements the world-space and camera code. It begins by updating the world-to-camera matrix.

Example 7.3. Upload World to Camera Matrix

const glm:vec3 &canmPos = Resol veCanPosition();

125

World in Motion

glutil::MtrixStack camvatri x;
camvat ri x. Set Mat ri x(Cal cLookAt Matri x(camPos, g_canilfarget, glm:vec3(0.0f, 1.0f, 0.0f)));

gl UsePr ogr an(Uni f or mCol or .t hePr ogram ;

gl Uni f or mvat r i x4f v(Uni f or nCol or . wor| dToCaneraMatri xUni f, 1, G._FALSE, gl m:value_ptr(camvatrix. Top(
gl UsePr ogr am(Onj ect Col or. t hePr ogram ;

gl Uni f or mvat r i x4f v(Cbj ect Col or. wor | dToCaneraMat ri xUni f, 1, G._FALSE, gl m:value_ ptr(camvatri x. Top()
gl UsePr ogr am(Uni f or mCol or Ti nt . t hePr ogram ;

gl Uni f or mvat ri x4f v(Uni f or nCol or Ti nt . wor | dToCaner aMatri xUnif, 1, G._FALSE, gl m:value_ptr(canvatri x.
gl UsePr ogranm(0);

The function Resol veCanPosi t i on computes the camera position, based on the user's input. Cal cLookAt Mat ri x is the function that
takes a camera position in the world, a point in the world to look at, and an up vector, and uses it to compute the world-to-camera matrix. We
will look at that a bit later.

Speaking of which, let'slook at how Resol veCanPosi t i on works. The basic idea of this camera system isthat there is atarget point, which
is mobile. The camera's position is computed relative to this target point, so if the target moves, the camera will follow it perfectly.

To do this, we use a specia coordinate system trick. Instead of storing the relative position of the camerain a normal coordinate system, we
instead use a spherical coordinate system, also known as polar coordinates.

Previously, we said that a coordinate system was defined by a series of vectors and an origin point. This was a useful simplification of the
possibilities; this is true of any coordinate system that follows the rules of Euclidean geometry. Spherical coordinates (among many others)
are non-Euclidean. For example, in Euclidean geometry, the sum of the angles of any triangle will add up to 180 degrees exactly. Thisis not
true of spherical geometries or spherical coordinates. Thisis because “lines’ in spherical geometries are curves when seen relative to Euclidean
geometries.

Spherical coordinates are three dimensional, so they have 3 values. One value, commonly given the name “r” (for radius) represents the distance
of the coordinate from the center of the coordinate system. This value is on the range [0, o,) The second value, called “#’ (phi), represents the
angle in the elliptical plane. This value extends on the range [0, 360). The third value, called “#” (theta), represents the angle above and below
the elliptical plane. Thisvalueis on the range [0, 180], where 0 means straight up and 180 means straight down.

Thisis much easier to seein diagram form:

126

World in Motion

Figure 7.3. Spherical Coordinates

This is a very convenient coordinate system for positioning an object around another object, particularly if you want to move aong
spheres relative to another object. The transformation from spherical coordinates back to Euclidean geometric coordinates is implemented in
Resol veCanPosi ti on.

127

World in Motion

Example 7.4. Spherical to Euclidean Transform

gl m:vec3 Resol veCanPosi tion()

{
glutil::MtrixStack tenphat;

float phi = Franmework:: DegToRad(g_spher eCanRel Pos. x) ;
float theta = Framework:: DegToRad(g_sphereCanRel Pos.y + 90. 0f);

float fSinTheta = sinf(theta);
float fCosTheta = cosf(theta);
fl oat f CosPhi cosf (phi);
float fSinPhi si nf (phi);

gl m:vec3 dirToCanera(fSinTheta * fCosPhi, fCosTheta, fSinTheta * fSinPhi);
return (dirToCanera * g_sphereCanRel Pos. z) + g_canfarget;

}

The global variable g_spher eCanRel Pos contains the spherical coordinates. The X value contains 0 the'Y valuecontainsg andthe Z value
istheradius.

The Theta value used in our spherical coordinates is slightly different from the usual. Instead of being on the range [0, 180], it is on the range
[-90, 90]; thisiswhy thereis an addition by 90 degrees before computing the Theta angle in radians.

Thedi r ToCaner a isjust adirection vector. Only by scaling it by the radius (g_spher eCanRel Pos. z) do we get the full decomposition
from spherical coordinates to Euclidean. Applying the cameratarget as an offset is what keeps the camera's position relative to the target.

All of the above simply gets us a position for the camera and a location where the camerais looking. The matrix is computed by feeding these
valuesinto Cal cLookAt Mat ri x. It takes a position for the camera, a point in the world that the camera should be looking in, and a direction
in world-space that should be considered “up” based on where the camerais looking.

Theimplementation of thisfunctionisnon-trivial. Wewill not go into detail explaining how it works, asitinvolvesalot of complex math concepts
that have not been introduced. Using the function is is much easier than understanding how it works. Even so, there is one major caveat with
this function (and any function of the like).

It is very important that the “up” direction is not along the same line as the direction from the camera position to the look at target. If up is very
close to that direction then the generated matrix is no longer valid and unpleasant things will happen.

Since it does not make physical sense for “up” to be directly behind or in front of the viewer, it makes a degree of sense that this would likewise
produce a nonsensical matrix. This problem usually crops up in camera systems like the one devised here, where the camerais facing a certain

point and is rotating around that point, without rotating the up direction at the same time. In the case of this code, the up/down angle is clamped
to never get high enough to cause a problem.

World Rendering

Once the camera matrix is computed, it is farmed out to each of the programs. After that, rendering is pretty smple.

The meshes we have loaded for thistutorial are unit sized. That is, they are one unit acrossin their major axes. They also are usually centered at
the origin in their local coordinate system. This make it easy to scale them to arbitrary sizes for any particular use.

The ground is based on the unit plane mesh. Thisis just a square with the sides being unit length. Thisis rendered by the following code:

Example 7.5. Draw the Ground

glutil::PushStack push(nodel Matri x);

128

World in Motion

nodel Matri x. Scal e(gl m:vec3(100. 0f, 1.0f, 100.0f));

gl UsePr ogr an(Uni f or mCol or .t hePr ogram ;

gl Uni f or mvat r i x4f v(Uni f or nCol or . nodel ToWor | dvatri xUni f, 1, G _FALSE, gl m:val ue_ptr(nodel Matri x. Top
gl Uni f or maf (Uni f or nCol or. baseCol or Uni f, 0.302f, O0.416f, 0.0589f, 1.0f);

g_pPl aneMesh- >Render () ;

gl UsePr ogranm(0);

The unit plane mesh has no color attribute, so we use the Uni f or nCol or program. We apply a scale matrix to the model stack, so that the 1x1
plane becomes 100x100 in size. After setting the color, the planeis rendered.

All of the trees are drawn from the Dr awf~or est function.

Example 7.6. DrawForest Function

void DrawForest(glutil::MatrixStack &odel Matri x)
{
for(int iTree = 0; iTree < ARRAY COUNT(g_forest); iTree++)
{
const TreeData &currTree = g forest[i Tree];
glutil::PushStack push(nodel Matri x);
nodel Matri x. Transl ate(gl m :vec3(currTree. fXPos, 0.0f, currTree.fZPos));
Dr awTr ee(model Matri x, currTree. f TrunkHei ght, currTree. f ConeHei ght);
}

}

This function iterates over a large table and draws a tree for each element in that table. The table entries determine where in world space the
tree is drawn and how tall it is. The location is stored as a trandation in the matrix stack (after pushing), and the tree attributes are passed to
the Dr awTr ee function to render.

The Parthenon is drawn from the Dr awPar t henon function. Since this draw function, like Dr awTr ee, expects the matrix stack to transform
it to its world-space position, the first step we see is applying atranslation matrix to the stack.

Example 7.7. Call to DrawParthenon

glutil::PushStack push(nodel Matri x);
nodel Matri x. Transl ate(gl m:vec3(20.0f, 0.0f, -10.0f));

Dr awPar t henon(nodel Matri x) ;
The actual Dr awPar t henon function is pretty ssimple. It uses Dr awCol umm to draw al of the columns at the various locations around the

building. It draws scaled cubes for the base and ceiling, and uses the colored version of the cube for the headpiece at the front and the interior
of the building. Columns are scaled cubes and cylinders.

Non-World Rendering

The last part of the di spl ay function is more interesting. Pressing the Spacebar toggles the drawing of a representation of the camera target
point. Hereis how it gets drawn:

Example 7.8. Draw Camera Tar get

gl D sabl e(G._DEPTH_TEST) ;
glm:mat4 idenity(1l.0f);

glutil::PushStack push(nodel Matri x);

129

World in Motion

gl m:vec3 caneraA nvec = g_canflarget - canPos;
nodel Matri x. Transl ate(0.0f, 0.0, -glm:Iength(canmeraAi nVec));
nodel Matri x. Scal e(1. Of, 1.0f, 1.0f);

gl UsePr ogr am(Onj ect Col or. t hePr ogram ;

gl Uni f or mvat r i x4f v(Obj ect Col or. nodel Towbr I divatri xUni f, 1, G._FALSE,
gl m:val ue_ptr (nodel Matrix. Top()));

gl Uni f or mvat r i x4f v(Cbj ect Col or. wor | dToCaneraMat ri xUni f, 1, G._FALSE,
glm:value_ptr(idenity));

g_pCubeCol or Mesh- >Render () ;

gl UsePr ogranm(0);

gl Enabl e(G._DEPTH_TEST) ;

The first thing that happens is that the depth test is turned off. This means that the camera target point will always be seen, no matter whereit is.
So if you move the target point inside the building or atree, you will still seeit. Thisisauseful technique for Ul-type objects like this.

The next important thing is that the world-to-camera matrix is set to identity. This means that the model-to-world matrix functions as a model-
to-camera matrix. We are going back to positioning objects in front of the camera, which iswhat we actually want. The cube is translated down
the -Z axis, which positions it directly in front of the camera. It positions the sguare at the same distance from the camera as the camera would
be from the target point.

For the last few tutorials, we have been building up a transformation framework and hierarchy. Model space to world space to camera space to
clip space. But the important thing to remember is that this framework is only useful to you if it does what you want. If you need to position an
object directly in front of the camera, then simply remove world space from the equation entirely and deal directly with camera space.

We could even turn the depth test back on, and the cameratarget would interact correctly with the rest of theworld. It isapart of the world, even
though it seems like it goes through a different transform pipe.

Indeed, you could render part of a scene with one perspective matrix and part with another. Thisis acommon technique for first-person shooter
games. The main world is rendered with one perspective, and the part of the first-person character that is visible is rendered with another matrix.

Do not get so caught up in “the way things ought to be done” that you forget what you could have doneif you broke free of the framework. Never
hold so tightly to one way of doing something that it prevents you from seeing how to do something you need to much easier. For example, we
could have applied the reverse of the camera matrix to the model-to-world matrix. Or we could just get rid of that matrix altogether and make
everything work very easily and ssimply.

Primitive Drawing

We skipped over how the Mesh: : Render function and mesh loading works. So let's cover that now.

The XML-based mesh files define a number of vertex attribute arrays, followed by a number of rendering commands. The format fully supports
all features of OpenGL, including options not previously discussed. One of these options deals with how vertex dataisinterpreted by OpenGL.

The gl Dr aw* commands, whether using indexed rendering or array rendering, establish a vertex stream. A vertex stream is an ordered list of
vertices, with each vertex having a specific set of vertex attributes. A vertex stream is processed by the vertex shader in order.

In array rendering, the order is determined by the order of the vertices in the attribute arrays. In indexed rendering, the order is determined by
the order of the indices.

Once the stream is processed by the vertex shader, it must be interpreted into something meaningful by OpenGL. Every gl Dr aw* command
takes, asitsfirst parameter, avalue that tells OpenGL how to interpret the stream. Thus far, we have used G__ TRI ANGLES, but there are many
options. This parameter is called the rendering mode or primitive.

The parameter actually determines two things. Thefirst it determinesiswhat kind of things the vertex stream refers to; thisis the primitive type.
OpenGL can render points and linesin addition to triangles. These are al different primitive types.

130

World in Motion

The other thing the parameter determines is how to interpret the vertex stream for that primitive type. This is the primitive representation.
GL_TRI ANGLES says more than smply that the primitive typeistriangles.

What G._TRI ANGLES means s that a vertex stream will generate triangles as follows: (0, 1, 2), (3, 4, 5), (6, 7, 8), The numbers represent
vertices in the vertex stream, not indexed rendering indices. Among other things, this means that the vertex stream must have alength divisible
by 3. For N vertices in the stream, this representation will generate N / 3 triangles.

There are two other triangular primitive representations. They are both used in the cylinder mesh, so let's take alook at that.

Example 7.9. Cylinder Mesh File

<indices cnd="tri-fan" type="ushort” >0 1 35 7 9 11 ...</indices>
<indices cnd="tri-fan" type="ushort" >61 60 58 56 54 ...</indices>
<indices cmd="tri-strip" type="ushort" >1 2 3 456 7 8 ...</indices>

Each “indices’ element mapsto acall to gl Dr awkEl enent s with the given index array. The“cmd” attribute determines the primitive that will
be passed to gl Dr awEl enent s. The value “triangles’ meansto usethe GL_TRI ANGLES primitive.

The “tri-fan” used above meansto usethe G._ TRI ANGLE_FAN primitive. This primitive has the triangle primitive type, so this vertex stream
will generate triangles. But it will generate them using a different representation.

GL_TRI ANGLES takes each independent set of 3 vertices as asingle triangle. G._TRI ANGLE_FAN takes the first vertex and holds on to it.

Then, for every vertices and its next vertex, atriangle is made out of these two plus the initial vertex. So G._TRI ANGLE_FAN will generate
triangles asfollows: (0, 1, 2), (0, 2, 3), (0, 3, 4), Visudly, atriangle fan looks like this:

Figure7.4. Triangle Fan

131

World in Motion

The numbers represent the order that the vertices are in in the vertex stream. The red line shows the triangle edges that are directly specified by
the vertex stream. All other edges are generated automatically by the primitive representation.

Thisiswhy it iscalled a“fan”. The number of vertices in atriangle fan vertex stream must be 3 or greater, but can be otherwise any number.
For N verticesin a stream, triangle fans will generate N-2 triangles.

The cylinder mesh uses two fans to cap render the end pieces of the cylinder.
The “tri-strip” in the cylinder mesh representsthe G._ TRI ANGLE_STRI P primitive. Asthe name suggests, it has atriangle primitive type. The

primitive representation means that every 3 adjacent vertices will generate atriangle, in order. So strips generate triangles as follows: (0, 1, 2),
(1,2,3),(2,3,4),.... Visudly, atriangle strip looks like this:

Figure 7.5. Triangle Strip

Like with triangle fans, the number of vertices must be 3 or greater, but can be any number otherwise. For N vertices in a stream, triangle strips
will generate N-2 triangles.

The cylinder mesh uses asingle triangle strip to render the sides of the cylinder.
Winding Order. There is one other issue with triangle strips. This has to do with the winding order of the triangles.

The winding order for the trianglesin a strip looks like this:

132

World in Motion

Figure 7.6. Triangle Stripswith Winding Order

Notice how it alternates between clockwise and counter-clockwise. This means that, regardless of what face you consider front, and what face
you cull, you'll always lose about half of the faces.

However, OpenGL is rather intelligent about this. Triangle strips do face culling differently. For every second triangle, the one who's winding
order is opposite from the first triangl€'s order, the winding order is considered backwards for culling purposes.

So if you have set the front face to be clockwise, and have face culling cull back-facing triangles, everything will work exactly as you expect so
long asthe order of thefirst triangleis correct. Every even numbered triangle will be culled if it has a clockwise winding, and every odd numbered
triangle will be culled if it has a counter-clockwise winding.

Shared Uniforms

The World Space example had a few annoyances in it. Of particular pain was the fact that, whenever the perspective projection matrix or the
world-to-camera matrix changed, we had to change uniformsin 3 programs. They all used the same value; it seems strange that we should have
to go through so much trouble to change these uniforms.

Also, 3 programsis arelatively smple case. When dealing with real examples, the number of programs can get quite large.

There is away to share uniforms between programs. To do this, we use a buffer object to store uniform data, and then tell our programs to use
this particular buffer object to find its uniform data. A buffer object that stores uniformsis commonly called a uniform buffer object.

It is important to understand that there is nothing special about a uniform buffer. Any of the things you could do with a regular buffer object
can be done with a uniform buffer object. You can bind it to the G__ ARRAY_BUFFER and use it for vertex data, you can use it for indexed
rendering with GL_ ELEMENT _ARRAY_BUFFER, and many other things that buffer objects can be used for. Now granted, that doesn't mean
that you should, only that you can.

The example World with UBO uses a uniform buffer object to store the camera and perspective matrices.

133

World in Motion

Uniform Blocks

This begins with how the vertex shaders are defined.

Example 7.10. UBO-based Vertex Shader
#version 330

| ayout (1 ocation = 0) in vec4 position;
| ayout (st d140) uniform d obal Matri ces

{

mat 4 caneraTod i pMatri x;
mat 4 wor | dToCaner aMat ri x;

}s
uni form mat 4 nodel ToWosr | dVatri x;

void main()

{
vecd tenp = nodel ToWworl dvatrix * position;
tenp = worl dToCaneraMatri x * tenp;
gl _Position = cameraTod i pMatrix * tenp;

}

The definition of GlobalMatrices looks like a struct definition, but it is not. It defines a uniform block. A uniform block is a series of uniform
definitions whose data is not stored in the program object, but instead must come from a uniform buffer.

The name GlobaMatrices is used to identify this particular uniform block. This block has two members, both of the of mat4 type. The order of
the components in a uniform block is very important.

Notices that nothing el se needs to change in the vertex shader. The nodel ToWor | dMat ri x is unchanged, and the use of the components of
the uniform block do not even need to be scoped with the Globa M atrices name.

The “layout(std140)” part modifies the definition of the uniform block. Specifically, it specifies the uniform block layout.

Buffer objects are unformatted arrays of bytes. Therefore, something must determine how the shader interprets a uniform buffer object's contents.
OpenGL itself defines this to a degree, but the layout qualifier modifies the definition.

OpenGL isvery clear about how each element within a uniform block islaid out. Floating-point values are just the C++ representation of floats,
S0 you can copy them directly from objects like gim::vec4.

Matrices are slightly trickier due to the column-major vs. row-major issue. Thegl Uni f or mivat ri x* functionsall had a parameter that defines
what order the matrix data given to the function is in. Similarly, a “layout” qualifier can specify “row-major” or “column-major”; these tell
OpenGL how the matrices are stored in the buffer object. The default is “column-major,” and since GLM stores its matrices in column-major
order, we can use the defaults.

What OpenGL does not directly specify isthe spacing between elementsin the uniform block. Thisallows different hardware to position el ements
where it ismost efficient for them. Some shader hardware can place 2 vec3's directly adjacent to one another, so that they only take up 6 floats.
Other hardware cannot handle that, and must pad each vec3 out to 4 floats.

Normally, thiswould mean that, in order to set any values into the buffer object, you would have to query the program object for the byte offsets
for each element in the uniform block.

However, by using the “ std140” layout, thisis not necessary. The “std140” layout has an explicit layout specification set down by OpenGL itself.
It is basically akind of lowest-common-denominator among the various different kinds of graphics hardware. The upside is that it allows you
to easily know what the layout is without having to query it from OpenGL. The downside is that some space-saving optimizations may not be
possible on certain hardware.

134

World in Motion

One additional feature of “std140” is that the uniform block is sharable. Normally, OpenGL allows the GLSL compiler considerable leeway
to make optimizations. In this instance, if a GLSL compiler detects that a uniform is unused in a program, it is allowed to mark it as unused.
gl Get Uni f or mLocat i on will return -1. It's actually legal to set avalue to alocation that is -1, but no data will actually be set.

If auniform block is marked with the “std140” layout, then the ability to disable uniformsin within that block is entirely removed. All uniforms
must have storage, even if this particular program does not use them. This means that, as long as you declare the same uniforms in the same
order within a block, the storage for that uniform block will have the same layout in any program. This means that multiple different programs
can use the same uniform buffer.

The other two alternatives to “std140” are “packed” and “shared’. The default, “shared,” prevents the uniform optimization, thus allowing the
block's uniform buffer data to be shared among multiple programs. However, the user must still query layout information about where each
uniform is stored. “packed” allows uniform optimization, so these blocks cannot be shared between programs at all.

For our needs, “std140" is sufficient. It'salso agood first step in any implementation; moving to “packed” or “shared” as needed should generally
be done only as an optimization. The rules for the “ std140” layout are spelled out explicitly in the OpenGL Specification.

Uniform Block Indices

Uniforms inside a uniform block do not have individual uniform locations. After all, they do not have storage within a program object; their
data comes from a buffer object.

So instead of calling glGetUniformL ocation, we have a new function.

dat a. gl obal Uni f or nBl ockl ndex =
gl Get Uni f or Bl ockl ndex(dat a.t heProgram "d obal Matrices");

Thefunctiongl Get Uni f or nBl ockl ndex takesaprogram object and the name of auniform block. It returnsauniformblock index that isused
to refer to thisuniform block. Thisissimilar to how auniform location valueisused to refer to auniform, rather than directly using its string name.

Uniform Buffer Creation

Now that the programs have a uniform block, we need to create a buffer object to store our uniformsin.

Example 7.11. Uniform Buffer Creation

gl GenBuffers(1l, & d obal Matri cesUBO);

gl Bi ndBuf f er (GL_UNI FORM BUFFER, g_d obal Matri cesUBO);

gl Buf f er Dat a(GL_UNI FORM BUFFER, sizeof (gl m:mat4) * 2, NULL, GL_STREAM DRAW;
gl Bi ndBuf f er (GL_UNI FORM BUFFER, 0);

For all intents and purposes, this is identica to the way we created other buffer objects. The only difference is the use of the
GL_UNI FORM BUFFER hinding target.

The GL_ARRAY_BUFFER target has a specific meaning. When something is bound to that target, calling gl Vert exAtt ri bPoi nt er
will cause the buffer object bound to that target to become the source for that particular attribute, as defined by the function call. The
GL_ELEMENT_ARRAY_BUFFER target also has a meaning; it specifies where indices come from for indexed rendering. The element array
binding is even stored as part of a VAO's data (recall that the array buffer binding is not stored in the VAO).

GL_UNI FORM BUFFER does not really have an intrinsic meaning like these other two. Having something bound to this binding means nothing
as far as any other function of OpenGL is concerned. Oh, you can call buffer object functions on it, like glBufferData as above. But it does not
have any other roleto play in rendering. The main reason to use it isto preserve the contents of more useful binding points. It also communicates
to someone reading your code that this buffer object is going to be used to store uniform data.

Note

Thisis not entirely 100% correct. OpenGL is technically allowed to infer something about your intended use of a buffer object based
on what target you first use to bind it. So by allocating storage for this buffer in GL_UNI FORM BUFFER, we are signaling something
to OpenGL, which can change how it allocates storage for the buffer.

135

World in Motion

However, OpenGL is not alowed to make any behavioral changes based on this. It is still legal to use a buffer allocated on the
GL_UNI FORM BUFFER target asa GL_ ARRAY_ BUFFER or in any other buffer object usage. It just may not be as fast as you might
want.

We know that the size of this buffer needs to be two gim::mat4's in size. The “std140” layout guarantees this. That and the size of gim::mat4,
which just so happensto correspond to how large a GLSL mat4 is when stored in a uniform buffer.

The r eshape function is guaranteed to be called after our i ni t function. That's why we can allocate this buffer without filling in a default
matrixX. The reshape function is as follows:

Example 7.12. UBO-based Per spective M atrix

void reshape (int w, int h)

{
glutil::MtrixStack persMatrix;
pershatri x. Perspective(45.0f, (w/ (float)h), g_fzNear, g_fzFar);
gl Bi ndBuf f er (GL_UNI FORM BUFFER, g_d obal Matri cesUBO ;
gl Buf f er SubDat a(GL_UNI FORM BUFFER, 0, sizeof (gl m:mat4), glm:value_ptr(persMatrix.Top()));
gl Bi ndBuf f er (GL_UNI FORM BUFFER, 0);
gl Viewport (0, O, (Gsizei) w, (Gsizei) h);
gl ut Post Redi spl ay() ;
}

This function just uses gl Buf f er SubDat a to upload the matrix data to the buffer object. Since we defined the perspective matrix as the first
matrix in our uniform block, it is uploaded to byte O.

Thedi spl ay function iswhat uploads the world-to-camera matrix to the buffer object. It is quite similar to what it used to be:

Example 7.13. UBO-based Camera Matrix
const gl m:vec3 &canPos = Resol veCanPosition();

glutil::MtrixStack camvatri x;
camvatri x. Set Mat ri x(Cal cLookAt Mat ri x(canPos, g_canirarget, gl m:vec3(0.0f, 1.0f, 0.0f)));

gl Bi ndBuf f er (GL_UNI FORM BUFFER, g_d obal Matri cesUBO ;
gl Buf f er SubDat a(G._UNI FORM BUFFER, si zeof (gl m:mat4), sizeof(glm:nmat4), glm:value_ptr(canVatrix.T
gl Bi ndBuf f er (GL_UNI FORM BUFFER, 0);

The world-to-camera matrix is the second matrix, so we start the upload at the end of the previous matrix.

Uniform Buffer Binding

Thus far, we have a uniform buffer object into which we store matrices. And we have a program that has a uniform block that needs a uniform
buffer to get its uniforms for. Now, the final step is to create the association between the uniform block in the programs and the uniform buffer
object itself.

Your first thought might be that there would be a function like glUniformBuffer that takes a program, a uniform block index, and the uniform
buffer to associate that block with. But this is not the case; attaching a uniform buffer to a program's block is more complicated. And thisis a
good thing if you think about it.

It works like this. The OpenGL context (effectively a giant struct containing each piece of data used to render) has an array of uniform buffer
binding points. Buffer objects can be bound to each of these binding points. For each uniform block in a program, there is a reference, not to a
buffer object, but to one of these uniform buffer binding points. This referenceisjust anumerical index: 0, 1, 2, etc.

A diagram should make it clearer:

136

World in Motion

Figure 7.7. Uniform Buffer and Block Binding Points

Program Object

Block Index 0 Uniform Buffer C

Block Binding

Block Index 1
Block Binding 1

1
\

glBindBufferRange()

Context Uniform Buffer Binding P

The program object is given an index that represents one of the slotsin the context. The uniform buffer is bound to one of those sots. Therefore,
when you render with that program, the uniform buffer that is in the slot specified by the program will be where the program gets its uniform
data from.

Therefore, to use a uniform buffer, one first must tell the program object which binding point in the context to find the buffer. This association
ismade with the gl Uni f or nBl ockBi ndi ng function.

gl Uni f or mBl ockBi ndi ng(dat a.t heProgram dat a. gl obal Uni f or nBl ockl ndex,
g_i d obal Mat ri cesBi ndi ngl ndex) ;

The first parameter is the program, the second is the uniform block index queried before. The third is the uniform buffer binding point that this
block should use.

137

World in Motion

After doing this for each program, the uniform buffer must be bound to that binding point. This is done with a new function,
gl Bi ndBuf f er Range.

gl Bi ndBuf f er Range(G._UNI FORM BUFFER, g_i d obal Matri cesBi ndi ngl ndex,
g_d obal MatricesUBO, 0, sizeof(glm:mat4) * 2);

This functions similarly to gl Bi ndBuf f er ; in addition to binding the buffer to the G__ UNI FORM_BUFFER target, it also binds the buffer to
the given uniform buffer binding point. Lastly, it provides an offset and range, the last two parameters. This allows you to put uniform datain
arbitrary placesin abuffer object. Y ou could have the uniform data for several uniform blocksin several programs all in one buffer object. The
range parameters would be how to say where that block's data begins and how big it is.

The reason this is better than directly binding a buffer object to the program object can be seen in exactly where all of this happens. Both of
these functions are called as part of initialization code. gl Uni f or nBl ockBi ndi ng is called right after creating the program, and similarly
gl Bi ndBuf f er Range iscalled immediately after creating the buffer object. Neither one needsto ever be changed. Y es, we change the contents
of the buffer object. But where it is bound never changes.

Theglobal constantg_i G obal Mat ri cesBi ndi ngl ndex is, asthe name suggests, global. By convention, all programs get their buffer data
from thisindex. Because of this convention, if we wanted to use a different buffer, we would not have to update every program that needs to use
that buffer. Sure, for one or two programs, that would be a simple operation. But real applications can have hundreds of programs. Being able to
establish this kind of convention makes using uniform buffer objects much easier than if they were directly associated with programs.

The Viewpoint

In the World Space example, we drew the camera's look-at target directly in camera space, bypassing the world-to-camera matrix. Doing that
with uniform buffers would be harder, since we would have to set the uniform buffer value twice in the same draw call. Thisis not particularly
difficult, but it could be adrain on performance.

Instead, we just use the camera's target position to compute a model-to-world matrix that always positions the object at the target point.

Example 7.14. Viewing Point with UBO
gl Di sabl e(G._DEPTH TEST) ;
glutil::PushStack push(nodel Matri x);

nodel Matri x. Transl at e(g_canilrar get) ;
nodel Matri x. Scal e(1. Of, 1.0f, 1.0f);

gl UsePr ogr am(Qbj ect Col or. t hePr ogram ;

gl Uni f or mvat ri x4f v(Cbj ect Col or. nodel Towbr I dMat ri xUni f, 1,
GL_FALSE, gl m:value_ptr(nodel Matrix. Top()));

g_pCubeCol or Mesh- >Render () ;

gl UseProgram 0);

gl Enabl e(G._DEPTH_TEST) ;

We do not get the neat effect of having the object always face the camera though. We still shut off the depth test, so that we can always see
the object.

The Perils of World Space

World spaceisavery useful intermediary between camera space and model space. It makes it easy to position cameras and so forth. But thereis
alingering issue when dealing with world space directly. Namely, the problem of large worlds and numerical precision.

Let us say that you're trying to model a very large area down to fairly small accuracy. Y our units are inches, and you want precision to within
0.25 inches. Y ou want to cover an areawith aradius of 1,000 miles, or 63,360,000 inches.

Let us also say that the various pieces of thisworld all have their own model spaces and are transformed into their appropriate positions via a
model -to-world transformation matrix. So the world is assembled out of various parts. Thisis almost always true to some degree.

138

World in Motion

Let us also say that, while you do have alarge world, you are not concerned about rendering all of it at any onetime. The part of the world you're
interested in is the part within view from the camera. And you're not interested in viewing incredibly distant objects; the far depth planeis going
to cull out the world beyond a certain point from the camera.

The problem is that a 32-bit floating-point number can only hold about 7 digits of precision. So towards the edges of the world, at around
63,000,000 inches, you only have a precision out to about +10 inches at best. This means that vertex positions closer than this will not be distinct
from one another. Since your world is modeled down to 0.25 inches of precision, this is a substantial problem. Indeed, even if you go out to
6,000,000 inches, ten-times closer to the middle, you still have only £1 inch, which is greater than the tolerance you need.

One solution, if you have access to powerful hardware capable of OpenGL 4.0 or better, isto use double-precision floating point values for your
matrices and shader values. Double-precision floats, 64-bitsin size, give you about 16 digits of precision, which is enough to measure the size
of atomsin inches at more than 60 miles away from the origin.

However, you would be sacrificing a lot of performance to do this. Even though the hardware can do double-precision math, it loses quite a
bit of performance in doing so (anywhere between 25% and 75% or more, depending on the GPU). And why bother, when the real solution is
much easier?

Let'slook at our shader again.

#version 330

| ayout (1 ocation = 0) in vec4 position;
uni form mat 4 caneraToC i pMatri x;

uni form mat 4 wor | dToCaneraMat ri x;

uni form mat 4 nodel ToWwor | divatri x;

voi d main()

{
vecd4 wor| dPos = nodel ToWwr | dvatrix * position;
vec4 caneraPos = worl| dToCameraMatrix * worl dPos;
gl _Position = cameraTod i pMwatrix * cameraPos;

}

Theposi ti onisrelatively closetotheorigin, since model coordinatestend to be closeto the model space origin. So you have plenty of floating-
point precision there. The caner aPos value is also close to the origin. Remember, the camera in camera space is at the origin. The world-to-
camera matrix ssimply transforms the world to the camera's position. And as stated before, the only parts of the world that we are interested in
seeing are the parts close to the camera. So there's quite abit of precision available in canmer aPos.

Andingl _Posi ti on, everything isin clip-space, which is again relative to the camera. While you can have depth buffer precision problems,
that only happens at far distances from the near plane. Again, since everything isrelative to the camera, there is no precision problem.

The only precision problem iswith wor | dPos. Or rather, inthe model ToWor | dMat ri x.

Think about what nodel ToWor | dMat ri x andwor | dToCaner aMat r i x must look like regardless of the precision of the values. The model
to world transform would have a massive translational component. We're moving from model space, which is close to the origin, to world-space
whichisfar away. However, almost all of that will beimmediately negated, because everything you're drawing is close to the camera. The camera
matrix will have another massive translational component, since the camerais also far from the origin.

Thismeansthat, if you combined the two matricesinto one, you would have one matrix with arelatively small transation component. Therefore,
you would not have a precision problem.

Now, 32-bit floats on the CPU are no more precise than on the GPU. However, on the CPU you are guaranteed to be able to do double-precision
math. And whileit is slower than single-precision math, the CPU is not doing as many computations. Y ou are not doing vector/matrix multiplies
per vertex; you're doing them per object. And since the final result would actually fit within 32-bit precision limitations, the solution is obvious.

The take-home point is this: avoid presenting OpenGL with an explicit model-to-world matrix. Instead, generate a matrix that goes straight from
model spaceto camera space. Y ou can use double-precision computationsto do thisif you need to; simply transform them back to single-precision
when uploading the matrices to OpenGL.

139

World in Motion

In Review

In thistutorial, you have learned the following:

World space is an intermediate space between model space and camera space. All objects are transformed into it, and the position/orientation
of the camerais specified relative to it.

OpenGL can processes a sequence of vertex data as triangles in different ways. It can process the vertices as alist of triangles, atriangle fan,
or atriangle strip. Each of these has its own way of building triangles from a sequence of vertices.

Uniform data can be stored in buffer objects, so that multiple programs can share the same uniform. Changing the buffer object data will
automatically change the data the programs get.

Itisusually not agood ideato have vertex positionsin an explicit world space. Doing so can lead to numerical precision problemsif the vertex
positions are sufficiently far from 0.

Further Study

Play around with the world space tutorials in the following ways:

In the World Space tutorial, we use 3 matrices. This requires an extra matrix multiply, which is a wasteful per-vertex cost. Fold the camera
matrix into the perspective transformation matrix, so that only two matrices are used. Any time parameters change to one matrix, make sure to
recompute both and combine them together before uploading the combined world-to-clip-space matrix.

Instead of folding the world-to-camera transform into the perspective matrix, fold it into the model-to-world matrix instead. Simply push it
onto the same stack as everything else. The function MatrixStack::ApplyMatrix can right-multiply an arbitrary matrix with the current matrix.

OpenGL Functions of Note

0l GetUniformBlocklndex Retrieves the uniform block index for a particular uniform block name from a program.
glUniformBlockBinding Sets the uniform buffer binding index used by a particular uniform block in a given program.
glBindBufferRange Binds a buffer object to a particular indexed location, as well as binding it to the given. When used with

GL_UNIFORM_BUFFER, it bindsthe buffer object to aparticular uniform buffer binding point. It has range
parameters that can be used to effectively bind part of the buffer object to an indexed location.

Glossary

world space An intermediate space between model space and camera space. Conceptually, all objects are transformed into

this space along the transformation chain.

spherical coordinate system, A three dimensional coordinate system where the three coordinates are not defined by 3 values multiplied
polar coordinates by vectors, but by two angles and a radius. One angle specifies rotation around a point in a known plane.

The other angle specifies rotation above and below this plane. And the radius specifies the distance from the
origin. Spherical coordinates are not a Euclidean geometry.

Euclidean geometry A specific kind of coordinate system that follows certain axioms. For the sake of brevity, consider it a
“regular” coordinate system, one that follows the simple, obvious rules one might expect of a 2D sheet of
paper.

vertex stream An ordered segquence of vertices given to OpenGL by one of the gl Dr aw* series of functions.

primitive, rendering mode The mechanism used by OpenGL for interpreting and rendering a vertex stream. Every gl Dr aw* function

takes arendering mode as its first parameter. The primitive mode defines two things: the primitive type and
the primitive representation.

140

World in Motion

primitive type

primitive representation

uniform buffer object

uniform block

uniform block layout

uniform block index

uniform buffer binding points

The kind of object that OpenGL will draw with a vertex stream. OpenGL draws triangles, but it can also
draw points or other things.

The way the vertex stream is converted into one or more of the primitive type. Each primitive type consumes
a number of vertices; the primitive representation specifies the manor in which the stream of length N is
converted into anumber M of primitives.

A buffer object used to store data for uniform blocks.

A named set of uniform definitions. This set of uniforms is not stored in the program object, but instead is
taken from a buffer object bound to a buffer object binding point in the OpenGL rendering context.

Thereisalimit on the number of uniform blocks a single program object can use. There is also a per-shader
stage limit aswell.

Theway auniform block islayed out by the GLSL compiler. This determines whether uniform blocks can be
shared with other programs, and whether the user needsto query thelocation of each uniform within the block.

A number, queried from a program object, that represents a particular uniform block. This number is used
to refer to the uniform block in other functions.

An array of locationsin the OpenGL context where uniform buffers can be bound to. Programs can have their
uniform blocks associated with one of the entries in this array. When using such a program, it will use the
buffer object bound to that location to find the data for that uniform block.

141

Chapter 8. Getting Oriented

In thistutorial, we will investigate specific problems with regard to orienting objects.

Gimbal Lock

Remember a few tutorials back, when we said that a rotation matrix is not a rotation matrix at all, that it is an orientation matrix? We also said
that forgetting this can come back to bite you. Well, here'slikely the most common way.

Normally, when dealing with orienting an object like a plane or spaceship in 3D space, you want to orient it based on 3 rotations about the 3
main axes. The obvious way to do this is with a series of 3 rotations. This means that the program stores 3 angles, and you generate a rotation
matrix by creating 3 rotation matrices based on these angles and concatenating them. Indeed, the 3 angles often have special names, based on
common flight terminology: yaw, pitch, and roll.

Pitch istherotation that raises or lowersthefront of the object. Y aw istherotation that turnsthe object left and right. Roll isthe rotation that spins
it around the direction of motion. These terms neatly duck the question of what the axes technically are; they are defined in terms of semantic
axes (front, left, direction of mation, etc), rather than a specific model space. So in one model space, roll might be a rotation about the X axis,
but in another, it might be a rotation about the Z axis.

One of thefirst problems you will note is that the order you apply these rotations matter. As previously stated, arotation matrix is an orientation
transform. Each transform defines a new coordinate system, and the next transform is based on an object in the new space. For example, if we
apply theroll first, we have now changed what the axis for the subsequent yaw is.

You can use any order that you like, so long as you understand what these angles mean. If you apply the roll first, your yaw and pitch must be
in terms of the new roll coordinate system, and not the original coordinate system. That is, a change that is intended to only affect the roll of the
final space may need yaw or pitch changesto allow it to have the same apparent orientation (except for the new roll, of course).

But there is a far more insidious problem lurking in here. And this problem happens anytime you compute a final rotation from a series of 3
rotations about axes perpendicular to each other.

Thetutorial project Gimbal Lock illustrates this problem. Because the problem wasfirst diagnosed with a physical device called agimbal [http://
en.wikipedia.org/wiki/Gimbal], the problem has become known as gimbal lock.

A gimbal is a pivoted support that provides the ability to rotate in one axis. A gimbal can be mounted within another gimbal. The Gimbal Lock
project has a set of 3 square gimbals, each with a pivot axis that is perpendicular to the other two. This effectively mimics the common yaw/
pitch/roll angle setup.

142

http://en.wikipedia.org/wiki/Gimbal
http://en.wikipedia.org/wiki/Gimbal
http://en.wikipedia.org/wiki/Gimbal

Getting Oriented

Figure 8.1. Gimbal L ock Project

You can control the orientation of each gimbal separately. The W and S keys control the outer gimbal, the A and D keys control the middle
gimbal, and the Q and E keys control the inner gimbal. If you just want to see (and affect) the orientation of the ship, press the SpaceBar to
toggle drawing the gimbal rings.

The first thing you discover when attempting to use the gimbals to orient the ship is that the yaw, pitch, and roll controls of the gimbal change
each time you move one of them. That is, when the gimbal arrangement isin the original position, the outer gimbal controls the pitch. But if you
move the middle gimbal, it no longer controls only the pitch. Orienting the ship is very unintuitive.

The bigger is what happens when two of the gimbals are parallel with one another:

Getting Oriented

Figure 8.2. Parallel Gimbals

Recall that the purpose of the three gimbalsisto be able to adjust one of the three angles and orient the object in aparticular direction. In aflight-
simulation game, the player would have controls that would change their yaw, pitch, and roll. However, look at this picture.

Given the controls of these gimbal's, can you cause the object to pitch up and down? That is, moveits nose up and down from whereit iscurrently?
Only dlightly; you can use the middle gimbal, which has a bit of pitch rotation. But that is not much.

The reason we do not have as much freedom to orient the object is because the outer and inner gimbals are now rotating about the same axis.
This means you really only have two gimbals to manipulate in order to orient the red gimbal. And 3D orientation cannot be fully controlled with
only 2 axial rotations, with only 2 gimbals.

When gimbals are in such a position, you have what is known as gimbal lock; you have locked one of the gimbals to ancther, and now both
cause the same effect.

144

Getting Oriented

Rendering

Before we find a solution to the problem, let's review the code. Most of it is nothing you have not seen el sewhere, so thiswill be quick.

There is no explicit camera matrix set up for this example; it is too simple for that. The three gimbals are loaded from mesh files as we saw in
our last tutorial. They are built to fit into the above array. The ship is aso from amesh file.

The rendering function looks like this:

Example 8.1. Gimbal L ock Display Code
voi d display()

{
gl C ear Col or (0. 0f, 0.0f, 0.0f, 0.0f);
gl C ear Dept h(1. 0f);
gl O ear (G_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);
glutil::MtrixStack currMatrix;
currMatrix. Transl ate(gl m:vec3(0.0f, 0.0f, -200.0f));
currMatri x. Rot at eX(g_angl es. f Angl eX) ;
DrawG nbal (currMatrix, G MBAL_X AXIS, glm:vec4(0.4f, 0.4f, 1.0f, 1.0f));
currMatri x. Rot at eY(g_angl es. f Angl eY) ;
DrawG nbal (currMatrix, G MBAL_Y AXIS, glm:vec4(0.0f, 1.0f, 0.0f, 1.0f));
currMatri x. Rot at eZ(g_angl es. f Angl eZ) ;
DrawG nbal (currMatrix, G MBAL_Z AXIS, glm:vec4(1.0f, 0.3f, 0.3f, 1.0f));
gl UsePr ogran(t heProgram ;
currMatrix. Scale(3.0, 3.0, 3.0);
currMatri x. Rot at eX(-90);
/1 Set the base color for this object.
gl Uni f or mf (baseCol orUnif, 1.0, 1.0, 1.0, 1.0);
gl Uni f or mvat r i x4f v(model ToCaneraMatri xUni f, 1, G._FALSE, glm:value_ptr(currMatrix.Top()));
g_pObj ect->Render ("tint");
gl UseProgram(0);
gl ut SwapBuffers();
}

The trandation done first acts as our camera matrix: positioning the objects far enough away to be comfortably visible. From there, the three
gimbalsare drawn, with their appropriate rotations. Since each rotation appliesto the previous one, thefinal orientationisgiven to thelast gimbal.

The Dr awG nbal function does some rotations of its own, but thisisjust to position the gimbals properly in the array. The gimbals are given
acolor programmatically, which is the 3rd parameter to Dr awG nbal .

After building up the rotation matrix, we draw the ship. We use a scale to make it reasonably large, and then rotate it so that it points in the
correct direction relative to the final gimbal. In model space, the ship facesthe +Z axis, but the gimbal facesthe +Y axis. So we needed a change
of coordinate system.

Quaternions

So gimbals, 3 accumulated axial rotations, do not really work very well for orienting an object. Gimbals can be locked, and it is very unintuitive
to control them. How do we fix these problems?

Part of the problem is that we are trying to store an orientation as a series of 3 accumulated axial rotations. Orientations are orientations, not
rotations. And orientations are certainly not a series of rotations. So we need to treat the orientation of the ship as an orientation, as a specific
guantity.

145

Getting Oriented

Thefirst thought towards this end would be to keep the orientation as a matrix. When the time comes to modify the orientation, we simply apply
atransformation to this matrix, storing the result as the new current orientation.

This means that every yaw, pitch, and roll applied to the current orientation will be relative to that current orientation. Which is precisely what
we need. If the user applies a positive yaw, you want that yaw to rotate them relative to where they are current pointing, not relative to some
fixed coordinate system.

There are a few downsides to this approach. First, a 4x4 matrix is rather larger than 3 floating-point angles. But a much more difficult issue is
that successive floating-point math can lead to errors. If you keep accumulating successive transformations of an object, once every 1/30th of
a second for a period of several minutes or hours, these floating-point errors start accumulating. Eventually, the orientation stops being a pure
rotation and starts incorporating scale and skewing characteristics.

The solution here is to re-orthonormalize the matrix after applying each transform. A coordinate system (which a matrix defines) is said to be
orthonormal if the basis vectors are of unit length (no scale) and each axisis perpendicular to all of the others.

Unfortunately, re-orthonormalizing a matrix is not a simple operation. Y ou could try to normalize each of the axis vectors with typical vector
normalization, but that would not ensure that the matrix was orthonormal. It would remove scaling, but the axes would not be guaranteed to
be perpendicular.

Orthonormalization is certainly possible. But there are better solutions. Such as using something called a quaternion.

A quaternion is (for the purposes of this conversation) a 4-dimensional vector that istreated in a special way. Any pure orientation change from
one coordinate system to another can be represented by arotation about some axis by some angle. A quaternion is away of encoding this angle/
axisrotation:

Equation 8.1. Angle/Axisto Quaternion

Axis = (X, Y, 2)
Angle =#
e sin(3)]
* qgn(#
Quaternion = Y s-m(;)
z* sm(g)
) COS(%) i

Assuming the axis itself isaunit vector, thiswill produce a unit quaternion. That is, a quaternion with alength of 1.

Quaternions can be considered to be two parts. a vector part and a scalar part. The vector part are the first three components, when displayed
in the order above. The scalar part is the last part.

Quaternion Math

Quaternions are equivalent to orientation matrices. You can compose two orientation quaternions using a special operation called quaternion
multiplication. Given the quaternions a and b, the product of themiis:

Equation 8.2. Quaternion Multiplication
ay*by + a*b, + a*b, - a*by
ay*by, + a,*b, + a,*b, - a*b,
ay*b, + a*h, a*by - a,*by
ay*by, - a*by - a*b, - a*b,

+

If the two quaternions being multiplied represent orientations, then the product of them is a composite orientation. This works like matrix
multiplication, except only for orientations. Like matrix multiplication, quaternion multiplication is associative ((a*b) * ¢ = a* (b*c)), but not
commutative (a*b = b*a).

146

Getting Oriented

The main difference between matrices and quaternionsthat mattersfor our needsisthat it is easy to keep aquaternion normalized. Simply perform
avector normalization on it after every few multiplications. This enables us to add numerous small rotations together without numerical precision
problems showing up.

There is one more thing we need to be able to do: convert a quaternion into a rotation matrix. While we could convert a unit quaternion back
into angle/axis rotations, it's much preferable to do it directly:

Equation 8.3. Quaternion to Matrix
1- 2quy B 2qZqz 2qqu B 2qqu 2qxqz + 2qwqy 0
2qqu + 2qqu 1- quqx - 2qzqz 2quz - quvqx 0
quqz - 2qwqy 2quz + 2qwqx 1- 2qqu B 2quy 0
0 0 0

This does look suspiciously similar to the formulafor generating a matrix from an angle/axis rotation.

Composition Type

So our goal isto compose successive rotations into afinal orientation. When we want to increase the pitch, for example, we will take the current
orientation and multiply into it a quaternion that represents a pitch rotation of afew degrees. The result becomes the new orientation.

But which side do we do the multiplication on? Quaternion multiplication is not commutative, so this will have an affect on the output. Well,
it works exactly like matrix math.

Our positions (p) are in model space. We are transforming them into world space. The current transformation matrix is represented by the
orientation O. Thus, to transform points, we use O*p

Now, we want to adjust the orientation O by applying some small pitch change. Well, the pitch of the model is defined by model space. Therefore,
the pitch change (R) is atransformation that takes coordinates in model space and transforms them to the pitch space. So our total transformation
is O*R*p; the new orientation is O*R.

Yaw Pitch Roll

We implement this in the Quaternion Y PR tutoria. This tutorial does not show gimbals, but the same controls exist for yaw, pitch, and roll
transformations. Here, pressing the SpaceBar will switch between right-multiplying the Y PR valuesto the current orientation and left-multiplying
them. Post-multiplication will apply the Y PR transforms from world-space.

147

Getting Oriented

Figure 8.3. Quaternion YPR Project

The rendering code is pretty straightforward.

Example 8.2. Quaternion YPR Display

voi d display()
{
gl C earColor(0.0f, 0.0f, 0.0f, 0.0f);
gl C ear Dept h(1. 0f) ;
gl d ear (G _CO.OR BUFFER BI T | G._DEPTH BUFFER BIT);

glutil::MtrixStack currMatrix;
currhMatrix. Transl ate(gl m:vec3(0.0f, 0.0f, -200.0f));

148

Getting Oriented

currMatrix. Appl yMatrix(gl m:mat4_cast(g_orientation));

gl UsePr ogr an(t heProgram ;

curriatrix. Scale(3.0, 3.0, 3.0);

currMatri x. Rot at eX(-90);

/1 Set the base color for this object.

gl Uni f or mf (baseCol orUnif, 1.0, 1.0, 1.0, 1.0);

gl Uni f or mvat r i x4f v(model ToCaneraMatri xUni f, 1, G._FALSE, glm:value_ptr(currMatrix.Top()));

g_pShi p->Render ("tint");
gl UsePr ogranm(0);

gl ut SwapBuf fers();
}

Though GLSL does not have quaternion types or quaternion arithmetic, the GLM math library provides both. Theg_ori ent at i on variable
isof thetypegl m : f quat , which is afloating-point quaternion. The gl m : mat 4_cast function converts a quaternion into a 4x4 rotation
matrix. This standsin place of the series of 3 rotations used in the last tutorial.

In response to keypresses, g_or i ent at i on ismodified, applying atransformto it. Thisis donewiththe Of f set Ori ent at i on function.

Example 8.3. OffsetOrientation Function

void OfsetOrientation(const glm:vec3 & axis, float fAngDeg)

{
float fAngRad = Franework:: DegToRad(f AngDeg) ;
glm:vec3 axis = glm:normalize(_axis);
axis = axis * sinf(fAngRad / 2.0f);
float scalar = cosf(fAngRad / 2.0f);
glm:fquat offset(scalar, axis.x, axis.y, axis.z);
i f(g_bRightMltiply)
g_orientation = g_orientation * offset;
el se
g_orientation = offset * g _orientation;
g_orientation = glm:normalize(g_orientation);
}

This generates the offset quaternion from an angle and axis. Since the axis is normalized, there is no need to normalize the resulting of f set
guaternion. Then the offset is multiplied into the orientation, and the result is normalized.

In particular, pay attention to the difference between right multiplication and left multiplication. When you right-multiply, the offset orientation
isin model space. When you left-multiply, the offset isin world space. Both of these can be useful for different purposes.

Camera-Relative Orientation

Asuseful as model and world space offsetting is, there is one more space that it might be useful to orient from. Camera-space.

Thisisprimarily useful in modelling applications, but it can have other applicationsaswell. In such programs, asthe user spinsthe cameraaround
to different angles, the user may want to transform the object relative to the direction of the view.

In order to understand the solution to doing this, let's frame the problem explicitly. We have positions (p) in model space. These positions will
be transformed by a current model-to-world orientation (O), and then by afinal camera matrix (C). Thus, our transform equation is C* O*p.

149

Getting Oriented

We want to apply an orientation offset (R), which takes points in camera-space. |If we wanted to apply this to the camera matrix, it would simply
be multiplied by the camera matrix: R* C*O*p. That's nice and al, but we want to apply atransform to O, not to C.

Therefore, we need to use our transforms to generate a new orientation offset (N), which will produce the same effect:

C*N*O=R*C*O
Inversion

In order to solve this, we need to introduce a new concept. Given amatrix M, there may be a matrix N such that MN =1, where | isthe identity
matrix. I thereis such amatrix, the matrix N is called the inverse matrix of M. The notation for the inverse matrix of M isM™. The symbol “ o
does not mean to raise the matrix to the -1 power; it meansto invert it.

The matrix inverse can be analogized to the scalar multiplicative inverse (ie: reciprocal). The scalar multiplicative inverse of X is the number
Y such that XY = 1.

In the case of the scalar inverse, thisis very easy to solve for: Y = 1/X. Easy though this may be, there are values of X for which there is no
multiplicative inverse. OK, there's one such real value of X: 0.

The case of the inverse matrix is much more complicated. Just as with the scalar inverse, there are matrices that have no inverse. Unlike the
scalar case, there are a lot of matrices with no inverse. Also, computing the inverse matrix is a lot more complicated than simply taking the
reciprocal of avalue.

Most common transformation matrices do have an inverse. And for the basic transformation matrices, the inverse matrix isvery easy to compute.
For a pure rotation matrix, ssmply compute a new rotation matrix by negating the angle that the old one was generated with. For a translation
matrix, negate the origin value in the matrix. For a scale matrix, take the reciprocal of the scale along each axis.

To take the inverse of a sequence of matrices, you can take the inverse of each of the component matrices. But you have to do the matrix
multiplication in reverse order. So if we have M = TRS, then M1l=glRiTt

Quaternions, like matrices, have a multiplicative inverse. The inverse of a pure rotation matrix, which quaternions represent, is a rotation about
the same axis with the negative of the angle. For any angle o, it isthe case that sin(-g) = -sin(#). It is also the case that cos(-g) = cos(#). Since
the vector part of a quaternion is built by multiplying the axis by the sine of the half-angle, and the scalar part is the cosine of the half-angle, the
inverse of any quaternion isjust the negation of the vector part.

You can also infer this to mean that, if you negate the axis of rotation, you are effectively rotating about the old axis but negating the angle.

Which istrue, since the direction of the axis of rotation defines what direction the rotation angle moves the pointsin. Negate the axiss direction,
and you're rotating in the opposite direction.

In quaternion lingo, the inverse quaternion is more correctly called the conjugate quaternion. We use the same inverse notation, “"1» to denote

conjugate quaternions.

Incidentally, the identity quaternion is a quaternion who's rotation angle is zero. The cosine of 0 is one, and the sine of 0 is zero, so the vector
part of the identity quaternion is zero and the scalar part is one.

Solution

Given our new knowledge of inverse matrices, we can solve our problem.
C*N*O=R*C*O

We can right-multiply both sides of this equation by the inverse transform of O.
(C*N*0)*0! = (R*C*0)* O™

C*N*I = R*C*|

150

Getting Oriented

Thel isthe identity transform. From here, we can left-multiply both sides by the inverse transform of C:
cl*(c*N)=Cc*(rR*C)

N=CX(R*C)

Therefore, given an offset that isin camera space, we can generate the world-space equivalent by multiplying it between the camera and inverse
cameratransforms.

Transformation Spaces

It turns out that thisis a generalized operation. It can be used for much more than just orientation changes.

Consider a scale operation. Scales apply along the main axes of their space. But if you want to scale something along a different axis, how do
you do that?

Y ou rotate the object into a coordinate system where the axis you want to scale is one of the basis axes, perform your scale, then rotate it back
with the inverse of the previous rotation.

Effectively, what we are doing is transforming, not positions, but other transformation matrices into different spaces. A transformation matrix
has some input space and defines an output space. If we want to apply that transformation in a different space, we perform this operation.

The genera form of this sequence is as follows. Suppose you have a transformation matrix T, which operates on points in a space caled F. We

have some positions in the space P. What we want is to create a matrix that applies T's transformation operation, except that it needs to operate
on points in the space of P. Given amatrix M that transforms from P space to F space, that matrix is M T*M,

Final Orientation

Let's look at how this all works out in code, with the Camera Relative tutorial. This works very similarly to the last tutorial, but with a few
differences.

Since we are doing camera-relative rotation, we need to have an actual camerathat can move independently of the world. So we incorporate our
camera code from our world space into this one. As before, thel and K keyswill move the camera up and down, relative to a center point. The J
and K keyswill movethe cameraleft and right around the center point. Holding Shift with these keyswill move the camerain smaller increments.

The SpaceBar will toggle between three transforms: model-rel ative (yaw/pitch/roll-style), world-relative, and camera-relative.

Our scene also includes a ground plane as a reference.

151

Getting Oriented

Figure 8.4. Camera Relative Project

The di spl ay function only changed where needed to deal with drawing the ground plane and to handle the camera. Either way, it's nothing
that has not been seen elsewhere.

The substantive changeswereinthe Of f set Ori ent at i on function:

Example 8.4. Camera Relative OffsetOrientation

void OfsetOrientation(const glm:vec3 & axis, float fAngDeg)

{
float fAngRad = Franmework: : DegToRad(f AngDeg) ;

glm:vec3 axis = glm:normalize(_axis);

Getting Oriented

axis = axis * sinf(fAngRad / 2.0f);
float scalar = cosf(fAngRad / 2.0f);

gl m:fquat offset(scalar, axis.x, axis.y, axis.z);

switch(g_i O fset)
{
case MODEL_RELATI VE:
g_orientation = g_orientation * offset;
br eak;
case WORLD RELATI VE:
g_orientation = offset * g _orientation;
br eak;
case CAMERA RELATI VE:
{
Resol veCanPosi tion();
Cal cLookAt Mat ri x(camPos, g_camflarget, gl m:vec3(0.0f, 1.0f,

const gl m:vec3 &canPos =
const gl m:mat4 &camvat =
gl m:fquat viewQuat = gl m:quat_cast(camnvat);

gl m:fquat invViewQuat = gl m:conjugate(vi ewQuat);

const glm:fquat &wrldQuat = (invViewQuat * offset * viewQuat);
g_orientation = worldQuat * g _orientation;

}

br eak;

}

g_orientation = glm:normalize(g_orientation);

}

The change hereis the addition of the camera-relative condition. To do thisin quaternion math, we must first convert the world-to-camera matrix
into a quaternion representing that orientation. Thisisdone hereusing gl m : quat _cast.

The conjugate quaternion is computed with GLM. Then, we simply multiply them with the offset to compute the world-space offset orientation.
This gets |eft-multiplied into the current orientation, and we're done.

Interpolation

A quaternion represents an orientation; it defines a coordinate system relative to another. If we have two orientations, we can consider the
orientation of the same object represented in both coordinate systems.

What if we want to generate an orientation that is halfway between them, for some definition of “halfway”? Or even better, consider an arbitrary
interpol ation between two orientations, so that we can watch an object move from one orientation to another. Thiswould allow usto see an object
smoothly moving from one orientation to another.

This is one more trick we can play with quaternions that we cannot with matrices. Linearly-interpolating the components of matrices does not
create anything that resembles an inbetween transformation. However, linearly interpolating apair of quaternions does. Aslong asyou normalize
the results.

The Interpolation tutorial demonstrates this. The Q, W, E, R, T, Y, and U keys cause the ship to interpolate to a new orientation. Each key
corresponds to a particular orientation, and the Q key isthe initial orientation.

We can see that there are some pretty reasonable looking transitions. The transition from Q to W, for example. However, there are some other
transitions that do not look so good; the Q to E transition. What exactly is going on?

153

0

Getting Oriented

The Long Path

Unit quaternions represent orientations, but they are also vector directions. Specificaly, directionsin afour-dimensional space. Being unit vectors,
they represent points on a 4D sphere of radius one. Therefore, the path between two orientations can be considered to be simply moving from
one direction to another on the surface of the 4D sphere.

While unit quaternions do represent orientations, a quaternion is not a unique representation of an orientation. That is, there are multiple
guaternions that represent the same orientation. Well, there are two.

The conjugate of a quaternion, its inverse orientation, is the negation of the vector part of the quaternion. If you negate all four components
however, you get something quite different: the same orientation as before. Negating a quaternion does not affect its orientation.

While the two quaternions represent the same orientation, they are not the same asfar as interpolation is concerned. Consider atwo-dimensional
case:

Figure 8.5. Interpolation Directions

If the angle between the two quaternions is greater than 90°, then the interpolation between them will take the “long path” between the two
orientations. Which iswhat we seein the Q to E transition. The orientation R isthe negation of E; if you try to interpol ate between them, nothing
changes. The Q to R transition looks much better behaved.

This can be detected easily enough. If the 4-vector dot product between the two quaternionsis less than zero, then the long path will be taken. If

you want to prevent the long path from being used, simply negate one of the quaternions before interpolating if you detect this. Similarly, if you
want to force the long path, then ensure that the angle is greater than 90° by negating a quaternion if the dot product is greater than zero.

Interpolation Speed

There is another problem. Notice how fast the Q to E interpolation is. It starts off slow, then rapidly spins around, then slows down towards
the end. Why does this happen?

154

Getting Oriented

The linear interpolation code looks like this:

Example 8.5. Quaternion Linear Interpolation

gl m:fquat Lerp(const gl m:fquat &0, const glm:fquat &1, float al pha)

{

glm:vec4 start = Vectorize(vO0);

gl m:vecd4 end = Vectorize(vl);

glm:vecd interp = glm:mx(start, end, al pha);

interp = glm:normalize(interp);

return glm:fquat(interp.w, interp.x, interp.y, interp.z);
}

Note

GLM's quaternion support does something unusual. The W component is given first to the fquat constructor. Be aware of that when
looking through the code.

The Vect ori ze function simply takes a quaternion and returns a vec4; this is necessary because GLM fquat do not support many of the
operations that GLM vec4's do. In this case, the gim::mix function, which performs component-wise linear interpolation.

Each component of the vector isinterpolated separately from the rest. The quaternion for Q is (0.7071f, 0.7071f, 0.0f, 0.0f), while the quaternion
for E is(-0.4895f, -0.7892f, -0.3700f, -0.02514f). In order for the first componet of Q to get to E'sfirst component, it will have to go through zero.

When the alphais around 0.5, half-way through the movement, the resultant vector before normalization is very small. But the vector itself is not
what provides the orientation; the direction of the 4D vector is. Which iswhy it moves very fast in the middle; the direction is changing rapidly.

In order to get smooth interpolation, we need to interpolate based on the direction of the vectors. That is, we interpolate along the angle between
the two vectors. Thiskind of interpolation is called spherical linear interpolation or slerp.

To see the difference this makes, press the SpaceBar ; this toggles between regular linear interpolation and slerp. The slerp version is much
smoother.

The code for dlerp israther complex:

Example 8.6. Spherical Linear Interpolation

glm:fquat Slerp(const glm:fquat &0, const glm:fquat &1, float alpha)

{
float dot = gl m:dot(v0, v1);

const float DOT_THRESHOLD = 0. 9995f;
if (dot > DOT_THRESHOLD)
return Lerp(v0, v1, alpha);

gl m:clanmp(dot, -1.0f, 1.0f);
float theta 0 = acosf(dot);
float theta = theta_O*al pha;

glm:fquat v2 = vl - vO*dot;
v2 = glm:normalize(v2);

return vO*cos(theta) + v2*sin(theta);

155

Getting Oriented

Slerp and Performance

It'simportant to know what kind of problems slerp isintended to solve and what kind it is not. Slerp becomes increasingly more important
the more disparate the two quaternions being interpolated are. If you know that two quaternions are always quite close to one another,
then derp is not worth the expense.

Theacos call in the slerp code aloneis pretty substantial in terms of performance. Whereas lerp is typically just a vector/scalar multiply
followed by a vector/vector addition. Even on the CPU, the performance difference isimportant, particularly if you're doing thousands of
these per frame. As you might bein an animation system.

In Review

In this tutorial, you have learned the following:

A fixed sequence of successive rotations can prevent other rotations from contributing to the object's orientation. It also makes it difficult to
correctly orient the object in an intuitive way, since previous rotations have effects on later ones.

» Quaternions are 4-dimensional vectors that can encode an orientation. They can be used for successively applying small rotations to an
orientation. Matrices fail at this because of the difficulty of orthonormalizing them to avoid floating-point error accumulation.

» Quaternions work almost identically to matrices, in so far as they specify orientations. They can be constructed directly from an angle/axis
rotation, and they can be composed with one another via quaternion multiplication.

» One can transform a matrix, or a quaternion with another matrix or quaternion, such that the resulting transform is specified in a different
space. Thisisuseful for applying rotations to an object's orientation that are in camera-space,, while the object's orientation remains a model-
to-world transform.

» Quaternions can be interpolated, either with component-wise linear interpolation or with spherical linear interpolation. If the angle between
two quaternion vectors is greater than 90°, then the interpolation between them will move indirectly between the two.

Further Study

Try doing the following with the orientation tutorials.

» Modify the Interpolation tutorial to allow multiple animations to be active simultaneously. The Or i ent at i on classisalready closeto being
able to alow this. Instead of storing a single Ori ent ati on: : Ani nmat i on object, it should store a st d: : deque of them. When the
external code adds a new one, it gets pushed onto the end of the deque. During update, the front-most entries can end and be popped off,
recording its destination index asthe new current oneinthe Or i ent at i on class. To get the orientation, just call each animation's orientation
function, feeding the previous result into the next one.

» Change the Interpolation tutorial to allow one to specify whether the long path or short path between two orientations should be taken. This
can work for both linear and spherical interpolation.

Further Research

This discussion has focused on the utility of quaternions in orienting objects, and it has deftly avoided answering the question of exactly what a
guaternion is. After al, saying that a quaternion is a four-dimensional complex number does not explain why they are useful in graphics. They
are aquite fascinating subject for those who like oddball math concepts.

This discussion has also glossed over afew uses of quaternionsin graphics, such as how to directly rotate a position or direction by a quaternion.
Such information is readily available online.

Glossary

gimbal lock When applying 3 or more successi verotati ons about axesthat are orthogonal to each other, gimbal lock occurs
when a degree of rotational freedom islost due to two or more axes that cause the same effective rotation.

156

Getting Oriented

orthonormal A transform has the property of being orthonormal if the three basis axes are all orthogonal and the three
axes are normal (have alength of 1).

quaternion A four-dimensiona vector that represents an orientation. The first three components of the quaternion, the
X, Y and Z, are considered the vector part of the quaternion. The fourth component is the scalar part.

inverse matrix The inverse matrix of the matrix M isthe matrix N for which the following equation istrue: MN = |, where
| isthe identity matrix. Theinverse of M is usually denoted as ML

conjugate quaternion Analogous to the inverse matrix. It is computed by negating the vector part of the quatenrion.
spherical linear interpolation, Interpolation between two unit vectorsthat islinear based on the angle between them, rather than the vectors
derp themselves.

157

Part Ill. llumination

One of the most important aspects of rendering islighting. Thusfar, all of our objects have had a color that isentirely part of the mesh data, pulled
from a uniform variable, or computed in an arbitrary way. This makes all of our objects ook very flat and unreadlistic.

Properly modeling theinteraction between light and a surfaceisvital in creating a convincing world. Lighting defines how we see and understand
shapesto alarge degree. Thelack of lighting is the reason why the objects we have used thus far look fairly flat. A curved surface appears curved
to us because of how the light plays over the surface. The same goes for aflat surface.

Without this visua hinting, surfaces appear flat even when they are modeled with many triangles and yield a seemingly-curved polygonal mesh.
A proper lighting model makes objects appear real. A poor or inconsistent lighting model shows the virtual world to be the forgery that it is.

This section of the book will cover lighting, using a variety of light/surface modelling techniques. It will cover dynamic range and linear
colorspacesin lighting equations. Also, it will cover techniquesto use lighting to produce entirely fake surfaces.

Chapter 9. Lights On

Itis always best to start simply. And since lighting is a big topic, we will begin with the simplest possible scenario.

Modelling Lights

Lighting is complicated. Very complicated. The interaction between a surface and alight is mostly well understood in terms of the physics. But
actually doing the computations for full light/surface interaction asit is currently understood is prohibitively expensive.

Assuch, al lighting in any real-time application is some form of approximation of the real world. How accurate that approximation is generally
determines how close to photorealism one gets. Photorealism isthe ability to render a scene that is indistinguishable from a photograph of reality.

Non-Photor ealistic Rendering

There are lighting models that do not attempt to model reality. These are, as a group, called non-photorealistic rendering (NPR)
techniques. These lighting models and rendering techniques can attempt to model cartoon styles (typically called “cel shading”),
paintbrush effects, pencil-sketch, or other similar things. NPR techniquesincluding lighting models, but they also do other, non-lighting
things, like drawing object silhouettes in an dark, ink-like color.

Developing good NPR techniques is at least as difficult as developing good photorealistic lighting models. For the most part, in this
book, we will focus on approximating photorealism.

A lighting model is an algorithm, a mathematical function, that determines how a surface interacts with light.

Inthe real world, our eyes see by detecting light that hits them. The structure of our iris and lenses use anumber of photorecepters (light-sensitive
cells) to resolve a pair of images. The light we see can have one of two sources. A light emitting object like the sun or alamp can emit light
that is directly captured by our eyes. Or a surface can reflect light from another source that is captured by our eyes. Light emitting objects are
called light sources.

Theinteraction between alight and a surface is the most important part of alighting model. It is also the most difficult to get right. The way light
interacts with atoms on a surface alone involves complicated quantum mechanical principles that are difficult to understand. And even that does
not get into the fact that surfaces are not perfectly smooth or perfectly opague.

This is made more complicated by the fact that light itself is not one thing. There is no such thing as “white light.” Virtually all light is made up
of anumber of different wavelengths. Each wavelength (in the visible spectrum) represents a color. White light is made of many wavelengths
(colors) of light. Colored light simply has fewer wavelengths in it than pure white light.

Surfaces interact with light of different wavelengths in different ways. As a simplification of this complex interaction, we will assume that a
surface can do one of two things. absorb that wavelength of light or reflect it.

A surface looks blue under white light because the surface absorbs al non-blue parts of the light and only reflects the blue parts. If one were
to shine a red light on the surface, the surface would appear very dark, as the surface absorbs non-blue light, and the red light does not have
much bluelight in it.

159

LightsOn

Figure 9.1. Surface Light Absorption

N\ 0\

Therefore, the apparent color of a surface is a combination of the absorbing characteristics of the surface (which wavelengths are absorbed or
reflected) and the wavel engths of light shone upon that surface.

The very first approximation that is made is that not all of these wavelengths matter. Instead of tracking millions of wavelengths in the visible
spectrum, we will instead track 3. Red, green, and blue.

The RGB intensity of light reflected from a surface at a particular point isacombination of the RGB light absorbing characteristics of the surface
at that point and the RGB light intensity shone on that point on the surface. All of these, the reflected light, the source light, and the surface
absorption, can be described as RGB colors, on therange [0, 1].

Theintensity of light shone upon a surface depends on (at least) two things. First, it depends on the intensity of light that reaches the surface from
alight source. And second, it depends on the angle between the surface and the light.

Consider aperfectly flat surface. If you shine a column of light with aknown intensity directly onto that surface, theintensity of that light at each
point under the surface will be aknown value, based on the intensity of the light divided by the area projected on the surface.

160

LightsOn

Figure 9.2. Perpendicular Light

If the light is shone instead at an angle, the area on the surface is much wider. This spreads the same light intensity over a larger area of the
surface; as aresult, each point under the light “sees” the light less intensely.

161

LightsOn

Figure9.3. Light at an Angle

Therefore, the intensity of the light cast upon a surface is a function of the original light's intensity and the angle between the surface and the
light source. Thisangleis called the angle of incidence of the light.

A lighting model is afunction of all of these parameters. Thisis far from a comprehensive list of lighting parameters; this list will be expanded
considerably in future discussions.

Standard Diffuse Lighting

Diffuse lighting refers to a particular kind of light/surface interaction, where the light from the light source reflects from the surface at many
angles, instead of as a perfect mirror.

162

LightsOn

Figure 9.4. Diffuse Reflectance

Anideal diffuse material will reflect light evenly in all directions, as shown in the picture above. No actual surfaces are ideal diffuse materials,
but thisis a good starting point and looks pretty decent.

For this tutorial, we will be using the Lambertian reflectance model of diffuse lighting. It represents the ideal case shown above, wherelight is
reflected in al directions equally. The equation for this lighting model is quite simple:

Equation 9.1. Diffuse Lighting Equation

R # Reflected Color | # Light Intensity
D # Diffuse Surface Absorption ## Angle of Incidence
Diffuse Lighting Equation R=D * | * cos(#)

The cosine of the angle of incidence is used because it represents the perfect hemisphere of light that would be reflected. When the angle of
incidence is 0°, the cosine of this angle will be 1.0. The lighting will be at its brightest. When the angle of incidence is 90°, the cosine of this
angle will be 0.0, so the lighting will be 0. Values less than 0 are clamped to 0.

Surface Orientation

Now that we know what we need to compute, the question becomes how to compute it. Specifically, this means how to compute the angle of
incidence for the light, but it also means where to perform the lighting computations.

Since our mesh geometry is made of triangles, each individual triangle is flat. Therefore, much like the plane above, each triangle facesasingle
direction. Thisdirection is called the surface normal or normal. It isthe direction that the surface is facing at the location of interest.

Every point along the surface of a single triangle has the same geometric surface normal. That's all well and good, for actual triangles. But
polygona models are usually supposed to be approximations of real, curved surfaces. If we use the actual triangl€'s surface normal for al of the
points on atriangle, the object would look very faceted. This would certainly be an accurate representation of the actual triangular mesh, but it

163

LightsOn

reveals the surface to be exactly what it is: atriangular mesh approximation of a curved surface. If we want to create the illusion that the surface
really is curved, we need to do something else.

Instead of using the triangle's normal, we can assign to each vertex the normal that it would have had on the surface it is approximating. That is,
while the mesh is an approximation, the normal for avertex is the actual normal for that surface. This actually works out surprisingly well.

This means that we must add to the vertex's information. In past tutorials, we have had a position and sometimes a color. To that information,
we add anormal. So we will need a vertex attribute that represents the normal.

Gouraud Shading

So each vertex has a normal. That is useful, but it is not sufficient, for one ssimple reason. We do not draw the vertices of triangles; we draw
theinterior of atriangle through rasterization.

There are several ways to go about computing lighting across the surface of atriangle. The simplest to code, and most efficient for rendering, is
to perform the lighting computations at every vertex, and then let the result of this computation be interpolated across the surface of the triangle.
This processis called Gouraud shading.

Gouraud shading is a pretty decent approximation, when using the diffuse lighting model. It usually looks OK so long as we remain using that
lighting model, and was commonly used for agood decade or so. Interpolation of vertex outputsisavery fast process, and not having to compute
lighting at every fragment generated from the triangle raises the performance substantially.

That being said, modern games have essentially abandoned this technique. Part of that is because the per-fragment computation is not as slow

and limited as it used to be. And part of it is simply that games tend to not use just diffuse lighting anymore, so the Gouraud approximation is
more noticeably inaccurate.

Directional Light Source

The angle of incidence is the angle between the surface normal and the direction towards the light. Computing the direction from the point in
guestion to the light can be done in a couple of ways.

If you have alight source that is very close to an object, then the direction towards the light can change dramatically over the surface of that
object. Asthe light source is moved farther and farther away, the direction towards the light varies less and less over the surface of the object.

164

LightsOn

Figure 9.5. Near and Far Lights

If the light source is sufficiently distant, relative to the size of the scene being rendered, then the direction towards the light is nearly the same for
every point on every object you render. Since the direction is the same everywhere, the light can be represented as just a single direction given
to al of the objects. Thereis no need to compute the direction based on the position of the point being illuminated.

This situation is called a directional light source. Light from such a source effectively comes from a particular direction as awall of intensity,
evenly distributed over the scene.

Direction light sources are a good model for lights like the sun relative to a small region of the Earth. It would not be a good model for the sun
relative to the rest of the solar system. So scale isimportant.

Light sources do not have to be physical objects rendered in the scene. All we need to use a directional light is to provide a direction to our
lighting model when rendering the surface we want to see. However, having light appear from seemingly nothing hurts verisimilitude; this should
be avoided where possible.

Alternatives to directional lights will be discussed a bit later.

Normals and Space

Normals have many propertiesthat positions do. Normals are vector directions, so like position vectors, they exist in acertain coordinate system.
It isusually agood ideato have the normals for your vertices be in the same coordinate system as the positions in those vertices. So that means
model space.

This also means that normals must be transformed from model space to another space. That other space needs to be the same space that the
lighting direction is in; otherwise, the two vectors cannot be compared. One might think that world space is a fine choice. After all, the light
directionis already defined in world space.

165

LightsOn

Y ou certainly could use world spaceto do lighting. However, for our purposes, wewill use cameraspace. Thereasonfor thisispartially illustrative:
in later tutorials, we are going to do lighting in some rather unusual spaces. By using camera space, it gets us in the habit of transforming both
our light direction and the surface normals into different spaces.

Wewill talk morein later sections about exactly how we transform the normal. For now, we will just transform it with the regular transformation
matrix.

Drawing with Lighting

The full lighting model for computing the diffuse reflectance from directional light sources, using per-vertex normals and Gouraud shading, is
asfollows. The light will be represented by a direction and alight intensity (color). The light direction passed to our shader is expected to bein
camera space already, so the shader is not responsible for this transformation. For each vertex (in addition to the normal position transform), we:
1. Transform the normal from model space to camera space using the model-to-camera transformation matrix.

2. Compute the cosine of the angle of incidence.

3. Multiply the light intensity by the cosine of the angle of incidence, and multiply that by the diffuse surface color.

4. Passthisvalue as avertex shader output, which will be written to the screen by the fragment shader.

Thisiswhat we do in the Basic Lighting tutorial. It renders a cylinder above aflat plane, with a single directional light source illuminating both

objects. One of the nice things about a cylinder is that it has both curved and flat surfaces, thus making an adegquate demonstration of how light
interacts with a surface.

166

LightsOn

Figure 9.6. Basic Lighting

Thelight is at afixed direction; the model and camera both can be rotated.

LightsOn

Mouse Movement

This is the first tutorial that uses mouse movement to orient objects and the camera. These controls will be used throughout the rest of
this book.

The camera can be oriented with the left mouse button. L eft-clicking and dragging will rotate the camera around the target point. This will
rotate both horizontally and vertically. Think of the world as a sphere. Starting to drag means placing your finger on the sphere. Moving
your mouseislike moving your finger; the sphere rotates along with your finger's movement. If you hold Ctrl when you left-click, you can
rotate either horizontally or vertically, depending on the direction you move the mouse. Whichever direction is farthest from the original
location clicked will be the axis that is rotated.

The camera's up direction can be changed as well. To do this, left-click while holding Alt. Only horizontal movements of the mouse will
spin the view. Moving left spins counter-clockwise, while moving right spins clockwise.

The camera can be moved closer to it's target point and farther away. To do this, scroll the mouse wheel up and down. Up scrolls move
closer, while down moves farther away.

The object can be controlled by the mouse as well. The object can be oriented with the right-mouse button. Right-clicking and dragging
will rotate the object horizontally and vertically, relative to the current cameraview. Aswith cameracontrols, holding Ctrl when you right-
click will allow you to rotate horizontally or vertically only.

The object can be spun by right-clicking while holding Alt. Aswith the other object movements, the spin is relative to the current direction
of the camera.

The code for these are contained in the Unofficial SDK's GL Util library. Specifically, the objects glutil::ViewPole and glutil::ObjectPole.
The source code in them is, outside of how FreeGLUT handles mouse input, nothing that has not been seen previously.

Pressing the Spacebar will switch between a cylinder that has a varying diffuse color and one that is pure white. This demonstrates the effect
of lighting on a changing diffuse color.

The initialization code does the usual: loads the shaders, gets uniforms from them, and loads anumber of meshes. In this case, it loads amesh for
the ground plane and a mesh for the cylinder. Both of these meshes have normals at each vertex; we'll look at the mesh data a bit later.

The display code has gone through a few changes. The vertex shader uses only two matrices: one for model-to-camera, and one for camera-to-
clip-space. So our matrix stack will have the camera matrix at the very bottom.

Example 9.1. Display Camera Code

glutil::MtrixStack nodel Matri x;
nodel Matri x. Set Matri x(g_vi ewPol e. Cal cMatri x());

gl m:vecd |ightDrCaneraSpace = nodel Matri x. Top() * g _lightDirection;

gl UseProgram(g_WiteDiffuseCol or.theProgram;

gl Uni form8fv(g_WhiteDi ffuseCol or.dirToLightUnif, 1, glm:value_ptr(IlightD rCaneraSpace));
gl UseProgranm(g_VertexDi ffuseCol or.theProgram;

gl Uni formB8f v(g_VertexDi ffuseCol or.dirToLightUnif, 1, glm:value_ptr(lightD rCameraSpace));
gl UseProgram0);

Since our vertex shader will be doing all of its lighting computations in camera space, we need to movetheg | i ght Di rect i on from world
space to camera space. So we multiply it by the camera matrix. Notice that the camera matrix now comes from the MousePole object.

Now, we need to talk a bit about vector transforms with matrices. When transforming positions, the fourth component was 1.0; this was used so
that the translation component of the matrix transformation would be added to each position.

Normals represent directions, not absolute positions. And whilerotating or scaling adirection is areasonable operation, trandating it is not. Now,
we could just adjust the matrix to remove all trandations before transforming our light into camera space. But that's highly unnecessary; we can
simply put 0.0 in the fourth component of the direction. Thiswill do the same job, only we do not have to mess with the matrix to do so.

168

LightsOn

This also allows us to use the same transformation matrix for vectors as for positions.
We upload the camera-space light direction to the two programs.

To render the ground plane, we run this code:

Example 9.2. Ground Plane Lighting

glutil::PushStack push(nodel Matri x);

gl UseProgran({g_Wi teDi ffuseCol or.t heProgranj;

gl Uni formvatri x4f v(g_Wi teD ffuseCol or. nodel ToCanmeraMat ri xUni f, 1, G._FALSE, gl m:val ue_ptr(nodel Ma
gl m:mat3 normvatri x(nodel Matri x. Top());

gl Uni formvatri x3fv(g_WiteD ffuseCol or. normal Model ToCaneraMatrixUnif, 1, G._FALSE, glm:value_ptr(n
gl Uni f or maf (g_Whi teDi ffuseCol or.lightlntensityunif, 1.0f, 1.0f, 1.0f, 1.0f);

g_pPl aneMesh- >Render () ;

gl UseProgran{0);

We upload two matrices. One of these is used for normals, and the other is used for positions. The normal matrix is only 3x3 instead of the usual
4x4. Thisis because normals do not use the translation component. We could have used the trick we used earlier, where we use a 0.0 as the W
component of a4 component normal. But instead, we just extract the top-left 3x3 area of the model-to-camera matrix and send that.

Of course, the matrix is the same as the model-to-camera, except for the lack of tranglation. The reason for having separate matrices will come
into play later.

We also upload the intensity of the light, as a pure-white light at full brightness. Then we render the mesh.

To render the cylinder, we run this code:

Example 9.3. Cylinder Lighting
glutil::PushStack push(nodel Matri x);
nodel Matri x. Appl yMatri x(g_objtPole. Cal cMatrix());

i f(g_bDrawCol oredCyl)

{
gl UseProgranm(g_VertexD ffuseCol or.theProgram;
gl Uni formvatri x4f v(g_VertexDi f fuseCol or. nodel ToCanmeraMatri xUnif, 1, G._FALSE, gl m:value ptr(no
gl m:mat3 normvatri x(nodel Matri x. Top());
gl Uni for mvat ri x3fv(g_VertexDiffuseCol or. nor mal Model ToCaneraMatri xUnif, 1, G._FALSE, gl m:value_
gl Uni f or maf (g_VertexDi ffuseCol or.lightintensityUnif, 1.0f, 1.0f, 1.0f, 1.0f);
g_pCyli nder Mesh- >Render ("lit-color");

}

el se

{
gl UseProgram(g_WiteDiffuseCol or.theProgram;
gl Uni formvatri x4f v(g_Wi teD ffuseCol or. nodel ToCaneraMatri xUni f, 1, G._FALSE, gl m:val ue ptr(nod
gl m:mat3 normvatri x(nodel Matri x. Top());
gl Uni f or mvat ri x3f v(g_Whi t eDi f f useCol or. nor nal Model ToCaneraMatri xUnif, 1, GL_FALSE, gl m:value_p
gl Uni f or maf (g_Whi teDi ffuseCol or.lightlntensityunif, 1.0f, 1.0f, 1.0f, 1.0f);
g_pCyli nder Mesh->Render ("lit");

}

gl UseProgram(0);

The cylinder isnot scaled at all. It is one unit from top to bottom, and the diameter of the cylinder isalso 1. Tranglating it up by 0.5 simply moves
it to being on top of the ground plane. Then we apply arotation to it, based on user inputs.

169

LightsOn

We actually draw two different kinds of cylinders, based on user input. The colored cylinder is tinted red and is the initial cylinder. The white
cylinder uses a vertex program that does not use per-vertex colors for the diffuse color; instead, it uses a hard-coded color of full white. These
both come from the same mesh file, but have special names to differentiate between them.

What changesisthat the “flat” mesh does not pass the color vertex attribute and the “tint” mesh does.
Other than which program is used to render them and what mesh name they use, they are both rendered similarly.

The camera-to-clip matrix is uploaded to the programsin the r eshape function, as previous tutorials have demonstrated.

Vertex Lighting

There are two vertex shaders used in this tutorial. One of them uses a color vertex attribute as the diffuse color, and the other assumes the diffuse
coloris(1, 1, 1, 1). Hereis the vertex shader that uses the color attribute, Di r Ver t exLi ght i ng_PCN:

Example 9.4. Lighting Vertex Shader
#versi on 330
| ayout (| ocati on

| ayout (| ocati on
| ayout (| ocati on

0) in vec3 position;
1) in vecd diffuseCol or;
2) in vec3 normal;

snmoot h out vec4 interpCol or;

uni form vec3 dirToLi ght;
uni formvec4 lightlntensity;

uni form mat 4 nodel ToCaner aMatri x;
uni form nmat 3 nor mal Model ToCaner aMat ri x;

| ayout (st d140) uniform Projection

{
b

mat 4 caneraToC i pMatri x;

voi d main()

{
gl _Position = canmeraTod ipMatrix * (nodel ToCameraMatrix * vec4d(position, 1.0));

vec3 nornCanSpace = normalize(normal Model ToCanerahatri x * normal);

fl oat cosAngl nci dence = dot (nor mCanpace, dir TolLight);
cosAngl nci dence = cl anp(cosAngl nci dence, 0, 1);

interpColor = lightintensity * diffuseCol or * cosAngl nci dence;
}

We define a single output variable, i nt er pCol or, which will be interpolated across the surface of the triangle. We have a uniform for the
camera-space lighting direction di r ToLi ght . Notice the name: it is the direction from the surface towards the light. It is not the direction
fromthe light.

We aso have a light intensity uniform value, as well as two matrices for positions and a separate one for normals. Notice that the
caner aTod i pMatri x isinauniform block. Thisalows usto update all programs that use the projection matrix just by changing the buffer
object.

Thefirst line of mai n simply does the position transforms we need to position our vertices, as we have seen before. We do not need to store the
camera-space position, so we can do the entire transformation in a single step.

170

LightsOn

The next line takes our normal and transforms it by the model-to-camera matrix specifically for normals. As noted earlier, the contents of this
matrix areidentical to the contents of nodel ToCaner aMat ri x. Thenor mal i ze function takes the result of the transform and ensures that
the normal has alength of one. The need for thiswill be explained later.

We then compute the cosine of the angle of incidence. We'll explain how this math computes this shortly. Do note that after computing the cosine
of the angle of incidence, we then clamp the value to between 0 and 1 using the GLSL built-in function cl anp.

Thisisimportant, because the cosine of the angle of incidence can be negative. Thisisfor values which are pointed directly away from the light,
such as the underside of the ground plane, or any part of the cylinder that is facing away from the light. The lighting computations do not make
sense with this value being negative, so the clamping is necessary.

After computing that value, we multiply it by the light intensity and diffuse color. This result is then passed to the interpolated output color. The
fragment shader is a simple passthrough shader that writes the interpolated color directly.

The version of the vertex shader without the per-vertex color attribute simply omits the multiplication with the di f f useCol or (aswell asthe
definition of that input variable). Thisis the same as doing a multiply with a color vector of al 1.0.

Vector Dot Product

We glossed over an important point in looking at the vertex shader. Namely, how the cosine of the angle of incidence is computed.

Given two vectors, one could certainly compute the angle of incidence, then take the cosine of it. But both computing that angle and taking its
cosine are quite expensive. Instead, we elect to use a vector math trick: the vector dot product.

The vector dot product between two vectors can be mathematically computed as follows:

Equation 9.2. Dot Product

h.b= #a#* #b#*cos#)

If both vectors have alength of one (ie: they are unit vectors), then the result of a dot product isjust the cosine of the angle between the vectors.

Thisis also part of the reason why the light direction is the direction towards the light rather than from the light. Otherwise we would have to
negate the vector before performing the dot product.

What makes this faster than taking the cosine of the angle directly is that, while the dot product is geometrically the cosine of the angle between
the two unit vectors, computing the dot product via vector math isvery smple:

Equation 9.3. Dot Product from Vector Math

ay bx
4.h=1|ay|.|b =a*b,+a,* b, +a,*b,
a, bz

This does not require any messy cosine transcendental math computations. This does not require using trigonometry to compute the angle between
the two vectors. Simple multiplications and additions; most graphics hardware can do hillions of these a second.

Obviously, the GLSL function dot computes the vector dot product of its arguments.

Normal Transformation

In the last section, we saw that our computation of the cosine of the angle of incidence has certain requirements. Namely, that the two vectors
involved, the surface normal and the light direction, are of unit length. The light direction can be assumed to be of unit length, since it is passed
directly asauniform.

171

LightsOn

The surface normal can also be assumed to be of unit length. Initially. However, the normal undergoes a transformation by an arbitrary matrix;
there is no guarantee that this transformation will not apply scaling or other transformations to the vector that will result in a non-unit vector.

Of coursg, it is easy enough to correct this. The GLSL function nor mal i ze will return a vector that is of unit length without changing the
direction of the input vector.

And while mathematically this would function, geometrically, it would be nonsense. For example, consider a 2D circle. We can apply a non-
uniform scale (different scalesin different axes) to the positions on this circle that will transform it into an ellipse:

Figure9.7. Circle Scaling

() =

Thisisal well and good, but consider the normalsin this transformation:

Figure 9.8. Circle Scaling with Normals

T

172

LightsOn

The dlipse in the middle has the normals that you would expect if you transformed the normals from the circle by the same matrix the circle
was transformed by. They may be unit length, but they no longer reflect the shape of the ellipse. The ellipse on the right has normals that reflect
the actual shape.

It turns out that, what you really want to do is transform the normals with the same rotations as the positions, but invert the scales. That is, a
scale of 0.5 aong the X axis will shrink positions in that axis by half. For the surface normals, you want to double the X value of the normals,
then normalize the result.

Thisiseasy if you have asimplematrix. But more complicated matrices, composed from multiple successiverotations, scal es, and other operations,
are not so easy to compute.

Instead, what we must do is compute something called the inverse transpose of the matrix in question. This means we first compute the inverse
matrix, then compute the transpose of that matrix. The transpose of a matrix is simply the same matrix flipped along the diagonal. The columns
of the original matrix are the rows of itstranspose. That is:

Equation 9.4. Matrix Transpose

mil m21 m31 m41]" [ml1l ml2 ml3 mi4
ml2 m22 m32 m42] _[m21 m22 m23 m24
m13 m23 m33 m43| ~ |m31 m32 m33 m34
ml4 m24 m34 m m4l md42 m43 m

MT =

So how does this inverse transpose help us?

Remember: what we want is to invert the scales of our matrix without affecting the rotational characteristics of our matrix. Given a 3x3 matrix
M that is composed of only rotation and scale transformations, we can re-express this matrix as follows:

M=R;*S*R;

That is, the matrix can be expressed as doing arotation into a space, followed by a single scale transformation, followed by another rotation. We
can do thisregardless of how many scale and rotation matrices were used to build M. That is, M could be the result of twenty rotation and scale
matrices, but all of those can be extracted into two rotations with a scale inbetween.

Recall that what we want to do is invert the scales in our transformation. Where we scale by 0.4 in the original, we want to scale by 2.5 in the

inverse. Theinverse matrix of a pure scale matrix isamatrix with each of the scaling components inverted. Therefore, we can express the matrix
that we actually want asthis:

Muyant = Ri* ST* R,

Aninteresting fact about pure-rotation matrices: theinverse of any rotation matrix isitstranspose. Also, taking theinverse of amatrix twiceresults
in the original matrix. Therefore, you can express any pure-rotation matrix as the inverse transpose of itself, without affecting the matrix. Since
theinverseisitstranspose, and doing atranspose twice on amatrix does not change its value, the inverse-transpose of arotation matrix isano-op.

Also, since the values in pure-scale matrices are along the diagonal, a transpose operation on scale matrices does nothing. With these two facts
in hand, we can re-express the matrix we want to compute as:

— -I)\T -1\T -n\T
Mwant_(Rl) *(s7) *(Rz)
Using matrix algebra, we can factor the transposes out, but doing so requires reversing the order of the matrix multiplication:

Myan = (Re2* S1* RyY)

wewill ski p over deriving how exactly thisistrue. If you are interested, search for “ Singular VValue Decomposition [http://en.wikipedia.org/wiki/Singular_value_decomposition]”.
But be warned: it is math-heavy.

173

http://en.wikipedia.org/wiki/Singular_value_decomposition
http://en.wikipedia.org/wiki/Singular_value_decomposition

LightsOn

Similar, we can factor out the inverse operations, but this requires reversing the order again:

Myant = (Re* S*Ry)) = (MY’

Thus, the inverse-transpose solves our problem. And both GLM and GL SL have nice functions that can do these operations for us. Though really,
if you can avoid doing an inverse-transpose in GLSL, you are strongly advised to do so; thisis not atrivial computation.

We do thisin the Scale and Lighting tutorial. It controls mostly the same as the previous tutorial, with a few exceptions. Pressing the space bar
will toggle between aregular cylinder and a scaled one. The “T” key will toggle between properly using the inverse-transpose (the default) and
not using the inverse transpose. The rendering code for the cylinder is asfollows:

Example 9.5. Lighting with Proper Normal Transform
glutil::PushStack push(nodel Matri x);

nodel Matri x. Appl yMatri x(g_objtPole. Cal cMatrix());
i{f(g_bScaI eCyl)

nodel Matri x. Scal e(1. Of, 1.0f, 0.2f);
}

gl UseProgran(g_VertexDi ffuseCol or.theProgram;

gl Uni formvatri x4f v(g_Vert exDi f fuseCol or. nodel ToCanerahatri xUnif, 1, G._FALSE, gl m:val ue_ptr(nodel M
gl m:mat3 normvatri x(nodel Matri x. Top());

i f (g_bDol nvTranspose)

{

}
gl Uni formvatri x3fv(g_VertexDiffuseCol or. nor mal Model ToCameraMatri xUnif, 1, G._FALSE, gl m:value_ptr(

gl Uni formif (g_VertexDi ffuseColor.lightintensityUnif, 1.0f, 1.0f, 1.0f, 1.0f);
g_pCyl i nder Mesh->Render ("lit-color");
gl UsePr ogram(0);

normvatri x = glm:transpose(gl m:inverse(nornmvatrix));

It's pretty self-explanatory.

174

LightsOn

Figure 9.9. Lighting and Scale

One more thing to note before we move on. Doing the inverse-transpose is only really necessary if you are using anon-uniformscale. In practice,
it's actually somewhat rare to use this kind of scale factor. We do it in these tutorials, so that it is easier to build models from simple geometric
components. But when you have an actual modeller creating objects for a specific purpose, non-uniform scales generally are not used. At least,
not in the output mesh. It's better to just get the modeller to adjust the model as needed in their modelling application.

Uniform scales are more commonly used. So you still need to normalize the normal after transforming it with the model-to-camera matrix, even
if you are not using the inverse-transpose.

Global lllumination

Y ou may notice something very unrealistic about the results of this tutorial. For example, take thisimage:

175

LightsOn

Figure 9.10. Half Lit

The unlit portions of the cylinder are completely, 100% black. This almost never happens in real life, even for objects we perceive as being
“black” in color. The reason for thisis somewhat complicated.

Consider a scene of the outdoors. In normal daylight, there is exactly one light source: the sun. Objects that are in direct sunlight appear to be
bright, and objects that have some abject between them and the sun are in shadow.

But think about what those shadows look like. They're not 100% black. They're certainly darker than the surrounding area, but they still have
some color. And remember: we only see anything because our eyes detect light. In order to see an object in the shadow of a light source, that
object must either be emitting light directly or reflecting light that came from somewhere else. Grassis not known for its light-emitting qualities,
so where does the light come from?

LightsOn

Think about it. We see because an object reflects light into our eyes. But our eyes are not special; the object does not reflect light only into our
eyes. It reflects light in all directions. Not necessarily at the same intensity in each direction, but objects that reflect light tend to do so in all
directions to some degree. What happens when that light hits another surface?

The same thing that happens when light hits any surface: some of it is absorbed, and some is reflected in some way.

The light being cast in shadows from the sun comes from many places. Part of it is an atmospheric effect; the sun is so bright that the weakly
reflective atmosphere reflects enough light to shine acolor. Typically, thisisapale blue. Part of the light comes from other objects. The sun gives
off so much light that the light reflected from other objectsis bright enough to be a substantial contributer to the overall lighting in a scene.

This phenomenon is called interreflection. A lighting model that handles interreflection is said to handle global illumination. It represents light
that bounces from object to object before hitting the eyes of the person viewing the scene. Modelling only lighting directly from alight-emitting
surfaceis called local illumination or direct illumination, and it is what we have been doing up until this point.

As you might imagine, modelling global illumination is hard. Very hard. It is typically a subtle effect, but in many scenes, particularly outdoor
scenes, it is amost a necessity to provide at least basic global illumination modelling in order to achieve a decent degree of photorealism.
Incidentally, thisisagood part of the reason why most games tend to avoid outdoor scenes or light outdoor scenes as though the sky were cloudy
or overcast. This neatly avoids needing to do complex global illumination modelling by damping down the brightness of the sun to levels when
interreflection would be difficult to notice.

Having this completely black areain our rendering looksincredibly fake. Since doing actual global illumination modelling ishard, we will instead
use atime-tested technique: ambient lighting.

The ambient lighting “model” 2is quite simple. It assumes that, on every object in the scene, there is alight of a certain intensity that emanates
from everywhere. It comes from al directions equally, so there is no angle of incidence in our diffuse calculation. It is simply the ambient light
intensity * the diffuse surface color.

We do this in the Ambient Lighting tutorial. The controls are the same as the last tutorial, except that the space bar swaps between the two
cylinders (red and white), and that the T key toggles ambient lighting on and off (defaults to off).

2 put the word model in quotations because ambient lighting is so divorced from anything in reality that it does not really deserve to be called amodel. That being said, just because
it does not actually model global illumination in any real way does not mean that it is not useful.

177

Lights On

Figure9.11. Ambient Lighting

The detail seen in the dark portion of the cylinder only comes from the diffuse color. And because the ambient is fairly weak, the diffuse color
of the surface appears muted in the dark areas.

The rendering code now uses four of vertex shaders instead of two. Two of them are used for non-ambient lighting, and use the same shaders
we have seen before, and the other two use ambient lighting.

The ambient vertex shader that uses per-vertex colorsiscalled Di r AmbVer t exLi ghti ng_PCN. vert and reads as follows:
Example 9.6. Ambient Vertex Lighting

#version 330

| ayout (l ocation = 0) in vec3 position;

178

LightsOn

| ayout (| ocati on
| ayout (| ocati on

1) in vec4 diffuseCol or;
2) in vec3 normal;

snoot h out vec4 interpCol or;
uni form vec3 dirToLi ght;

uni formvec4 lightlntensity;
uni form vec4 anbientlintensity;

uni form mat 4 npdel ToCaner aMatri x;
uni form nat 3 nor mal Model ToCaner aMat ri x;

| ayout (st d140) uni form Projection

{
mat 4 caneraToCl i pMatri x;

b

void main()

{
gl _Position = canmeraTod ipMatrix * (nodel ToCanmeraMatrix * vec4(position, 1.0));
vec3 nor nCanSpace = normalize(normal Model ToCanerahatri x * normal);
fl oat cosAngl nci dence = dot (nor mCantSpace, dir TolLight);
cosAngl nci dence = cl anp(cosAngl nci dence, 0, 1);
interpColor = (diffuseColor * lightlntensity * cosAngl nci dence) +

(diffuseColor * anmbientlntensity);
}

It takes two uniforms that specify lighting intensity. One specifies the intensity for the diffuse lighting, and the other for the ambient lighting.
The only other change is to the last line in the shader. The usual diffuse lighting result has its value added to the ambient lighting computation.
Also, note that the contribution from two lighting models is added together.

Of particular note is the difference between the lighting intensities in the pure-diffuse case and the diffuse+ambient case:

Example 9.7. Lighting I ntensity Settings

i f(g_bShowAnbi ent)

{
gl UseProgram whiteDi ffuse.theProgram;
gl Uni formdf (whiteDiffuse.lightintensityUnif, 0.8f, 0.8f, 0.8f, 1.0f);
gl Uni formdf (whiteDi ffuse. anbientlintensityUnif, 0.2f, 0.2f, 0.2f, 1.0f);
gl UseProgram(vertexDi ffuse.theProgran);
gl Uni formdf (vertexDi ffuse.lightlintensityUnif, 0.8f, 0.8f, 0.8f, 1.0f);
gl Uni formaf (vertexDi ffuse. anbientintensityUnif, 0.2f, 0.2f, 0.2f, 1.0f);
}
el se
{
gl UseProgran{whitebDiffuse.theProgran;
gl Uni formdf (whiteDiffuse.lightintensityUnif, 1.0f, 1.0f, 1.0f, 1.0f);
gl UseProgram(vertexDi ffuse.theProgran);
gl Uni formdf (vertexDi ffuse.lightlintensityUnif, 1.0f, 1.0f, 1.0f, 1.0f);
}

In the pure-diffuse case, the light intensity is full white. But in the ambient case, we deliberately set the diffuse intensity to less than full white.
Thisisvery intensional.

179

LightsOn

We will talk more about this issue in the future, but it is very critical that light intensity values not exceed 1.0. This includes combined lighting
intensity values. OpenGL clamps colorsthat it writesto the output image to the range [0, 1]. So any light intensity that exceeds 1.0, whether alone
or combined with other lights, can cause unpleasant visual effects.

There are ways around this, and those ways will be discussed in the eventual future.

Mesh Topology

Thus far, we have seen three different kinds of vertex attributes. We have used positions, colors, and now normals. Before we can continue, we
need to discuss the ramifications of having three independent vertex attributes on our meshes.

A mesh's topology defines the connectedness between the vertices. However, each vertex attribute can have its own separate topology. How is
this possible?

Consider asimple cube. It has 8 vertex positions. The topology between the positions of the cube is as follows:

Figure 9.12. Cube Position Topology

The topology diagram has the 8 different positions, with each position connected to three neighbors. The connections represent the edges of the
cube faces, and the area bounded by connections represent the faces themselves. So each face has four edges and four positions.

Now consider the topology of the normals of acube. A cube has 6 faces, each of which has adistinct normal. The topology is a bit unorthodox:

180

LightsOn

X% &
SN

The sgquare points represent distinct normals, not positionsin space. The connections between normalsall loop back on themselves. That's because
each vertex of each face uses the same normal. While the front face and the top face share two vertex positionsin common, they share no vertex
normals at all. Therefore, there is no topological relation between the front normal and the top normal. Each normal value is connected to itself
four times, but it is connected to nothing el se.

Figure 9.13. Cube Normal Topology

We have 8 positions and 6 normals. They each have a unique topology over the mesh. How do we turn this into something we can render?

If we knew nothing about OpenGL, this would be simple. We simply use the topologies to build the meshes. Each face is broken down into
two triangles. We would have an array of 8 positions and 6 normals. And for each vertex we render, we would have alist of indices that fetch
values from these two arrays.

Theindex list for two faces of the cube might look like this (using a C++-style multidimensiona list):

{
{0, 0}, {1, 0}, {2, O}, {1, O}, {3, O}, {2, O},
{0, 1}, {4, 1}, {1, 1}, {4, 1}, {6, 1}, {1, 1},

}

The first index in each element of the list pulls from the position array, and the second index pulls from the normal array. This list explicitly
specifies the relationship between faces and topology: the first face (composed of two triangles) contains 4 positions, but uses the same normal
for al vertices. The second face shares two positions with the first, but no normals.

This is complicated in OpenGL because of one simple reason: we only get one index list. When we render with an index array, every attribute
array uses the same index. Therefore, what we need to do is convert the above index list into alist of unique combinations of vertex attributes.
So each pair of indices must refer to a unique index.

Consider the first face. It consists of 4 unique vertices; the index pairs {1, 0} and {2, 0} are repeated, since we must draw triangles. Since these
pairs are repeats, we can collapse them; they will refer to the same index. However, the fact that each vertex uses the same normal must beignored
entirely. Therefore, the final index list we use for the first faceis:

{0 1, 2 1, 3, 2}

The attribute arrays for this one face contain 4 positions and 4 normals. But while the positions are al different, the normals must all be the same
value. Even though they are stored in four separate locations. This seems like awaste of memory.

181

LightsOn

Thisgetsworse once we move on to the next face. Because we can only collapseindex pairsthat areidentical, absolutely none of the verticesinthe
second face shareindiceswith thefirst face. Thefact that wereusetwo positionsin the next faceisirrelevant: we must havethefollowingindex list:

{ 4 5, 6, 5 7, 6}

The attribute array for both faces contains 8 positions and 8 normals. Again, the normals for the second face are al duplicates of each other. And
there are two positions that are duplicated. Topologically speaking, our cube vertex topology looks like the following:

Figure 9.14. Full Cube Topology

4
\

Each face is entirely distinct topologically from the rest.

In the end, this gives us 24 positions and 24 normals in our arrays. There will only be 6 distinct normal values and 8 distinct position valuesin
the array, but there will be 24 of each. So this represents a significant increase in our data size.

Do not be too concerned about the increase in data however. A cube, or any other faceted object, represents the worst-case scenario for this kind
of conversion. Most actual meshes of smooth objects have much more interconnected topologies.

Mesh topology is something to be aware of, asis the ability to convert attribute topologies into forms that OpenGL can directly process. Each
attribute has its own topology which affects how the index list is built. Different attributes can share the same topology. For example, we could
have colors associated with each face of the cube. The color topology would be identical to the normal topology.

Most of the details are usually hidden behind various command-line tools that are used to generate proper meshes from files exported from
modelling programs. Many videogame developers have complex asset conditioning pipelines that process exported files into binary formats
suitable for loading and direct upload into buffer objects. But it isimportant to understand how mesh topol ogies work.

In Review

In thistutorial, you have learned the following:
+ Diffuselighting isasimple lighting model based on the angle between the light source and the surface normal.

» Surface normals are values used, per-vertex, to define the direction of the surface at a particular location. They do not have to mirror the actual
normal of the mesh geometry.

 Surface normals must be transformed by the inverse-transpose of the model-to-camera matrix, if that matrix can involve a non-uniform scale
operation.

182

LightsOn

 Light interreflection can be approximated by adding asingle light intensity that has no direction.

» Each vertex attribute has its own topology. In order to render these vertices in OpenGL, attribute data must be replicated so that each unique
combination of attributes has a topology.

Further Study
Try doing these things with the given programs.
» Modify the ambient lighting tutorial, bumping the diffuse light intensity up to 1.0. See how this effects the results.

» Changethe shadersin the ambient lighting tutorial to use the lighting intensity correction mentioned above. Divide the diffuse color by avalue,
then pass larger lighting intensities to the shader. Notice how this changes the quality of the lighting.

Further Research

Lambertian diffuse reflectanceisarather good model for diffuse reflectance for many surfaces. Particularly rough surfaces however do not behave
in a Lambertian manor. If you are interested in modelling such surfaces, investigate the Oren-Nayar reflectance model.

GLSL Functions of Note

vec cl amp(vec val, vec mnVal, vec maxVal);

This function does a clamping operation of each component of val . All of the parameters must scalars or vectors of the same dimensionality.
This function will work with any scalar or vector type. It returns a scalar or vector of the same dimensionality as the parameters, where each
component of val will be clamped to the closed range [mi nVal , naxVal]. Thisis useful for ensuring that values are in a certain range.

All components of m nVal must be smaller than the corresponding components of naxVal .
float dot(vec x, vec y);

This function performs a vector dot product on x and y. This always results in a scalar value. The two parameters must have the same
dimensionality and must be vectors.

vec normalize(vec x);

This function returns a vector in the same direction as x, but with a length of 1. x must have a length greater than O (that is, it cannot be a
vector with all zeros).

Glossary

photorealism A rendering system has achieved photorealism when it can render a ill image that is essentialy
indistinguishable from area photograph.

lighting model A mathematical model that defines how light is absorbed and reflected from a surface. This can attempt to
model reality, but it does not have to.

light source Mathematically, this is something that produces light and adds it to a scene. It does not have to be an actual
object shown in the world.

light intensity Theintensity, measured in RGB, of light emitted from alight-casting source.

angle of incidence The angle between the surface normal and the direction towards the light.

diffuse lighting A lighting model that assumeslight isreflected from asurface in many directions, as opposed to aflat mirror
that reflects light in one direction.

Lambertian reflectance A particular diffuse lighting model that represents the ideal diffuse case: lighting is reflected evenly in all

directions.

183

LightsOn

surface normal, normal

Gouraud shading

directional light source

vector dot product

transpose

inverse transpose
interreflection
global illumination

local illumination,
illumination

ambient lighting

mesh topology

direct

The direction that a particular point on a surface faces.

Computing lighting computations at every vertex, and interpolating the results of these computations across
the surface of the triangle.

A light source that emits light along a particular direction. Every point in the scene to be rendered receives
light from the same direction. This models a very distant light source that lights the scene evenly from a
single direction.

Computes the length of the projection of one vector onto another. If the two vectors are unit vectors, then the
dot product is simply the cosine of the angle between them.

A matrix operation that flips the matrix along the main diagonal. The columns of the original matrix become
the rows of the transpose.

A matrix operation, where amatrix is inverted and then transposed.
Light that reflects off of multiple surfaces before reaching the viewer.
A category of lighting models that take into account lighting contributions from interreflection.

Lighting computations made only from light sources that cast light directly onto the surface.

A lighting model that models all contributions from interreflection as a single light intensity that does not
originate from any particular direction.

The interconnected nature between different values of avertex attribute in amesh. Each attribute hasits own
separate topology. Rendering in OpenGL requires finding all of the unique combinations of attributes and
building a new topology out of it, where each attributes topology is the same. This can require replicating
attribute data.

184

Chapter 10. Plane Lights

Directional lights are useful for representing light sources like the sun and so forth. But most light sources are more likely to be represented
as point lights.

A point light source is alight source that has a position in the world and shines with equal intensity in all directions. Our simple diffuse lighting
equation is afunction of these properties:

» The surface normal at that point.

» Thedirection from the point on the surface to the light.

The direction to the light source from the point is a constant when dealing with directional light. It is a parameter for lighting, but it is a constant
value for al points in the scene. The difference between directional lighting and point lights is only that this direction must be computed for
each position in the scene.

Computing this is quite smple. At the point of interest, we take the difference between the point on the surface and the light's position. We

normalize the result to produce a unit vector direction to the light. Then we use the light direction as we did before. The surface point, light
position, and surface normal must all be in the same space for this equation to make sense.

Vertex Point Lighting

Thus far, we have computed the lighting equation at each vertex and interpolated the results across the surface of the triangle. We will continue
to do so for point lights. For the moment, at |east.

We implement point lights per-vertex in the Vertex Point Lighting tutorial. This tutorial has a moving point light that circles around the cylinder.

185

Plane Lights

Figure 10.1. Vertex Point Lighting

To toggle an indicator of the light's position, pressthe Y key. The B key will toggle rotation of the light. The | and K keys move the light up
and down respectively, while the J and L keys will decrease and increase the light's radius. Holding shift with these keys will move in smaller
increments.

Most of the code is nothing we have not seen elsewhere. The main changes are at the top of the rendering function.

Example 10.1. Per-Vertex Point Light Rendering

glutil::MtrixStack nodel Matri x;
nodel Matri x. Set Matri x(g_vi ewPol e. Cal cMatri x());

const gl m:vecd4 &worl dLi ght Pos = Cal cLi ght Posi tion();

186

Plane Lights

gl m:vec4 |ight PosCaneraSpace = nodel Matri x. Top() * worl dLi ght Pos;

gl UseProgran(g_WiteDiffuseCol or.theProgram;

gl Uni fornmB8fv(g_WiteDiffuseCol or.lightPosUnif, 1, glm:value_ptr(lightPosCaneraSpace));
gl UseProgran(g_VertexDi ffuseCol or.theProgram;

gl Uni formBf v(g_VertexDi ffuseCol or.lightPosUnif, 1, glm:value_ptr(lightPosCaneraSpace));

Thelight iscomputed initially in world space, then transformed into camera space. The camera-space light position is given to both of the shaders.
Rendering proceeds normally from there.

Our vertex shader, PosVer t exLi ghti ng_PCN. vert hashad afew changes:

Example 10.2. Per-Vertex Point Light Vertex Shader
#versi on 330
| ayout (| ocati on

| ayout (| ocati on
| ayout (| ocati on

0) in vec3 position;
1) in vecd diffuseCol or;
2) in vec3 normal;

snmoot h out vec4 interpCol or;
uni form vec3 | i ght Pos;

uni formvec4 lightlntensity;
uni form vec4 anbientlintensity;

uni form mat 4 nodel ToCaner aMatri x;
uni form nmat 3 nor mal Model ToCaner aMat ri x;

uni form Proj ection

{
mat 4 caneraTod i pMatri x;

1

voi d main()

{
vec4 cameraPosition = (nmodel ToCanerahatrix * vec4(position, 1.0));
gl _Position = canmeraTod ipMatrix * cameraPosition
vec3 nornCanSpace = normalize(normal Model ToCanerahatri x * normal);
vec3 dirToLight = nornalize(lightPos - vec3(caneraPosition));
fl oat cosAngl nci dence = dot (nor mCantSpace, dir TolLight);
cosAngl nci dence = cl anp(cosAngl nci dence, 0, 1);
i nterpColor = (diffuseColor * lightlntensity * cosAngl nci dence) +

(di ffuseColor * anmbientlntensity);
}

The vertex shader takes a camera-space light position instead of a camera-space light direction. It also stores the camera-space vertex position in
atemporary inthefirst line of mai n. Thisis used to compute the direction to the light. From there, the computation proceeds normally.

Note the order of operations in computing di r ToLi ght. The | i ght Pos is on the left and the canmer aPosi ti on is on the right.
Geometrically, this is correct. If you have two points, and you want to find the direction from point A to point B, you compute B - A. The
nor mal i ze cal isjust to convert it into a unit vector.

187

Plane Lights

Interpolation

Asyou can see, doing point lighting is quite simple. Unfortunately, the visual results are not.
For example, use the controls to display the position of the point light source, then position it near the ground plane. See anything wrong?

If everything were working correctly, one would expect to see a bright area directly under the light. After all, geometrically, this situation looks
like this:

Figure 10.2. Light Near Surface

N
N
~
A ~
\ ~

A Y ~ ~

~ " '\
~ ~ ~
~ ~ ~
\ \ ~ N S SO ~o

\ AY Ay ~ ~ ~ ~

A
PR o
g 4

The surface normal for the areas directly under the light are aimost the same as the direction towards the light. This means that the angle of
incidence is small, so the cosine of this angle is close to 1. That should translate to having a bright area under the light, but darker areas farther
away. What we see is nothing of the sort. Why isthat?

WEell, consider what we are doing. We are computing the lighting at every triangl€'s vertex, and then interpolating the results across the surface
of the triangle. The ground plane is made up of precisely four vertices: the four corners. And those are al very far from the light position and
have a very large angle of incidence. Since none of them have a small angle of incidence, none of the colors that are interpolated across the
surface are bright.

You can see thisis evident by putting the light position next to the cylinder. If the light is at the top or bottom of the cylinder, then the area
near the light will be bright. But if you move the light to the middie of the cylinder, far the top or bottom vertices, then the illumination will
be much dimmer.

Thisisnot the only problem with doing per-vertex lighting. For example, run the tutorial again and do not move the light. Just watch how the light
behaves on the cylinder's surface as it animates around. Unlike with directional lighting, you can very easily see the triangles on the cylinder's
surface. Though the per-vertex computations are not helping matters, the main problem here has to do with interpolating the values.

If you move the light source farther away, you can see that the triangles smooth out and become indistinct from one another. But thisis simply
because, if the light source is far enough away, the results are indistinguishable from a directional light. Each vertex's direction to the light is
almost the same as each other vertex's direction to the light.

Per-vertex lighting was reasonable when dealing with directional lights. But it simply is not a good idea for point lighting. The question arises:
why was per-vertex lighting good with directional lightsto begin with?

Remember that our diffuse lighting equation has two parameters: the direction to the light and the surface normal. In directional lighting, the
direction to the light is always the same. Therefore, the only value that changes over atriangle's surface is the surface normal.

Linear interpolation of vectorslookslike this:

188

Plane Lights

VH#+V (1- #)

The in the equation is the factor of interpolation between the two values. When is one, we get V,, and when it is zero, we get Vy,. The two
values, V4 and Vy, can be scalars or vectors.

Our diffuse lighting equation is this:

D*1*(N -L)

If the surface normal N is being interpolated, then at any particular point on the surface, we get this equation for a directiona light (the light
direction L does not change):

D*1* (L (N#+Ny1- #))

The dot product is distributive, like scalar multiplication. So we can distribute the L to both sides of the dot product term:

D1+ ((L-(N#))+(L - (No(2-)

We can extract the linear terms from the dot product. Remember that the dot product is the cosine of the angle between two vectors, times the
length of those vectors. The two scaling terms directly modify the length of the vectors. So they can be pulled out to give us:

N

D*1* (#L -N)J+(2- #(L-Ny))

Recall that vector/scalar multiplication is distributive. We can distribute the multiplication by the diffuse color and light intensity to both terms.
Thisgives us:

(D*1*#{L -N))+(D*1*(2- (L -Ny))

(D*1#(L-NJ+(D*1 *(L-Ny))a- #

This means that if L is constant, linearly interpolating N is exactly equivalent to linearly interpolating the results of the lighting equation. And
the addition of the ambient term does not change this, since it is a constant and would not be affected by linear interpolation.

When doing point lighting, you would have to interpolate both N and L. And that does not yield the same results as linearly interpolating the two
colors you get from the lighting equation. Thisis abig part of the reason why the cylinder does not ook correct.

The more physically correct method of lighting isto perform lighting at every rendered pixel. To do that, we would have to interpolate the lighting
parameters across the triangle, and perform the lighting computation in the fragment shader.

Fragment Lighting

So, in order to deal with interpolation artifacts, we need to interpolate the actual light direction and normal, instead of just the results of the
lighting equation. Thisis called per-fragment lighting or just fragment lighting.

Thisis pretty simple, conceptually. We simply need to do the lighting computations in the fragment shader. So the fragment shader needs the
position of the fragment, thelight's position (or the direction to thelight from that position), and the surface normal of the fragment at that position.
And al of these values need to be in the same coordinate space.

There is a problem that needs to be dealt with first. Normals do not interpolate well. Or rather, wildly different normals do not interpolate well.
And light directions can be very different if the light source is close to the triangle relative to that triangle's size.

189

Plane Lights

Consider the large plane we have. The direction toward the light will be very different at each vertex, so long as our light remainsin relatively
close proximity to the plane.

Part of the problem iswith interpolating values along the diagonal of our triangle. Interpolation within atriangle works like this. For any position
within the area of the triangle, that position can be expressed as a weighted sum of the positions of the three vertices.

Figure 10.3. Triangle Inter polation

A

P=#A +#B +#C, whereq + g+, =10

The 4 . and ,, values are not the distances from their respective points to the point of interest. In the above case, the point P is in the exact
center of the triangle. Thus, the three values are each #.

If the point of interest is along an edge of the triangle, then the contribution of the vertex not sharing that edge is zero.

190

Plane Lights

Figure 10.4. Triangle Edge Interpolation

A

Here, point P is exactly halfway between points C and B. Therefore, 3 _and ,, are both 0.5, but is 0.0. If point P is anywhere along the edge of
atriangle, it gets none of its final interpolated value from the third vertex. SO along atriangle's edge, it acts like the kind of linear interpolation
we have seen before.

Thisis how OpenGL interpolates the vertex shader outputs. It takes the a, and ,, coordinates for the fragment's position and combines them
with the vertex output value for the three vertices in the same way it does for the fragment's position. There is sightly more to it than that, but
we will discuss that |ater.

The ground plane in our example is made of two large triangles. They look like this:

191

Plane Lights

Figure 10.5. Two Triangle Quadrilateral

What happens if we put the color black on the top-right and bottom-left points, and put the color green on the top-left and bottom-right points?
If you interpolate these across the surface, you would get this:

192

Plane Lights

Figure 10.6. Two Triangle Interpolation

The color is pure green along the diagonal. That is because along atriangle's edge, the value interpolated will only be the color of the two vertices
along that edge. The value is interpolated based only on each triangle individually, not on extra data from another neighboring triangle.

In our case, this means that for points along the main diagonal, the light direction will only be composed of the direction values from the two
vertices on that diagonal. Thisis not good. Thiswould not be much of aproblem if the light direction did not change much along the surface, but
with large triangles (relative to how close the light is to them), that is simply not the case.

Since we cannot interpolate the light direction very well, we need to interpolate something else. Something that does exhibit the characteristics
we need when interpolated.

Positions interpolate quite well. Interpolating the top-left position and bottom-right positions gets an accurate position value aong the diagonal .
So instead of interpolating the light direction, we interpolate the components of the light direction. Namely, the two positions. The light position
isaconstant, so we only need to interpolate the vertex position.

Now, we could do thisin any space. But for illustrative purposes, we will be doing thisin model space. That is, both the light position and vertex
position will bein model space.

One of the advantages of doing thingsin model spaceisthat it getsrid of that pesky matrix inverse/transpose we had to do to transform normals
correctly. Indeed, normalsare not transformed at all. One of the disadvantagesisthat it requires computing an inverse matrix for our light position,
so that we can go from world space to model space.

The Fragment Point Lighting tutorial shows off how fragment lighting works.

193

Plane Lights

Figure 10.7. Fragment Point Lighting

i

This tutorial is controlled as before, with a few exceptions. Pressing the t key will toggle a scale factor onto to be applied to the cylinder, and
pressing the h key will toggle between per-fragment lighting and per-vertex lighting.

Much better.

The rendering code has changed somewhat, considering the use of model space for lighting instead of camera space. The start of the rendering
looks as follows:

Example 10.3. Initial Per-Fragment Rendering

glutil::MatrixStack nodel Matri x;
nodel Matri x. Set Matri x(g_vi ewPol e. Cal cMatri x());

194

Plane Lights

const gl m:vecd4 &worl dLi ght Pos = Cal cLi ght Posi tion();

gl m:vec4 |ight PosCaneraSpace = nodel Matri x. Top() * worl dLi ght Pos;

The new code is the last line, where we transform the world-space light into camera space. This is done to make the math much easier. Since
our matrix stack is building up the transform from model to camera space, the inverse of this matrix would be a transform from camera space to
model space. So we need to put our light position into camera space before we transform it by the inverse.

After doing that, it uses a variable to switch between per-vertex and per-fragment lighting. This just selects which shaders to use; both sets of
shaders take the same uniform values, even though they use them in different program stages.

The ground plane is rendered with this code:

Example 10.4. Ground Plane Per-Fragment Rendering

glutil::PushStack push(nodel Matri x);

gl UsePr ogr am(pWhi t ePr ogr am >t hePr ogr am ;
gl Uni f or mvat r i x4f v(pWhi t ePr ogr am >nodel ToCaneraMat ri xUni f, 1, G._FALSE,
gl m:val ue_ptr (nodel Matrix. Top()));

glm:mat4 invTransform = gl m:inverse(nodel Matri x. Top());
gl m:vec4 |ight PosMdel Space = invTransform * |i ght PosCanmer aSpace;
gl Uni f or nB8f v(pWhi t ePr ogr am >nodel SpacelLi ght PosUni f, 1, gl m:val ue_ptr(Iight PosModel Space));

g_pPl aneMesh- >Render () ;
gl UsePr ogranm(0);

We compute the inverse matrix using gl m : i nver se and store it. Then we use that to compute the model space light position and pass that
to the shader. Then the planeis rendered.

Thecylinder isrendered using similar code. It ssimply does afew transformationsto the model matrix before computing the inverse and rendering.

The shaders are where the real action is. As with previous lighting tutorials, there are two sets of shaders. one that take a per-vertex color, and
one that uses a constant white color. The vertex shaders that do per-vertex lighting computations should be familiar:

Example 10.5. M odel Space Per-Vertex Lighting Vertex Shader
#version 330
| ayout (| ocati on

| ayout (| ocati on
| ayout (| ocati on

0) in vec3 position;
1) in vecd inD ffuseCol or;
2) in vec3 normal;

out vec4 interpCol or;

uni form vec3 nodel SpacelLi ght Pos;
uni formvec4 lightlntensity;

uni form vec4 anbientlintensity;

uni form mat 4 nodel ToCaner aMatri x;
uni form nat 3 nor mal Model ToCaner aMat ri x;

uni form Proj ection

{
b

mat 4 caneraToCl i pMatri x;

195

Plane Lights

void main()

{
gl _Position = canmeraTod ipMatrix * (nodel ToCanmeraMatrix * vec4(position, 1.0));
vec3 dirToLi ght = nornalize(nodel SpacelLi ght Pos - position);
fl oat cosAngl nci dence = dot(normal, dirToLight);
cosAngl nci dence = cl anp(cosAngl nci dence, 0, 1);
interpColor = (lightintensity * cosAnglncidence * inD ffuseColor) +
(anbientintensity * inDiffuseColor);
}

Themain differences between thisversion and the previous version are simply what one would expect from the change from camera-spacelighting
to model space lighting. The per-vertex inputs are used directly, rather than being transformed into camera space. There is a second version that
omitsthei nDi f f useCol or input.

With per-vertex lighting, we have two vertex shaders: Model PosVer t exLi ghti ng_PCN. vert and

Model PosVert exLi ghti ng_PN. vert . With per-fragment lighting, we aso have two shaders: Fr agnment Li ghti ng_PCN. vert and
Fragnent Li ghti ng_PN. vert. They are disappointingly simple:

Example 10.6. M odel Space Per-Fragment Lighting Vertex Shader
#version 330
| ayout (| ocati on

| ayout (| ocati on
| ayout (| ocati on

0) in vec3 position;
1) in vecd inD ffuseCol or;
2) in vec3 normal;

out vec4 diffuseCol or;

out vec3 vertexNornal ;

out vec3 nodel SpacePosition;

uni form mat 4 npodel ToCaner aMatri x;

uni form Proj ection

{
mat 4 canmeraToCl i pMatri x;
b
voi d main()
{
gl _Position = canmeraTod ipMatrix * (nodel ToCanmeraMatrix * vec4(position, 1.0));
nodel SpacePositi on = position;
vertexNormal = normal;
di f fuseCol or = inDiffuseCol or;
}

Since our lighting is done in the fragment shader, there is not much to do except pass variables through and set the output clip-space position.
The version that takes no diffuse color just passes a vec4 containing just 1.0.

The fragment shader is much more interesting:

Example 10.7. Per-Fragment Lighting Fragment Shader

#version 330

196

Plane Lights

in vecd diffuseCol or;
in vec3 vertexNornal;
i n vec3 nodel SpacePosi tion;

out vec4 out put Col or;

uni form vec3 nodel SpacelLi ght Pos;

uni formvec4 lightlntensity;
uni form vec4 anbientlintensity;

void main()

{

}

vec3 lightDir = normalize(nodel SpacelLi ght Pos - nopdel SpacePosition);

fl oat cosAngl nci dence = dot(normalize(vertexNormal), lightDr);
cosAngl nci dence = cl anp(cosAngl nci dence, 0, 1);

out put Col or = (diffuseColor * lightintensity * cosAngl nci dence) +
(diffuseColor * ambientlntensity);

The math is essentially identical between the per-vertex and per-fragment case. The main difference is the normalization of ver t exNor nal .
Thisis necessary because interpol ating between two unit vectors does not mean you will get aunit vector after interpolation. Indeed, interpolating
the 3 components guarantees that you will not get a unit vector.

Gradient Matters

While this may look perfect, there is still one problem. Use the Shift+J key to move the light really close to the cylinder, but without putting
the light inside the cylinder. Y ou should see something like this:

197

Plane Lights

Figure 10.8. Close Lit Cylinder

|

Notice the vertical bands on the cylinder. This are reminiscent of the same interpolation problem we had before. Was not doing lighting at the
fragment level supposed to fix this?

It is similar to the original problem, but technically different. Per-vertex lighting caused lines because of color interpolation artifacts. Thisis
caused by an optical illusion created by adjacent linear gradients.

The normal is being interpolated linearly across the surface. This also means that the lighting is changing somewhat linearly across the surface.
While the lighting isn't alinear change, it can be approximated as one over a small area of the surface.

The edge between two triangles changes how the light interacts. On one side, the nearly-linear gradient has one slope, and on the other side, it
has adifferent one. That is, the rate at which the gradients change abruptly changes.

Here is a simple demonstration of this:

198

Plane Lights

Figure 10.9. Adjacent Gradient

These are two adjacent linear gradients, from the bottom |eft corner to the top right. The color value increases in intensity as it goes from the
bottom left to the top right. They meet along the diagonal in the middle. Both gradients have the same color value in the middle, yet it appears
that thereis aline down the center that is brighter than the colors on both sides. But it is not; the color on the right side of the diagonal is actually
brighter than the diagonal itself.

That isthe optical illusion. Here is adiagram that shows the color intensity as it moves across the above gradient:

Figure 10.10. Gradient I ntensity Plot

The color curveis continuous; there are no breaks or sudden jumps. But it is not a smooth curve; thereis a sharp edge.

It turns out that human vision really wants to find sharp edges in smooth gradients. Anytime we see a sharp edge, our brains try to turn that into
some kind of shape. And if there is a shape to the gradient intersection, such asaline, we tend to see that intersection “pop” out at us.

The solution to this problem is not yet available to us. One of the reasons we can see this so clearly is that the surface has avery regular diffuse
reflectance (ie: color). If the surface color was irregular, if it changed at most every fragment, then the effect would be virtually impossible to
notice.

But the real source of the problem is that the normal is being linearly interpolated. While thisis certainly much better than interpolating the per-
vertex lighting output, it does not produce anormal that matches with the normal of a perfect cylinder. The correct solution, which we will get to
eventually, isto provide away to encode the normal for a surface at many points, rather than simply interpolating vertex normals.

199

Plane Lights

Distant Points of Light

There is another issue with our current example. Use the i key to raise the light up really high. Notice how bright all of the upwardly-facing
surfaces get:

Figure 10.11. High Light

Y ou probably have no experience with thisin real life. Holding a light farther from the surface in reality does not make the light brighter. So
obviously something is happening in reality that our simple lighting model is not accounting for.

Inreality, lights emit a certain quantity of light per unit time. For apoint-like light such asalight bulb, it emitsthislight radially, in al directions.
The farther from the light source one gets, the more area that this must ultimately cover.

Light isessentialy awave. The farther away from the source of the wave, the lessintense the wave is. For light, thisis called light attenuation.

200

Plane Lights

Our model does not include light attenuation, so let's fix that.

Attenuation isawell-understood physical phenomenon. In the absence of other factors (atmospheric light scattering, etc), thelight intensity varies
with the inverse of the square of the distance. An object 2 units away from the light feels the light with one-fourth the intensity. So our equation
for light attenuation is as follows:

Equation 10.1. Physical Light Attenuation

Attenuated Light = m

Thereisaconstant in the equation, which isused for unit correction. Of course, we can (and will) useit asafudge factor to make thingslook right.

The constant can take on a physical meaning. The constant can mean the distance at which half of the light intensity is lost. To compute such
aconstant, for a half-light distance of rx, use this equation:

k=-1
"
This egquation computes physically realistic light attenuation for point-lights. But it often does not 1ook very good. The equation tends to create

a sharper intensity falloff than one would expect.

There is a reason for this, but it is not one we are ready to get into quite yet. What is often done is to simply use the inverse rather than the
inverse-sguare of the distance:

Equation 10.2. Light Attenuation Inverse

. _ I
Attenuated Light = To+k*n)

It looks brighter at greater distances than the physically correct model. Thisis fine for simple examples, but as we get more advanced, it will not
be acceptable. This solution isreally just a stop-gap; the real solution is one that we will discussin afew tutorials.

Reverse of the Transform

However, there is a problem. We previously did per-fragment lighting in model space. And while thisis a perfectly useful space to do lighting
in, model space is not world space.

We want to specify the attenuation constant factor in terms of world space distances. But we are not dealing in world space; we are in model
space. And model space distances are, naturally, in model space, which may well be scaled relative to world space. Here, any kind of scalein the
model-to-world transform is a problem, not just non-uniform scales. Although if there was a uniform scale, we could apply theoretically apply
the scale to the attenuation constant.

So now we cannot use model space. Fortunately, camera space is a space that has the same scale as world space, just with a rotation/translation
applied to it. So we can do our lighting in that space.

Doing it in camera space requires computing acamera space position and passing it to the fragment shader to be interpolated. And while we could
do this, that's not clever enough. Is not there some way to get around that?

Yes, thereis. Recall gl _FragCoor d, an intrinsic value given to every fragment shader. It represents the location of the fragment in window
space. So instead of transforming from model space to camera space, we will transform from window space to camera space.

Note

The use of this reverse-transformation technique here should not be taken as a suggestion to use it in all, or even most cases like this.
In all likelihood, it will be much dlower than just passing the camera space position to the fragment shader. It is here primarily for
demonstration purposes, and because it will be useful in the future.

201

Plane Lights

The sequence of transformations that take a position from camera space to window spaceis as follows:

Table 10.1. Transform Legend

Field Name M eaning

M The camera-to-clip transformation matrix.

Peamera The camera-space vertex position.

C The clip-space vertex position.

N The normalized device coordinate position.

Vyy The X and Y values passed to gl Vi ewport .

Vwh The width and height passed to gl Vi ewport .

Dr¢ The depth near and far values passed to gl Dept hRange.

Equation 10.3. Camerato Window Transforms

c = MP camera
_ @
\ B Cw
gl_FragCoord.x = VTWN TV, + VTW
v Y
gl_FragCoordy = N, +V +3
D; - Dp Ds +Dp
gl_FragCoord.z = >—N,+—
- 1
gl_FragCoordw = o

Therefore, given gl _Fr agCoor d, we will need to perform the reverse of these:

Equation 10.4. Window to Camera Transforms

2*gl_FragCoordx 2V

N T
2*gl_FragCoordy 2V
N y — g._! \79 Y - y 1
h h
2* gl_FragCoord.z- Dy - Dy,
N y - D¢ - Dn
& _ ﬁ
Xyz ~ gl_FragCoord.w
- 1
CW ~ gl_FragCoord.w
ﬁcamera = M l&

In order for our fragment shader to perform this transformation, it must be given the following values:
* Theinverse projection matrix.
» The viewport width/height.

e Thedepth range.

Applied Attenuation

The Fragment Attenuation tutorial performs per-fragment attenuation, both with linear and quadratic attenuation.

202

Plane Lights

Figure 10.12. Fragment Attenuation

This tutorial controls as before, with the following exceptions. The O and U keys increase and decrease the attenuation constant. However,
remember that decreasing the constant makes the attenuation less, which makes the light appear brighter at a particular distance. Using the shift

key in combination with them will increase/decrease the attenuation by smaller increments. The H key swaps between the linear and quadratic
interpolation functions.

The drawing code is mostly the same as we saw in the per-vertex point light tutorial, since both this and that one perform lighting in camera
space. The vertex shader is also nothing new; passes the vertex normal and color to the fragment shader. The vertex normal is multiplied by the
normal matrix, which allows us to use non-uniform scaling.

New Uniform Types

The more interesting part is the fragment shader. The definitions are not much changed from the last one, but there have been some additions:

203

Plane Lights

Example 10.8. Light Attenuation Fragment Shader Definitions

uniformfloat |ightAttenuation;
uni f orm bool bUseRSquar e;

uni f orm UnPr oj ecti on

{
mat 4 clipToCaneraMatri x;

i vec2 wi ndowSi ze;

b
Thel i ght At t enuat i on uniformisjust afloat, but bUseRSquar e uses anew type: boolean.

GLSL hasthe boal type just like C++ does. Thet r ue and f al se valueswork just like C++'s equivalents. Where they differ isthat GLSL also
has vectors of bools, called bvec#, where the # can be 2, 3, or 4. We do not use that here, but it isimportant to note.

OpenGL's API, however, isstill aC API. And C (at least, pre-C99) has no bool type. Uploading a boolean value to a shader looks like this:
gl Uni for mli (g_FragWi teDi f f useCol or. bUseRSquar eUni f, g_bUseRSquare ? 1 : 0);

The integer form of uniform uploading is used, but the floating-point form could be allowed as well. The number O represents false, and any
other number istrue.

The UnPr oj ect i on uniform block contains data that only changes when the window changes. This uniform block is updated aong with the
vertex shader's Pr oj ect i on block. This datais used to perform the previously-discussed reverse-transformation operation, so that we can turn
gl _FragCoor d into a camera-space position.

Notice that thewi ndowSi ze uses anew type: ivec2. Thisisa2-dimensiona vector of integers.

Functions in GLSL

For the first time, we have a shader complex enough that splitting it into different functions makes sense. So we do that. The first function is
one that computes the camera-space position:;

Example 10.9. Window to Camera Space Function

vec3 Cal cCaner aSpacePosi tion()

{
vec4 ndcPos;
ndcPos. xy = ((gl _FragCoord.xy / w ndowSi ze.xy) * 2.0) - 1.0;
ndcPos.z = (2.0 * gl _FragCoord.z - gl _DepthRange. near - gl _DepthRange.far) /
(gl _Dept hRange. far - gl _DepthRange. near);
ndcPos.w = 1. 0;
vec4 clipPos = ndcPos / gl _FragCoord. w,
return vec3(clipToCaneraMatrix * clipPos);
}

Not unsurprisingly, GLSL functions are defined much like C and C++ functions.

Thefirst three lines compute the position in normalized device coordinates. Notice that the computation of the X and Y coordinatesis simplified
from the original function. Thisis because our viewport always sets the lower-l€eft position of the viewport to (0, 0). Thisis what you get when
you plug zeros into that equation.

Thegl _Dept hRange variableisaspecial uniform defined by GLSL for fragment shaders. Asthe name suggests, it properly mirrorsthe values
passed to gl Dept hRange; thisway, we do not have to put it in our uniform block.

After the transformation to NDC space, we compute the clip-space position as previously shown. Then the result is multiplied through the clip-
to-camera matrix, and that vector is returned to the caller.

204

Plane Lights

Thisisasimple function that uses only uniforms to compute a value. It takes no arguments. The second function is not quite as simple.

Example 10.10. Light Intensity Application Function

vec4 ApplyLightintensity(in vec3 cameraSpacePosition, out vec3 |lightDirection)

{

vec3 lightDifference = caneraSpaceli ghtPos - cameraSpacePosition;
float |ightDi stanceSqgr = dot(lightDifference, |ightD fference);
lightDirection = lightDifference * inversesqgrt(lightD stanceSqr);

float distFactor = bUseRSquare ? |ightDi stanceSqr : sqrt(lightDi stanceSqr);

return lightintensity * (1 / (1.0 + lightAttenuation * distFactor));
}

The function header looks rather different from the standard C/C++ function definition syntax. Parameters to GLSL functions are designated as
being inputs, outputs, or inputs and outputs.

Parameters designated with i n areinput parameters. Functions can change these values, but they will have no effect on the variable or expression
used in the function call. This is much like the default in C/C++, where parameter changes are local. Naturally, this is the default with GLSL
parameters if you do not specify a qualifier.

Parameters designated with out can be written to, and its value will be returned to the calling function. These are similar to non-const reference
parameter typesin C++. And just as with reference parameters, the caller of afunction must call it with areal variable (called an “I-value”). And
this variable must be a variable that can be changed, so you cannot pass a uniform or shader stage input value as this parameter.

However, the initial value of parameters declared as outputs is not initialized from the calling function. This means that the initial value is
uninitialized and therefore undefined (ie: it could be anything). Because of this, you can pass shader stage outputsasout parameters. Recall that
shader stage output variables can be written to, but never read from.

Parameters designated asi nout will haveitsvaueinitialized by the caller and have the final value returned to the caller. These are exactly like
non-const reference parameters in C++. The main difference is that the value is initialized with the one that the user passed in, which forbids
the passing of shader stage outputsasi nout parameters.

This particular function is semi-complex, as an optimization. Previously, our functions simply normalized the difference between the vertex
position and the light position. In computing the attenuation, we need the distance between the two. And the process of normalization computes
the distance. So instead of calling the GLSL function to normalize the direction, we do it ourselves, so that the distance is not computed twice
(oncein the GLSL function and once for us).

The second line performs a dot product with the same vector. Remember that the dot product between two vectors is the cosine of the angle
between them, multiplied by each of thelengths of the vectors. Well, the angle between avector and itself is zero, and the cosine of zero isaways
one. So what you get is just the length of the two vectors times one another. And since the vectors are the same, the lengths are the same. Thus,
the dot product of avector with itself isthe square of its length.

To normalize a vector, we must divide the vector by it's length. And the length of i ghtDifference is the square root of
i ght Di stanceSqgr. Thei nversesqrt computes 1/ the square root of the given value, so al we need to do is multiply this with the
IightDifference togetthelight direction asanormalized vector. This value iswritten to our output variable.

The next line computes our lighting term. Notice the use of the ?: operator. This works just like in C/C++. If we are using the square of the
distance, that's what we store. Otherwise we get the square-root and store that.

Note

The assumption in using ?: hereis that only one or the other of the two expressions will be evaluated. That's why the expensive call to
sqrt isdone here. However, this may not be the case. It is entirely possible (and quite likely) that the shader will always evaluate both
expressions and simply store one value or the other as needed. So do not rely on such conditional logic to save performance.

After that, things proceed as expected.

205

Plane Lights

Making these separate functions makes the main function look almost identical to prior versions:

Example 10.11. Main Light Attenuation

void main()

{

}

vec3 camer aSpacePosi ti on = Cal cCanmer aSpacePosition();

vec3 lightDir = vec3(0.0);
vec4 attenlntensity = ApplyLightlntensity(canmeraSpacePosition, lightDir);

float cosAnglnci dence = dot(normalize(vertexNormal), lightDir);
cosAngl nci dence = cl anp(cosAngl nci dence, 0, 1);

out put Col or = (diffuseColor * attenlntensity * cosAngl nci dence) +
(di ffuseColor * anmbientlntensity);

Function calls appear very similar to C/C++, with the exceptions about parameters noted before. The camera-space position is determined. Then
the light intensity, modified by attenuation, is computed. From there, things proceed as before.

Alternative Attenuation

As nice as these somewhat-realistic attenuation schemes are, it is often useful to model light attenuation in a very different way. Thisis
in no way physically accurate, but it can ook reasonably good.

We simply do linear interpolation based on the distance. When the distance is 0, the light has full intensity. When the distance is beyond
agiven distance, the maximum light range (which varies per-light), the intensity is 0.

Note that “reasonably good” depends on your needs. The closer you get in other ways to providing physically accurate lighting, the closer
you get to photorealism, thelessyou can rely on less accurate phenomena. It does no good to implement acomplicated sub-surface scattering
lighting model that includes Fresnel factors and so forth, while simultaneously using a simple interpolation lighting attenuation model.

In Review

In thistutorial, you have learned the following:

Point lights are lights that have a position within the world, radiating light equally in al directions. The light direction at a particular point on
the surface must be computed using the position at that point and the position of the light.

Attempting to perform per-vertex lighting computations with point lights leads to artifacts.
Lighting can be computed per-fragment by passing the fragment's position in an appropriate space.
Lighting can be computed in model space.

Point lights have afalloff with distance, called attenuation. Not performing this can cause odd effects, where alight appearsto be brighter when
it movesfarther from asurface. Light attenuation varieswith theinverse of the square of the distance, but other attenuation models can be used.

Fragment shaders can compute the camera space position of the fragment in question by using gl _Fr agCoor d and afew uniform variables
holding information about the camera to window space transform.

GLSL can haveinteger vectors, boolean values, and functions.

Further Study

Try doing these things with the given programs.

206

Plane Lights

» When we used model space-based lighting computations, we had to perform an inverse on our matrix from the matrix stack to transform the
light position from camera space to model space. However, it would be entirely possible to simply build an inverse matrix at the same time
we build aregular matrix on our matrix stack. The inverse of arotation matrix is just the rotation matrix with a negated angle; the inverse of a
scaleisjust the multiplicative inverse of the scales, and the inverse of the trandation is the negation of the trand ation vector.

To do this, you will need to modify the Mat ri xSt ack classin anumber of ways. It must store a second matrix representing the accumulated
inverse matrix. When a transformation command is given to the stack, it must also generate the inverse matrix for this transform and left
multiply this into the accumulated inverse. The push/pop will have to push/pop the inverse matrix as well. It can use the same stack, so long
as the pop function puts the two matrices in the proper places.

» Implement the alternative attenuation described at the end of the section on attenuation.

GLSL Features of Note

gl_DepthRange A built-in OpenGL uniform defined for fragment shaders only. This uniform stores the parameters passed to
gl Dept hRange. When those parameters change, all programs are automatically updated.

vec inversesqrt(vec x);

This function computes 1 / the square root of x. This is a component-wise computation, so vectors may be used. The return value will have
the sametypeasx.

vec sqrt(vec x);

This function computes the square root of x. This is a component-wise computation, so vectors may be used. The return value will have the
sametypeasx.

Glossary

point light source A light source that emits light from a particular location in the world. The light is emitted in al directions
evenly.

fragment lighting Evaluating the lighting equation at every fragment.
Thisisaso called Phong shading, in contrast with Goroud shading, but this name has fallen out of favor due
to similarities with names for other lighting models.

light attenuation The decrease of the intensity of light with distance from the source of that light.

207

Chapter 11. Shinies

The diffuse lighting model works reasonably well for a smooth, matte surface. Few objects in reality conform to this archetype. Therefore, in
order to more accurately model real objects, we need to improve upon this. Let us focus on making objects appear shiny.

Shiny materials tend to reflect light more strongly in the opposite direction from the angle of incidence (the angle between the surface normal
and the incoming light direction). Thiskind of reflection is called a specular reflection. A perfect specular reflector would be amirror.

One way to show that an object is shiny isto model specular highlights. A specular highlight is a bright highlight on an object caused by direct
illumination from alight source. The position of the highlight changes with the view direction aswell asthe light direction.

Modelling true specular reflection would require reflecting al light from objects in the scene, whether direct or indirect. However for many
objects, like shiny plastics and the like, indirect specular reflections are very weak. Thus, by modeling direct specular reflections, we can make
an object appear shiny without having to do too much work.

Wewill look at several modelsfor specular highlightsand reflection. The Lambertian diffusereflectance model wasreasonably good for modelling
diffuse lighting, but there are several models for specular reflection that should be considered. They vary in quality and performance.

Note that these models do not throw away diffuse lighting. They all act as supplements, adding their contribution into the overall result for the
lighting equation.

Microfacets

All of these specular reflection models work based on an assumption about the characteristics of the surface. If a surface was perfectly smooth,
then the specular highlight from a point light would be infinitely small (since point lights themselves are infinitely small).

Figure 11.1. Perfect Specular Reflection

oA B

Notice that the intensity of the reflected light depends not only on the angle of incidence but also on the direction to the viewer. Thisis called
the angle of view or viewing angle. Viewing position A detects the light specularly reflected from the surface at the point P, but the viewing
position B does not.

208

Shinies

Surfaces however are rarely perfect specular reflectors (mirrors are the most common perfect reflectors). Surfaces that seem smooth from far
away can be rough on closer examination. Thisistrue at the microscopic level aswell, even for surfacesthat appear quite smooth. Thisroughness
can be modelled by assuming that a surface is composed of a number of microfacets.

A microfacet isaflat planethat isoriented in asingle direction. Each microfacet reflectslight perfectly in that direction. Surfaces with microfacets
would look like this:

Figure 11.2. Smooth and Rough Microfacets

It is part of the microfacet model's assumption that many microfacets on a surface will contribute to the light returned under asingle pixel of the
final image. So each pixel inthe rendered image isthe result of an aggregate of the microfacets that lie under the area of that pixel on the surface.

The average normal of the microfacets is the surface normal at that point. The relative smoothness of a surface can therefore be modeled as a
statistical distribution of the orientation of microfacets on the surface. A smooth surface has a distribution close to the average, while a rough
surface has a broader distribution.

Thus, amodel of specular reflectionsincludes aterm that definesthe overall smoothness of the source. Thisisasurface characteristic, representing
the distribution of microfacets using whatever statistical distribution the particular specular model is using. One of the main differences between
specular modelsisthe kind of statistical distribution that they use.

Specular highlights are formed because, even though the surface normal may not be oriented to directly reflect light from the light source to the
viewer, some microfacets may still be oriented to reflect a portion of that light. A microfacet distribution model determines the proportion of
microfacets that happen to be oriented to reflect light towards the viewer.

Smooth surfaces, those who's microfacets do not deviate much from the surface normal, will have a small, bright highlight. Rough surfaces,
who's microfacets are oriented in wildly divergent directions, will have amuch dimmer, but larger specular highlight. These highlights will have
positions and shapes based on the angle of incidence and the angle of view.

Note that specular reflectance models do not become diffuse reflectance model s when taken to the extreme case of maximum roughness. Specular
reflection represents a different mode of light/surface interaction from diffuse reflection.

Phong Model

The simplest model of specular illumination isthe Phong model. The distribution of microfacetsisnot determined by areal statistical distribution.
Instead it is determined by... making things up.

209

Shinies

On Phong and Nomenclature

The term “Phong shading” was once commonly used to refer to what we now know as per-fragment (or per-pixel) lighting. That is,
evaluating the lighting equation at every fragment over asurface. Thisterm should not be confused with the Phong specular lighting model.
Because of this, the term “Phong shading” has fallen out of common usage.

The Phong model ishot really based on anything real. It does not deal in microfacet distributions at all. What the Phong model isis something that
looks decent enough and is cheap to compute. It approximates a statistical distribution of microfacets, but it is not really based on anything real.

The Phong model states that the light reflected in the direction of the viewer varies based on the angle between difference between the view
direction and the direction of perfect reflection. Mathematically, the Phong model looks like this:

Equation 11.1. Phong Specular Term

Phongterm = (V - R)®

The Phong term is multiplied by the light intensity in the lighting equation.

The brightness of the specular highlight for a particular viewing direction is based on raising the cosine of the angle between the view direction
and thereflection direction to apower. As previously stated, thismodel is not based on anything real. It simply creates a bright somewhat-circular
area on the surface. This area gets dimmer as the viewer is farther from the direction of perfect reflection.

The s term in the equation represents the roughness of the surface. A smooth surface, which should have asmaller highlight, hasalarges. Since
the cosine of the angle is a number on [0, 1], taking it to a power greater than 1.0 will make the number smaller. Therefore, alarge s exponent

will make for asmall highlight.

The specular exponent can range from (0, o). A small exponent makes for arougher appearance, while alarge exponent suggests a shiny surface.

Specular Absorption

The Phong term computed above is then multiplied with the light intensity. This represents the maximum light reflected along the view direction.

However, just aswith diffuse lighting, surfaces can absorb some quantity of the light that would be specularly reflected. We could use the diffuse
color here, multiplying it by the specular term. But this would not be physically correct for many kinds of objects.

Many surfaces, particularly certain man-made pigments and plastics, have multiple layers to them. The top layer will specularly reflect some
portion of the light. However, it will also let some portion of that light reach lower layers. These layers have stronger diffuse reflectance. So the
specular absorption on the surface has different characteristics than the diffuse absorption in the lower layers. Usually, the specular layer reflects
equally on al wavelenths, so the specular highlight tends to be the color of the light itself.

Notably, metals do not do this. Their diffuse absorption tends to be the same as their specular absorption. So while blue plastic under white light
has awhite specular highlight, gold metal under white light has a gold highlight.

Drawing Phong

The Phong Lighting tutorial demonstrates the Phong specular model.

210

Figure 11.3. Phong Lighting

Thetutoria is controlled similarly to previous lighting tutorials. Clicking and dragging with the right mouse button controls the orientation of the
cylinder. Pressing the T key will swap between the scaled and unscaled cylinder. The Y key toggles the drawing of the light source. The B key
will toggle the light's rotation on/off. Pressing the Space Bar toggles between drawing the uncolored cylinder and the colored one.

Thelight's position is mostly controlled as before, with the |,J, K, and L keys. The specular valueis controlled by the U and O keys. They raise
and low the specular exponent. Using Shift in combination with them will raise/lower the exponent by smaller amounts.

The G key toggles between a diffuse color of (1, 1, 1) and a darker diffuse color of (0.2, 0.2, 0.2). This is useful for seeing what the specular
would look like on a darker surface color.

The H key selects between specular and diffuse, just specular and just diffuse. The ambient term is aways used. Pressing Shift+H will toggle
between diffuse only and diffuse+specular.

Shinies

The rendering code is nothing you have not seen in earlier tutorials. It loads 6 programs, and uses the various controls to select which to use
to render.

There are two vertex shadersin use. One that takes the position and normal attributes, and one that takes them plus a per-vertex color. Both of
them output the camera-space vertex normal (computed with a normal matrix), the camera-space vertex position, and the diffuse color. In the
case of the shader that does not take a per-vertex color, the diffuse color output is taken from a uniform set by the code.

Thefragment shadersare moreinteresting. They do lighting in camera space, so thereisno need for the reverse-transform trick we used previously.
The shaders also use light attenuation, but it only varies with the inverse of the distance, rather than the inverse squared.

The main portion of the specular+diffuse fragment shader is as follows:

Example 11.1. Phong Lighting Shader

vec3 lightDir = vec3(0.0);
float atten = Cal cAttenuation(caneraSpacePosition, lightDir);
vec4 attenlntensity = atten * lightlntensity;

vec3 surfaceNormal = nornalize(vertexNornal);
fl oat cosAngl nci dence = dot (surfaceNormal, lightDir);
cosAngl nci dence = cl anp(cosAngl nci dence, 0, 1);

vec3 viewDirection = nornalize(-camnmeraSpacePosition);
vec3 reflectDir = reflect(-lightDir, surfaceNormal);
fl oat phongTerm = dot(viewDirection, reflectDir);
phongTerm = cl anp(phongTerm 0, 1);

phongTerm = cosAngl nci dence != 0.0 ? phongTerm: 0.0;
phongTer m = pow phongTerm shi ni nessFactor);

out put Col or = (diffuseColor * attenlntensity * cosAngl nci dence) +
(specul arCol or * attenlntensity * phongTerm +
(di ffuseColor * anmbientlntensity);

Theinitial section of code should be familiar. The Phong specular computations start with computing the direction to the camera. Since we are
working in camera space, we know that the camerais at the origin (0, 0, 0). The direction from point A to point B is the normalization of B - A.
Since the destination point is at the origin, that becomes simply -A, normalized.

The next line computes the direction of perfect reflection, given the light direction and the surface normal. The function here, r ef | ect , isa
standard GLSL function used for precisely this purpose. Notice that the function in question requires the that the light direction is the direction
fromthe light. Our light direction is the direction to the light. Thisiswhy it is negated.

This function isuseful, but it isimportant to know how to compute the reflection direction on your own. Here is the formula:

Equation 11.2. Vector Reflection

T = -
R =1T-2R-T)+K

The L vector isthe direction to the light, so negating it produces the vector from the light.

From here, the Phong term is computed by taking the dot product of the reflection direction and the view direction, clamping it to 0, 1. The next
line, where we use the angle of incidence, is very important. What this line does is prevent us from having a specular term when the surface
normal is oriented away from the light. If this line were not here, it would be possible to have specular highlights appear to shine through a
surface. Which is not particularly realistic.

The GLSL standard function pow is next used to raise the Phong term to the power. This function seems generally useful, but it has a large
number of limitations. The pow function computes XY, where X isthe first parameter and Y isthe second.

212

Shinies

This function only works for values of X that are greater than or equal to 0; it returns undefined values (ie: anything) otherwise. Clamping the
Phong term ensures this. Also, if X is exactly 0.0, then Y must be strictly greater than zero; undefined values are returned otherwise. These
limitations exist to make computing the power function much faster.

And for Phong specular computations, the limitations almost never comeinto play. The cosine of the angleis clamped, and the specular exponent
is not allowed to be zero.

Notice that the specular term is added into the diffuse and ambient terms. This has meaning for the intensity issue we have seen before. If the
diffuse and specular colors are too large, and the light attenuation is quite small, then the resulting values from the lighting equations can be

larger than 1.0 in magnitude. Since OpenGL automatically clamps the colors to 1.0, this can cause unpleasant effects, where there appears to
be avery bright, white area on a surface.

Visual Specular

Having even aweak specular term can make a significant, if subtle, difference. In our case, the specular color of the materia is a fairly weak
(0.25, 0.25, 0.25). But even with arough specular highlight, the surface looks more physically reasonable.

In particular, it isinteresting to note what happens when you use avery dark diffuse color. Y ou can activate this by pressing the G key.

213

Figure 11.4. Phong with Dark Diffuse

If there was no specular term at al, you would see very little.. The specular highlight, even with the fairly weak specular reflection of 0.25,
is strong enough to give some definition to the object when seen from various angles. This more accurately shows what a black plastic object
might look like.

One thing you may notice isthat, if you bring the light close to the surface, the specular area tends to have very sharp edges.

Figure 11.5. Phong Clipping

Thisis part of the nature of specular reflections. If the light is almost perpendicular to the surface, the specular reflection will shine brightest
when the light is almost eclipsed by the surface. This creates a strong discontinuity at the point where the light is no longer in view.

You generally see this most with rough surfaces (small exponents). With smoother surfaces, this is rarely seen. But this is not the only visual
oddity with Phong and having small exponents.

If you drop the exponent down to the minimum value the code will alow, you will see something like this:

Figure 11.6. Phong Distortion

Thisring area shows one of the main limitations of the Phong model. When trying to depict asurfacethat isrough but still has specular highlights,
the Phong model starts to break down. It will not allow any specular contribution from areas outside of a certain region.

This region comes from the angle between the reflection direction and the view direction. This area is the region where the reflection direction
and view direction are more than 90 degrees apart.

Under the microfacet model, there is still some chance that some microfacets are oriented towards the camera, even if reflection direction is

pointed sharply away. Thus, there should be at least some specular contribution from those areas. The Phong model cannot allow this, due to
how it is computed.

What al thistells usisthat Phong works best with larger exponents. Small exponents show its problems and limitations.

Shinies

Blinn-Phong Model

The problem with Phong, with regard to the reflection and view directions being greater than 90 degrees, can be solved by changing the
computation. This modified model is called the Blinn-Phong specular model or just the Blinn specular model.

It is no more physically correct than the Phong model. But it does tend to account for more than Phong.

The main problem with Phong is that the angle between the view direction and the reflection direction has to be less than 90 degrees in order
for the specular term to be non-zero.

Figure11.7. Large View and Reflect Angle

Ve

o R

The angle between V and R is greater than 90 degrees. Caseslike this are not modeled correctly by Phong. There could be microfacets at the point
which are oriented towards the camera, but Phong cannot properly model this. The problem is that the dot product between the view direction
and reflection direction can be negative, which does not |ead to a reasonable result when passed through the rest of the equation.

The Blinn model uses a different set of vectorsfor its computations, one that are less than 90 degreesin all valid cases. The Blinn model requires
computing the half-angle vector. The half-angle vector is the direction halfway between the view direction and the light position.

Figure 11.8. Geometric Half-Angle Vector

Equation 11.3. Half-Angle Vector

ﬁ_ T+V
THL A0 #

When the view direction is perfectly aligned with the reflected direction, the half-angle vector is perfectly aligned with the surface normal. Or to
put it another way, the half-angle is the direction the surface normal would need to be facing in order for the viewer to see a specular reflection
from the light source.

217

Shinies

Figure 11.9. Perfect Reflection Half-Angle Vector

So instead of comparing the reflection vector to the view direction, the Blinn model compares the half-angle vector to the surface normal. It then
raises this value to a power representing the shininess of the surface.

Equation 11.4. Blinn Specular Term
Blinnterm = (A -R1)°

The angle between the half-angle vector and the normal is always less than 90 degrees. So the Blinn specular model produces similar results to
the Phong model, but without some of Phong's problems. This is demonstrated in the Blinn vs Phong Lighting tutorial.

218

Figure 11.10. Blinn Lighting

The controls are similar to the last tutorial. Pressing the H key will switch between Blinn and Phong specular. Pressing Shift+H will switch
between diffuset+specular and specular only. Because the specular exponents have different meanings between the two lighting models, each
model has aseparate exponent. Thekeysfor changing the exponent valueswill only changethevaluefor thelighting model currently being viewed.

The real work hereis, as before, in the shader computations. Here is the main code for computing the diffuse + Blinn illumination.

Example 11.2. Blinn-Phong L ighting Shader

vec3 lightDir = vec3(0.0);
float atten = Cal cAttenuati on(caneraSpacePosition, lightDir);
vecd attenlntensity = atten * lightlntensity;

Shinies

vec3 surfaceNormal = normalize(vertexNormal);
fl oat cosAngl nci dence = dot(surfaceNormal, lightDir);
cosAngl nci dence = cl anp(cosAngl nci dence, 0, 1);

vec3 viewDirection = normalize(-caneraSpacePosition);

vec3 hal fAngle = normalize(lightDir + viewDirection);
float blinnTerm = dot(surfaceNormal, halfAngle);

bli nnTerm = cl anp(blinnTerm 0, 1);
bl i nnTerm = cosAngl ncidence != 0.0 ? blinnTerm: O0.0;
bl i nnTerm = pow(bl i nnTerm shi ni nessFactor);

out put Col or = (diffuseColor * attenlntensity * cosAngl nci dence) +
(specul arColor * attenlntensity * blinnTernm +
(diffuseColor * ambientlntensity);

The half-angle vector is computed by normalizing the sum of the light direction and view direction vectors. As before, we take the dot product
between that and the surface normal, clamp, then raise the result to a power.

Blinn specular solves the Phong problem with the reflection direction.

Figure 11.11. Blinn vs. Phong Lighting

The Blinn version is on the left, with the Phong version on the right.

The Blinn specular exponent does hot mean quite the same thing asthe Phong exponent. In general, to produce ahighlight the same size asa Phong
one, you will need alarger Blinn exponent. Play around with the different exponents, to get afeel for what Blinn and Phong can and cannot achieve.

Hard Specular Edge

There are till afew artifacts in the rendering. For example, if you arrange the light, object, and camera as follows, you can see this:

220

Shinies

Figure11.12. Light Edge

The cylinder looks like it has a very sharp corner. What causes this? It is caused by thisline in the shader:
bl i nnTerm = cosAngl ncidence != 0.0 ? blinnTerm: 0.0;

If the angle between the normal and the light direction is greater than 90 degrees, then we force the specular term to zero. The reason behind
thisis very simple: we assume our surface is a closed object. Given that assumption, if the normal at alocation on the surface is facing away
from the light, then this could only happen if there is some other part of the surface between itself and the light. Therefore, the surface cannot
be directly illuminated by that light.

That is a reasonable assumption, and it certainly makes sense in reality. But real-life objects don't have these kinds of hard specular lines. So
what are we missing in our model?

What we are missing isthat point lights don't exist in the real world. Light illumination does not come from a single, infinitely small location in
space. Even the size of the Sun relative to Earth has a significant area. So what this meansis that, for a given point on a surface, it could bein
partia view of the light source. Imagine Earth at sunset for an example: part of the sun is below the horizon and part of it is not.

Since only part of the light is visible from that point on the surface, then only part of the light contributes to the overall illumination. So at these
places where you might get hard specular boundaries, under more real lighting conditions, you still get a semi-gentle fall-off.

That's al well and good, but modeling true area lightsis difficult even for simple cases. A much simpler way to resolve thisisto not use such a
low specular exponent. This specular exponent is relatively small, leading to a very broad specular highlight. If we restrict our use of a specular
term to surfaces who's specular exponent is reasonably large, we can prevent this artifact from appearing.

Hereisthe same scene, but with alarger exponent:

221

Shinies

Figure 11.13. Improved Light Edge

We could aso adjust the specular reflectance, so that surfaces with alow specular exponent also have a small specular reflectance.

Gaussian

Phong and Blinn are nice toy heuristics that take relatively little computational power. But if you're truly serious about computing specular
highlights, you need amodel that actually models microfacets.

Real microfacet models are primarily based on the answer to the question “What proportion of the microfacets of this surface are oriented in such
away as to specularly reflect light towards the viewer?” The greater the proportion of properly oriented microfacets, the stronger the reflected
light. This question is ultimately one of statistics.

Thus it makes sense to model this as a probability distribution. We know that the average microfacet orientation is the surface normal. So it's
just amatter of developing a probability distribution function that says what portion of the surface's microfacets are oriented to provide specular
reflections given the light direction and the view direction.

In statistics, the very first place you go for modelling anything with aprobability distribution isto the normal distribtuion or Gaussian distribution.
It may not be the correct distribution that physically modelswhat the microfacet distribution of asurface lookslike, but it's usually agood starting

point.

The Gaussian distribution isthe classic “bell-shaped curve” distribution. The mathematical function for computing the probability density of the
Gaussian distribution at a particular point X is:

Equation 11.5. Gaussian Distribution Function

Gew?
__1 2#
f(x)= T ©

222

Shinies

L.

Figure 11.14. Gaussian Probability Distribution Curves

— # =1

— # = 0.2

=5

< ® X ® = ®
-16 -8 8 16

Y

This represents the percentage of the items in the distribution that satisfy the property that the X in the distribution istrying to model. The e in
this equation isacommon mathematical constant, equivalent to ~2.718. The value of p isthe average. So the absolute value of X isnot important;
what mattersis how far X isfrom the average.

The value #2 is the variance of the Gaussian distribution. Without getting too technical, the larger this value becomes, the flatter and wider the
distribution is. The variance specifies how far from the average you can get to achieve a certain probability density. The area of the distribution
that is positive and negative # away from the average takes up ~68% of the possible values. The area that is 2# away represents ~95% of the
possible values.

We know what the averageisfor us: the surface normal. We can incorporate what we learned from Blinn, by measuring the distance from perfect
reflection by comparing the surface normal to the half-angle vector. Thus, the X values represents the angle between the surface normal and half-
angle vector. The value |, the average, is zero.

The equation we will be using for modelling the microfacet distribution with a Gaussian distribution is aslightly simplified form of the Gaussian
distribution equation.

Equation 11.6. Gaussian Specular Term

: Angle between H and N
- _ 2
Gaussian Term =€

This replaces our Phong and Blinn terms in our specular lighting equation and gives us the Gaussian specular model. The value mranges from
(O, 1], with larger values representing an increasingly rougher surface. Technically, you can use values larger than 1, but the results begin looking
increasingly less useful. A value of 1 is plenty rough enough for specular reflection; properly modelling extremely rough surfaces requires
additional computations besides determining the distribution of microfacets.

The Gaussian Specular Lighting tutorial shows an implementation of Gaussian specular. It allows a comparison between Phong, Blinn, and
Gaussian. It controls the same as the previous tutorial, with the H key switching between the three specular computations, and the Shift+H
switching between diffuse+specular and specular only.

223

Shinies

Here is the fragment shader for doing Gaussian lighting.

Example 11.3. Gaussian Lighting Shader

vec3 lightDir = vec3(0.0);
float atten = Cal cAttenuation(caneraSpacePosition, lightDr);
vec4 attenlntensity = atten * lightlntensity;

vec3 surfaceNormal = normalize(vertexNormal);
float cosAngl nci dence = dot(surfaceNormal, lightDir);
cosAngl nci dence = cl anp(cosAngl nci dence, 0, 1);

vec3 viewDirection = normalize(-caneraSpacePosition);

vec3 hal fAngle = normalize(lightDir + viewDirection);

float angl eNornmal Hal f = acos(dot (hal f Angl e, surfaceNormal));
fl oat exponent = angl eNormal Hal f / shini nessFactor;

exponent = -(exponent * exponent);

fl oat gaussi anTerm = exp(exponent);

gaussi anTerm = cosAngl nci dence != 0.0 ? gaussianTerm: O.O0;
out put Col or = (diffuseColor * attenlntensity * cosAngl nci dence) +

(specul arColor * attenlntensity * gaussianTerm +

(diffuseColor * anmbientlntensity);
Computing the angle between the half-angle vector and the surface normal requires the use of the acos function. We use the dot-product to
compute the cosine of the angle, so we need a function to undo the cosine operation. The arc cosine or inverse cosine function takes the result
of acosine and returns the angle that produced that value.

To do the exponentiation, we use the exp function. This function raises the constant e to the power of the argument. Everything else proceeds
as expected.

What Gaussian Offers

If you play around with the controls, you can see how much the Gaussian distribution offers over Phong and Blinn. For example, set the Gaussian
smoothness value to 0.05.

224

Figure 11.15. Gaussian with Sharp Highlight

It requires very large exponents, well in excess of 100, to match the small size and focus of that specular highlight with Phong or Blinn. It takes
even larger exponents to match the Gaussian value of 0.02.

Otherwise the differences between Gaussian and Blinn are fairly subtle. For rough surfaces, there is little substantive difference. But Gaussian
tends to have a sharper, more distinct highlight for shiny surfaces.

On Performance

The three specular highlight models seen here are obviously more computationally expensive than diffuse lighting. But which is ultimately more
expensive than the others?

Shinies

The difference between Phong and Blinn is that Phong must compute the reflection vector, while Blinn computes the half-angle vector. The
equation for computing the reflection vector is:

T = -
R =1T-2Rf -1)*R
Thisinvolvesavector dot product, ascalar multiply, avector-scalar multiply, and avector addition (subtraction). Computing the half-angle vector

requires doing a vector addition and performing a normalize operation. Normalizing a vector requires a vector dot product (dotting the vector
with itsdlf), taking the square-root of that value, and then a vector-scalar divide by that value.

Time once was that it was easy to know what was faster. The presence of a square-root operation alone would have condemned Blinn as the
dower method. On modern 3D graphics hardware however, taking the reciprocal square-root (1 / #X) is generally about as fast as doing a vector
multiply. This puts Blinn as approximately equal in performance to Phong; on some hardware, it may even be faster. In general, the performance
difference between the two will be negligible.

Gaussian is adifferent story. It would be reasonable to expect the pow function, taking x” for arbitrary values, to be slower than executing exp,
€. They might have the same performance, but if oneis going to be faster, it is more likely to be exp than pow. However, Gaussian also usesthe
inverse cosine to compute the angle between the normal and half-angle vector; that pretty much negates any possibility of performance parity.
Theinverse cosine computation is certainly not built into the hardware, and thus must be computed using the shader logic. And whilethisislikely
true of exponentiation and power functions, Gaussian has to do two of these operations, compared to just one for Phong or Blinn.

One might consider using Gouraud shading with specular reflections as a method of optimization. That is, doing per-vertex specular reflections.
Since there are fewer vertices than fragments, this might sound like a good idea. However, thisis not for the best. Specular highlights do not
interpolate linearly at all, so unlessthe meshisfinely divided, it will generally look awful.

In Review

In thistutorial, you have learned the following:

» Specular lighting represents direct, mirror-like reflections from a surface. Specular highlights are mirror-like reflections directly from alight
source. Adding weak specular highlights to even rough surfaces can increase visua realism.

» Themicrofacet model of specular reflection means that, for a given surface area, there are many mirror-like surfaces. Each microfacet reflects
perfectly inits direction. The average of the microfacets

» The Phong and Blinn models of specular reflection use a power function based on how close the viewer isto perfect reflection to approximate
amicrofacet distribution.

» A Gaussian statistical distribution can be used to more accurately model the distributions of microfacets on a surface.

Further Study

Try doing these things with the given programs.

» Change the shaders to use the diffuse color as the specular color. You may need to drop the specular color somewhat to keep from over-
brightening the scene. How this al looks will be particularly evident with the colored cylinder.

Further Research

As you might guess, this is far from the end on specular reflections and specular highlights. Accurately modelling specular reflection is very
difficult; doing so while maintaining high performance is even moreso.

If you are interested in more accurate models of specular highlights, there is the Beckmann distribution. Thisis a particular statistical distribution
of microfacets that is more physically based than a Gaussian distribution. It may or may not be a bit more computationally expensive than
Gaussian; Beckmann lacks the inverse cosine, but has more other math to it. The two do have a roughness factor that has the same range, (0, 1],
and the roughness has the same general meaning in both distributions.

226

Shinies

If you want to go even farther, investigate the Cook-Torrance model of specular reflection. It incorporates severa terms. It uses a statistical
distribution to determine the number of microfacets oriented in a direction. This distribution can be Gaussian, Beckmann, or some other
distribution. 1t modifies this result based on a geometric component that models microfacet self-shadowing and the possibility for multiple
interreflections among a microfaceted surface. And it adds a term to compensate for the Fresnel effect: an effect where specular reflection from
asurface is more intense when viewed edge-on than directly top-down.

GLSL Functions of Note

vec reflect(vec I, vec N);

Computes the vector that would be reflected across the normal N from an incident vector | . The vector result will be normalized if the input
vectors are normalized. Note that | vector is the vector towards the surface.

vec powvec X, vec Y);

Raises X to the power of Y, component-wise. If a component of X is less than 0, then the resulting value is undefined. If X is exactly zero, and
Y islessthan or equal to 0, then the resulting value is undefined.

vec acos(vec X);

Returnsthe inverse cosine of X, component-wise. This returns the angle in radians, which is on the range [0, . If any component of X isoutside
of the[-1, 1] range, then that component of the result will be undefined. Thisis because the cosine of avalueisawayson [-1, 1], so theinverse-
cosine function cannot take values outside of this range.

vec exp(vec exponent);

gexponent

Returns the value of , component-wise.

Glossary

specular reflection A mirror-like reflection of light from a surface. Specular reflections reflect light; thus, the color the viewer
seesis strongly based on the view angle relative to the light. Specular reflections often do not affect the color
of theincoming light.

specular highlights Mirror-likereflectionsdirectly from light sources. Sincelight sourcesare brighter than light reflected by other
objects, modelling only specular highlights can provide useful realism without having to model reflections
from light produced by other objectsin the scene.

angle of view, viewing angle The angle between the surface normal and the direction to the viewer/camera.

microfacet model Describes a surface as a number of flat planes called microfacets. Each microfacet reflects light using a
simple lighting model. The light from a portion of the surface is simply the aggregate of the light from all
of the microfacets of the surface. The statistical distribution of microfacet directions on a surface becomes
an integral part of the lighting equation. The normal of a surface at a point is the average norma of the
microfacets of that part of the surface.

The microfacet model can be used to model the reflectance characteristics of rough surfaces.

Phong specular model A simple model for creating specular highlights. It uses a power function to determine the distribution of
microfacets of the surface. The base of the power function isthe cosine of the angle between theview direction
and the direction of perfect reflection along the surface normal. The exponent is an arbitrary value on the
range (O,); large values describe increasingly shiny surfaces, while small values are for rough surfaces.

half-angle vector Thevector halfway between the direction towardsthe light and the view direction. When the half-angle vector
is oriented exactly with the surface normal, then the view direction is oriented along the reflection direction.
For agiven light and view direction, it is the direction that the surface normal would need to be facing for a
direct light reflection to go from the light source to the viewer.

227

Shinies

Blinn-Phong specular model

Gaussian distribution, normal
distribution

Gaussian specular model

inverse cosine, arc cosine

A simple model for creating specular highlights. Like standard Phong, it uses a power function to model the
distribution of microfacets. The base of the power function is the cosine of the angle between the half-angle
vector and the surface normal. The exponent is an arbitrary value on the range (0, o); large values describe
increasingly shiny surfaces, while small values are for rough surfaces.

A common statistical distribution. It defines the familiar “bell-shaped curve,” with the average value at the
highest point of the distribution.

A model for creating specular highlights. It uses the Gaussian distribution to model the distribution of
microfacets on a surface. It uses a value to control the distribution; this value ranges on (0, 1], where small
numbers are smooth surfaces and large numbers are rough surfaces.

Performs the opposite of the cosine function. The cosine function takes angles and returns a value on the
range [-1, 1]. The inverse cosine takes values on the range [-1, 1] and returns an angle in radians.

228

Chapter 12. Dynamic Range

Thus far, our lighting examples have been fairly prosaic. A single light source illuminating a simple object hovering above flat terrain. This
tutorial will demonstrate how to use multiple lights among alarger piece of terrain in a dynamic lighting environment. We will demonstrate how
to properly light a scene. Thisis less about the artistic qualities of how a scene should look and more about how to make a scene look a certain
way if that is how you desireit to look.

Setting the Scene

Theintent for this sceneisto be dynamic. Theterrain will be large and hilly, unliketheflat plain we've seenin previoustutorials. It will use vertex
colors where appropriate to give it terrain-like qualities. There will also be a variety of objects on the terrain, each with its own set of reflective
characteristics. Thiswill help show off the dynamic nature of the scene.

The very first step in lighting a scene is to explicitly detail what you want; without that, you're probably not going to find your way there. In
this case, the scene is intended to be outdoors, so there will be a single massive directional light shining down. There will also be a number of
smaller, weaker lights. All of these lights will have animated movement.

The biggest thing here is that we want the scene to dynamically change lighting levels. Specifically, we want afull day/night cycle. The sun will
sink, gradually losing intensity until it has none. There, it will remain until the dawn of the next day, where it will gain strength and rise again.
The other lights should be much weaker in overall intensity than the sun.

One thing that this requiresis a dynamic ambient lighting range. Remember that the ambient light is an attempt to resolve the global illumination
problem: that light bounces around in a scene and can therefore come from many sources. When the sun is at full intensity, the ambient lighting
of the scene should be bright as well. Thiswill mean that surfaces facing away from the sunlight will till be relatively bright, which is the case
we see outside. When it is night, the ambient light should be virtually nil. Only surfaces directly facing one of the lights should be illuminated.

The Scene Lighting tutorial demonstrates the first version of attempting to replicate this scene.

229

Dynamic Range

Figure 12.1. Scene Lighting

The camerais rotated and zoomed as in prior tutorials. Where this one differsis that the camera's target point can be moved. The W, A, S, and
D keys move the cameras forward/backwards and |eft/right, relative to the camera's current orientation. The Q and E keys raise and lower the
camera, again relative to its current orientation. Holding Shift with these keys will move in smaller increments. Y ou can toggle viewing of the
current target point by pressing T.

Because the lighting in this tutorial is very time based, there are specialized controls for playing with time. There are two sets of timers: one that
controls the sun's position (as well as attributes associated with this, like the sun's intensity, ambient intensity, etc), and another set of timers that
control the positions of other lightsin the scene. Commandsthat affect timers can affect the sun only, the other lights only, or both at the sametime.

To have timer commands affect only the sun, press 2. To have timer commands affect only the other lights, press 3. To have timer commands
affect both, press 1.

Dynamic Range

Torewind timeby onesecond (of real-time), pressthe - key. To jump forward one second, pressthe =key. Totoggle pausing, pressthep key. These
commands only affect the currently selected timers. Also, pressing the SpaceBar will print out the current sun-based time, in 24-hour notation.

Materials and UBOs

The source code for this tutoria is much more complicated than prior ones. Due to this complexity, it is spread over severd files. All of the
tutorial projectsfor thistutorial sharethe Scene. h/ cpp and Li ght s. h/ cpp files. The Scene files set up the objects in the scene and render
them. Thisfile contains the surface properties of the objects.

A lighting function requirestwo specific sets of parameters: valuesthat represent the light, and valuesthat represent the surface. Surface properties
are often called material properties. Each object hasits own material properties, as defined in Scene. cpp.

The scene has 6 objects: the terrain, atall cylinder in the middle, a multicolored cube, a sphere, a spinning tetrahedron, and a mysterious black
obelisk. Each object hasits own material properties defined by the Get Mat er i al s function.

These properties are all stored in a uniform buffer object. We have seen these before for data that is shared among severa programs; here, we
useit to quickly change sets of values. These material properties do not change with time; we set them once and do not change them ever again.
Thisis primarily for demonstration purposes, but it could have a practical effect.

Each object's materia datais defined as the following struct:
Example 12.1. Material Uniform Block

/1 GLSL
[ayout (st d140) uniform

uni form Materi al

{
vec4 diffuseCol or;
vec4 specul ar Col or;
fl oat specul ar Shi ni ness;
} ML
/] C++
struct Materi al Bl ock
{
gl m:vec4 diffuseCol or;
gl m:vec4 specul ar Col or;
fl oat specul ar Shi ni ness;
fl oat paddi ng[3];
b

The paddi ng variable in the C++ definition represents the fact that the GLSL definition of this uniform block will be padded out to a size of
12 floats. Thisisdueto the nature of “std140” layout (feel free to read the appropriate section in the OpenGL specification to see why). Note the
global definition of “std140” layout; this sets all uniform blocksto use “std140” layout unless they specifically override it. That way, we do not
have to write “layout(std140)” for each of the three uniform blocks we use in each shader file.

Also, notetheuseof M | at thefoot of the uniform block definition. Thisis called theinstance name of an interface block. When no instance name
isspecified, then the namesin the uniform block are global. If an instance nameis specified, this name must be used to qualify accessto the names
within that block. Thisallowsusto havethei n vec4 di ffuseCol or be separate from the material definition'sM | . di f f useCol or.

What we want to do is put 6 material blocks in a single uniform buffer. One might naively think that one could simply allocate a buffer object 6
timesthesi zeof (Mat eri al Bl ock) , and simply store the data as a C++ array. Sadly, thiswill not work due to aUBO limitation.

When you use gl Bi ndBuf f er Range to bind aUBO, OpenGL requires that the offset parameter, the parameter that tells where the beginning
of the uniform block's data is within the buffer object, be aligned to a specific value. That is, the begining of a uniform block within a uniform
buffer must be a multiple of a specific value. 0 works, of course, but since we have more than one block within a uniform buffer, they cannot
all start at the buffer's beginning.

231

Dynamic Range

What is this value, you may ask? Welcome to the world of implementation-dependent values. This means that it can (and most certainly will)
change depending on what platform you're running on. This code was tested on two different hardware platforms; one has a minimum alignment
of 64, the other an alignment of 256.

To retrieve the implementation-dependent value, we must use a previously-unseen function: gl Get | nt eger v. This is a function that does
one simple thing: gets integer values from OpenGL. However, the meaning of the value retrieved depends on the enumerator passed as the first
parameter. Basically, it'saway to have state retrieval functionsthat can easily be extended by adding new enumerators rather than new functions.

The code that builds the material uniform buffer is as follows:

Example 12.2. Material UBO Construction

int uni fornBufferAlignSize = 0;
gl Cet | nt eger v(GL_UNI FORM BUFFER_OFFSET_ALI GNMVENT, &uni f or nBuf f er Al i gnSi ze) ;

m si zeMat eri al Bl ock = si zeof (Materi al Bl ock) ;
m si zeMat eri al Bl ock += uni f ornBuf ferAlignSi ze -
(msizeMaterial Bl ock % uni fornBufferAlignSize);

int sizeMaterial UnifornBuffer = msizeMaterial Bl ock * MATERI AL_COUNT;

std::vector<Material Bl ock> nateri al s;
Get Material s(materials);
assert(material s.size() == MATERI AL_CQUNT) ;

std::vector<G.ubyte> m| Buffer;
nt |1 Buffer.resize(sizeMaterial Uni fornmBuffer, 0);

GLubyte *bufferPtr = &ntl Buffer[O0];

for(size t nmtl =0; ml < materials.size(); ++ntl)
mencpy(bufferPtr + (ntl * msizeMaterial Block), &materials[ml], sizeof(MterialBlock));

gl GenBuffers(1, &mmaterial UnifornBuffer);

gl Bi ndBuf f er (GL_UNI FORM BUFFER, m nat eri al Uni f or nBuf fer);

gl Buf f er Dat a(GL_UNI FORM BUFFER, sizeMaterial Uni fornBuffer, bufferPtr, GL_STATI C_DRAW;
gl Bi ndBuf f er (GL_UNI FORM BUFFER, 0);

Weusegl CGet | nt eger v to retrieve the alignment requirement. Then we compute the size of amaterial block, plus enough padding to satisfy
the alignment requirements. From there, it's fairly straightforward. Thent | Buf f er isjust aclever way to allocate a block of memory without
having to directly use new/delete. And yes, that is perfectly valid and legal C++.

When the sceneisrendered, it uses gl Bi ndBuf f er Range to bind the proper region within the buffer object for rendering.
Lighting

The code for lighting is rather more complicated. It uses two aspects of the framework library to do its job: interpolators and timers.
Framewor k: : Ti mer isagenerally useful classthat can keep track of alooped range of time, converting it into a[0, 1) range. Theinterpolators
are used to convert a [0, 1) range to a particular value based on a series of possible values. Exactly how they work is beyond the scope of this
discussion, but some basic information will be presented.

TheLi ght Manager classcontrolsall timers. It hasall of thefast-forwarding, rewinding, and so forth controlsbuilt intoiit. It'sbasic functionality
isto compute all of the lighting values for a particular time. It does this based on information given to it by the main tutorial sourcefile, Scene
Li ghti ng. cpp. Theimportant values are sent in the Set upDayt i meLi ght i ng function.

Example 12.3. Daytime Lighting

Sunl i ght Val ue val ues[] =

232

Dynamic Range

{
{ 0.0f/24.0f, /*...*%/},
{ 4.5f/24.0f, /*...*%/},
{ 6.5f/24.0f, /*...*%/},
{ 8.0f/24.0f, /*...*%/},
{18.0f/24.0f, /*...*/},
{19.5f/24.0f, /*...*/},
{20.5f/24.0f, /*...*%/},

b

g_l i ghts. Set Sunl i ght Val ues(val ues, 7);

g_lights. SetPointLightintensity(0, glm:vec4(0.2f, 0.2f, 0.2f, 1.0f));
g_lights. SetPointLightintensity(1, glm:vec4(0.0f, 0.0f, 0.3f, 1.0f));
g_lights. SetPointLightintensity(2, glm:vec4(0.3f, 0.0f, 0.0f, 1.0f));

For the sake of clarity, the actual lighting parameters were removed from the main table. The Sunl i ght Val ue struct defines the parameters
that vary based on the sun's position. Namely, the ambient intensity, the sun's light intensity, and the background color. The first parameter of
the struct is the time, on the [0, 1) range, when the parameters should have this value. A time of 0 represents noon, and a time of 0.5 represents
midnight. For clarity's sake, | used 24-hour notation (where 0 is hoon rather than midnight).

We will discuss the actual lighting values later.

The main purpose of the Li ght Manager isto retrieve the light parameters. This is done by the function Get Li ght | nf or mat i on, which
takes a matrix (to transform the light positions and directions into camera space) and returns a Li ght Bl ock object. This is an object that
represents a uniform block defined by the shaders:

Example 12.4. Light Uniform Block

struct PerlLight
{

vec4 camer aSpaceli ght Pos;
vecd lightlntensity;

b
const int nunberOfLights = 4;

uni f orm Li ght

{
vec4 anbientlntensity;
float |ightAttenuation;
Per Li ght 1ights[nunber O Li ght s];
} Lat;
struct PerLight
{
gl m: vec4 caneraSpaceli ght Pos;
glm:vecd lightlntensity;
1

const int NUVBER OF LI GHTS = 4;

struct LightBl ock
{
gl m:vecd4 anmbientlntensity;
float |ightAttenuation;
fl oat paddi ng[3];
Per Li ght |ights[NUMBER_OF_LI GHTS];

233

Dynamic Range

b
Again, there is the need for a bit of padding in the C++ version of the struct. Also, you might notice that we have both arrays and structs in

GLSL for the first time. They work pretty much like C/C++ structs and arrays (outside of pointer logic, since GLSL does not have pointers),
though arrays have certain caveats.

Many Lights Shader

In this tutorial, we use 4 shaders. Two of these take their diffuse color from values passed by the vertex shader. The other two use the materia's
diffuse color. The other difference is that two do specular reflection computations, and the others do not. This represents the variety of our
materials.

Overdl, the code is nothing you have not seen before. We use Gaussian specular and an inverse-sguared attenuation, in order to be as physically
correct as we currently can be. One of the big differencesisin the mai n function.

Example 12.5. Many Lights Main Function

void main()

{
vec4 accunLighting = di ffuseColor * Lgt.anbientlntensity;
for(int light = 0; light < nunmberOLights; [ight++)
{
accunli ghting += ComputeLighting(Lgt.lights[light]);
}
out put Col or = accunlLi ghti ng;
}

Here, we compute the lighting due to the ambient correction. Then we loop over each light and compute the lighting for it, adding it into our
accumulated value. Loops and arrays are generally fine.

The other trick ishow we deal with positional and directional lights. The Per Li ght structure does not explicitly say whether alight is positional
or directional. However, the W component of the camer aSpacelLi ght Pos is what we use to differentiate them; this is a time-honored
technique. If the W component is 0.0, then it isa directiona light; otherwise, it isa point light.

The only difference between directional and point lights in the lighting function are attenuation (directional lights do not use attenuation) and
how the light direction is computed. So we simply compute these based on the W component:

vec3 lightDir;
vec4 lightlintensity;
i f(1ightData.caneraSpacelLi ght Pos.w == 0.0)

{
lightDir = vec3(!lightData.caneraSpaceli ght Pos);
lightintensity = lightData.lightlntensity;
}
el se
{
float atten = Cal cAttenuati on(caneraSpacePositi on,
| i ght Dat a. caner aSpaceli ght Pos. xyz, lightDir);
lightintensity = atten * lightData.lightlntensity;
}

Lighting Problems

There are a few problems with our current lighting setup. It looks (mostly) fine in daylight. The moving point lights have a small visual effect,
but mostly they're not very visible. And thisis what one would expect in broad daylight; flashlights do not make much impact in the day.

234

Dynamic Range

But at night, everything is exceedingly dark. The point lights, the only active source of illumination, are all too dim to be very visible. Theterrain
almost completely blends into the black background.

Thereis an dternative set of light parameters that corrects this problem. Press Shift+L ; that switches to a night-time optimized version (press L
to switch back to day-optimized lighting). Here, the point lights provide reasonable lighting at night. The ground is still dark when facing away
from the lights, but we can reasonably see things.

Figure 12.2. Darkness, Day vs. Night

The problem is that, in daylight, the night-optimized point lights are too powerful. They are very visible and have very strong effects on the
scene. Also, they cause some light problems when one of the point lightsisin the right position. At around 12:50, find the floating white light
near the cube:

235

Dynamic Range

Figure 12.3. Light Clipping

Notice the patch of iridescent green. Thisislight clipping or light clamping, and it is usually a very undesirable outcome. It happens when the
computed light intensity falls outside of the [0, 1] range, usually in the positive direction (like in this case). The object cannot be shown to be
brighter, so it becomes a solid color that loses all detail.

The obvious solution to our lighting problem is to simply change the point light intensity based on the time of day. However, thisis not realistic;
flashlights do not actually get brighter at night. So if we have to do something that antithetical to reality, then there's probably some aspect of
reality that we are not properly modelling.

High Dynamic Range

In order to answer this question, we must first determine why flashlights appear brighter at night than in the daytime. Much of the answer has
to do with our eyes.

Dynamic Range

Thepupil istheholein our eyesthat allowslight to passthroughit; camerascall thisholethe aperture. Theholeissmall, relativeto theworld, which
helps with resolving an image. However, the quantity of light that passes through the hole depends on how largeit is. Our iris's can expand and
contract to control the size of the pupil. When the pupil islarge, morelight is alowed to enter the eye; when the pupil issmall, lesslight can enter.

The iris contracts automatically in the presence of bright light, since too much like can damage the retina (the surface of the eye that detects
light). However, in the absence of light, the iris owly relaxes, expanding the pupil. This has the effect of allowing more light to enter the eye,
which adds to the apparent brightness of the scene.

So what we need is not to change the overall light levels, but instead apply the equivalent of an iristo the final lighting computations of a scene.
That is, we determine the overall illumination at a point, but we then filter out some of this light based on a global setting. In dark scenes, we
filter lesslight, and in bright scenes, we filter more light.

Thisoverall processiscalled high dynamic rangelighting (HDR). Itisfairly simple and requiresvery few additional math computations compared
to our current model.

Note

Y ou may have heard this term in conjunction with pictures where bright objects seem to glow. While HDR is typically associated with
that glowing effect, that is a different effect called bloom. It is a woefully over-used effect, and we will discuss how to implement it
later. HDR and bloom do interact, but you can use one without the other.

The first step is to end the myth that lights themselves have a global maximum brightness. In al previous examples, our light intensity values
lived with the range [0, 1]. Clamping light intensity to this range simply does not mirror reality. In reality, the sun is many orders of magnitude
brighter than a flashlight. We must alow for thisin our lighting equation.

This also means that our accumulated lighting intensity, the value we originally wrote to the fragment shader output, is no longer on the [0, 1]
range. And that poses a problem. We can perform lighting computations with a high dynamic range, but monitors can only display colors on the
[0, 1] range. We therefore must map from the HDR to the low dynamic range (LDR).

Thispart of HDR rendering is called tone mapping. There are many possible tone mapping functions, but we will use one that simulates aflexible
aperture. It's quite asimple function, really. First, we pick a maximum intensity value for the scene; intensity values above thiswill be clamped.
Then, wejust divide the HDR value by the maximum intensity to get the LDR value.

It isthe maximum intensity that we will vary. Asthe sun goes down, theintensity will go downwith it. Thiswill allow the sun to be much brighter
in the day than the lights, thus overwhelming their contributions to the scene's illumination. But at night, when the maximum intensity is much
lower, the other lights will have an apparently higher brightness.

Thisisimplemented in the HDR Lighting tutorial.

Thistutorial controls as the previous one, except that the K key will activate HDR lighting. Pressing L or Shift+L will go back to day or night-
time LDR lighting from the last tutorial, respectively.

237

Dynamic Range

Figure 12.4. HDR Lighting

The code is quite straightforward. We add a floating-point field to the Li ght uniform block and the Li ght Bl ock struct in C++. Technically,
we just steal one of the padding floats, so the size remains the same:

Example 12.6. HDR LightBlock

struct LightBl ockHDR
{
gl m:vecd4 anbientlntensity;
float |ightAttenuation;
float maxlntensity;
fl oat padding[2];
Per Li ght |i ght s[NUMBER _OF LI GHTS] ;

Dynamic Range

b

Weaso add anew field to Sunl i ght Val ue: the maximum light intensity. Thereisalso anew functionintheLi ght Manager that computes
the HDR-version of the light block: Get Li ght | nf or mat i onHDR. Technically, all of this code was already in Li ght . h/ cpp, since these
files are shared among all of the tutorials here.

Scene Lighting in HDR

Lighting ascenein HDR isadifferent process from LDR. Having avarying maximum intensity value, aswell asthe ability to uselight intensities
greater than 1.0 change much about how you set up a scene.

In this case, everything in the lighting was designed to match up to the daytime version of LDR in the day, and the nighttime version of LDR at
night. Once the division by the maximum intensity was taken into account.

Table 12.1. Scene Lighting Values

HDR L DR Day-optimized L DR Night-optimized
Noon Sun Intensity 18 18 18 (3.0 0.6 0.6 0.6 0.6 0.6 0.6
Noon Ambient Intensity 0.6 0.6 0.6 0.2 0.2 0.2 0.2 0.2 0.2
Evening Sun Intensity 0.45 0.15 0.15 (1.5) 0.3 0.1 0.1 0.3 0.1 0.1
Evening Ambient Intensity 0.225 0.075 0.075 0.15 0.05 0.05 0.15 0.05 0.05
Circular Light Intensity 0.6 0.6 0.6 0.2 0.2 0.2 0.6 0.6 0.6
Red Light Intensity 0.7 0.0 0.0 0.3 0.0 0.0 0.7 0.0 0.0
Blue Light Intensity 0.0 0.0 0.7 0.0 0.0 0.3 0.0 0.0 0.7

The numbers in parenthesis represents the max intensity at that time.

In order to keep the daytime lighting the same, we simply multiplied the LDR day's sun and ambient intensities by the ratio between the sun
intensity and the intensity of one of the lights. Thisratio is 3:1, so the sun and ambient intensity isincreased by a magnitude of 3.

The maximum intensity was derived similarly. Inthe LDR case, the difference between the max intensity (1.0) and the sum of the sun and ambient
intensities is 0.2 (1.0 - (0.6 + 0.2)). To maintain this, we set the max intensity to the sum of the ambient and sun intensities, plus 3 times the
original ratio.

This effectively means that the light, as far as the sun and ambient are concerned, works the same way in HDR daytime as in the LDR day-
optimized settings. To get the other lights to work at night, we simply kept their values the same as the LDR night-optimized case.

Linearity and Gamma

Thereis one major issue left, and it is one that has been glossed over since the beginning of our look at lighting: your screen.

Thefundamental assumption underlying all of our lighting equations sincethe very beginning istheideathat the surface colorsand light intensities
are al in alinear colorspace. A colorspace defines how we translate from a set of numerical values to actual, real colors that you can see. A
colorspace is a linear colorspace if doubling any value in that colorspace results in a color that is twice as bright. The linearity refers to the
relationship between values and overall brightness of the resulting color.

This assumption can be taken as a given for our data thus far. All of our diffuse and specular color values were given by us, so we can know
that they represent valuesin alinear RGB colorspace. The light intensities are likewise in alinear colorspace. When we multiplied the sun and
ambient intensities by 3 in the last section, we were increasing the brightness by 3x. Multiplying the maximum intensity by 3 had the effect of
reducing the overall brightness by 3x.

There's just one problem: your screen does not work that way. Time for a short history of television/monitors.

The original televisions used an electron gun fired at a phosphor surface to generate light and images; thisis called a CRT display (cathode ray
tube). The strength of the electron beam determined the brightness of that part of the image. However, the strength of the beam did not vary
linearly with the brightness of the image.

239

Dynamic Range

The easiest way to deal with that in the earliest days of TV wasto simply modify theincoming image at the source. TV broadcasts sent image data
that was non-linear in the opposite direction of the CRT's normal non-linearity. Thus, the final output was displayed linearly, asit was originally
captured by the camera.

The term for this process, de-linearizing an image to compensate for a non-linear display, is called gamma correction.

You may be wondering why this matters. After al, odds are, you do not have a CRT-based monitor; you probably have some form of LCD,
plasma, LED, or similar technology. So what does the vagaries of CRT monitors matter to you?

Because gamma correction is everywhere. It'sin DV Ds, video-tapes, and Blu-Ray discs. Every digital cameradoesit. And thisis how it has been
for along time. Because of that, you could not sell an LCD monitor that tried to do linear color reproduction; nobody would buy it because all
mediafor it (including your OS) was designed and written expecting CRT-style non-linear displays.

This means that every non-CRT display must mimic the CRT's non-linearity; thisis built into the basic video processing logic of every display
device.

So for twelve tutorials now, we have been outputting linear RGB valuesto adisplay device that expects gamma-corrected non-linear RGB values.
But before we started doing lighting, we were just picking nice-looking colors, so it did not matter. Now that we're doing something vaguely

realistic, we need to perform gamma-correction. This will let us see what we've actually been rendering, instead of what our monitor's gamma-
correction circuitry has been mangling.

Gamma Functions

A gammafunctionisthefunction that mapslinear RGB spaceto non-linear RGB space. Thegammafunction for CRT displayswasfairly standard,
and all non-CRT displays mimic this standard. It is ultimately based on a math function of CRT displays. The strength of the electron beam is
controlled by the voltage passed through it. This correlates with the light intensity as follows:

Equation 12.1. Display Gamma Function

LinearRGB # Voltage”

This is called a gamma function due to the Greek letter y (gamma). The input signal directly controls the voltage, so the input signal needed to
be corrected for the power of gamma.

Modern displays usually have gamma adjustments that allow the user to set the display's gamma. The default is usually a gamma of around 2.2;
thisisauseful compromise value and an excellent default for our gamma-correction code.

So, given the gamma function above, we need to output values from our shader that will result in our original linear values after the gamma
function is applied. This is gamma correction, and the function for that is straightforward.

Equation 12.2. Gamma Correction Function

GammaRGB = Linear RGB%

It would be interesting to see a graph of these functions, to speculate about what we will see in our gamma-correct images.

240

Dynamic Range

Figure 12.5. Gamma Function Graph

0.9 -

08 gamma -
.| correction s
| 1/2.2

0.6 -
0.5 -
0.4 -
0.3 -

0.2 -

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Without gamma correction, our linearRGB colors (the diagonal line in the graph) would become the CRT gamma curve at the bottom. This means
that what we have been seeing is a severely darkened version of our colors. A linearRGB value of 0.5 drops to an intensity of 0.218; that's more
than half of the brightness gone.

241

Dynamic Range

With proper gamma correction, we can expect to see our scene become much brighter.

Gamma in Action

Gamma correction is implemented in the Gamma Correction tutorial.

The K key toggles gamma correction. The default gammavalueis 2.2, but it can be raised and lowered with the Y and H keys respectively.

Figure 12.6. Gamma Correction

That is very bright; it uses the same HDR-based lighting environment from the previous tutorials. Let's look at some code.

The gammavalue is an odd kind of value. Conceptually, it has nothing to do with lighting, per-se. It is a global value across many shaders, so
it should be in a UBO somewhere. But it is not a material parameter; it does not change from object to object. In this tutorial, we stick it in the
Li ght uniform block and the Li ght Bl ockGanma struct. Again, we sted afloat from the padding:

242

Dynamic Range

Example 12.7. Gamma LightBlock

struct LightBl ockGanma
{
gl m:vec4 anbientlintensity;
float |ightAttenuation;
float maxlntensity;
fl oat gamm;
fl oat paddi ng;
Per Li ght |i ght s[NUMBER _OF LI GHTS] ;

b

For the sake of clarity in thistutorial, we send the actual gamma value. For performance's sake, we ought send 1/gamma, so that we do not have
to needlessly do adivision in every fragment.

The gammaiis applied in the fragment shader as follows:

Example 12.8. Fragment Gamma Correction

accunli ghting = accuniighting / Lgt.maxlntensity;
vec4 gamma = vec4(1.0 / Lgt.gamm);

gama.w = 1.0;

out put Col or = pow(accunli ghti ng, gamm);

Otherwise, the code is mostly unchanged from the HDR tutorial. Speaking of which, gamma correction does not require HDR per se, nor does
HDR require gamma correction. However, the combination of the two has the power to create substantial improvementsin overall visua quality.

Onefinal change in the code is for light values that are written directly, without any lighting computations. The background color is simply the
clear color for the framebuffer. Even so, it needs gamma correction too; this is done on the CPU by gamma correcting the color before drawing
it. If you have any other colors that are drawn directly, do not forget to do this.

Gamma Correct Lighting

What we have seen is what happens when you apply HDR lighting to a scene who's light properties were defined without gamma correction.
Look at the scene at night; the point lights are extremely bright, and their lighting effects seem to go much farther than before. This last point
bears investigating.

When wefirst talked about light attenuation, we said that the correct attenuation function for apoint light was an inverse-square rel ationship with
respect to the distance to the light. We also said that this usually looked wrong, so people often used a plain inverse attenuation function.

Gamma is the reason for this. Or rather, lack of gamma correction is the reason. Without correcting for the display's gamma function, the
attenuation of 1/r? effectively becomes (1/r2)%2, whichis 1/r*#. Thelack of proper gamma correction magnifiesthe effective attenuation of lights.
A simple Ur relationship looks better without gamma correction because the display's gamma function turnsit into something that is much closer
to being in alinear colorspace: w22,

Since this lighting environment was not designed while looking at gamma correct results, let's look at some scene lighting that was developed
with proper gammain mind. Turn on gamma correction and set the gammavalueto 2.2 (the default if you did not changeit). The press Shift+L:

243

Dynamic Range

Figure 12.7. Gamma Lighting

Thisismorelikeit.

If there is one point you should learn from this exercise, it is this; make sure that you implement gamma correction and HDR before trying to
light your scenes. If you do not, then you may have to adjust all of the lighting parameters again, and you may need to change materials as well.
In this case, it was not even possible to use simple corrective math on the lighting environment to make it work right. This lighting environment
was developed essentially from scratch.

One thing we can naotice when looking at the gamma correct lighting is that proper gamma correction improves shadow details substantially:

244

Dynamic Range

Figure 12.8. Gamma Shadow Details

These two images use the HDR lighting; the one on the left does not have gamma correction, and the one on the right does. Notice how easy it
isto make out the detailsin the hills near the triangle on the right.

Looking at the gamma function, this makes sense. Without proper gamma correction, fully half of the linearRGB rangeis shoved into the bottom
one-fifth of the available light intensity. That does not leave much room for areas that are dark but not too dark to see anything.

As such, gamma correction is a key process for producing color-accurate rendered images. It allows details within darkness to show up much
more easily.

In Review

In thistutorial, you have learned the following:
» How to build and light a scene containing multiple objects and multiple light sources.
* High dynamic range lighting means using a maximum illumination that can vary from frame to frame, rather than a single, fixed value.

» Color valueshave aspace, just like positions or normals. Lighting equationswork in alinear colorspace, wheretwice the brightness of avalueis
achieved by multiplying itsvaluetimestwo. It isvital for proper imaging resultsto make sure that the final result of lighting isin the colorspace
that the output display expects. This processis called gamma correction.

Further Study

Try doing these things with the given programs.

» Add afifth light, adirectional light representing the moon, to the gamma-correct scene. Thiswill require creating another set of interpolators
and expanding the SunlightV alues structure to hold the lighting intensity of the moon. It a so means expanding the number of lights the shaders
use from 4 to 5 (or removing one of the point lights). The moon should be much less bright than the sun, but it should still have a noticeable
effect on brightness.

» Play withtheambient lighting intensity in the gamma-correct scene, particularly in the daytime. A little ambient, even with amaximum intensity
as high as 10, really goes along way to bringing up the level of brightnessin a scene.

Further Research

HDR is a pretty large field. This tutorial covered perhaps the simplest form of tone mapping, but there are many equations one can use. There
are tone mapping functions that map the full [0, o) Fange to [0, 1]. Thiswould not be useful for a scene that needs a dynamic aperture size, but
if the aperture is static, it does allow the use of alarge range of lighting values.

245

Dynamic Range

When doing tone mapping with some form of variable aperture setting, computing the proper maximum intensity value can be difficult. Having a
hard-coded value, even one that varies algorithmically, works well enough for some scenes. But for scenes where the user can control where the
camera faces, it can be inappropriate. In many modern games, they actually read portions of the rendered image back to the CPU and do some
computational analysis to determine what the maximum intensity should be for the next frame. This is delayed, of course, but it allows for an
aperture that varies based on what the player is currently looking at, rather than hard-coded values.

Just remember: pick your HDR and tone mapping agorithms before you start putting the scene together. If you try to change them mid-stream,
you will have to redo alot of work.

OpenGL Functions of Note

gl Getlntegerv Retrieves implementation-dependent integer values and a number of context state integer values. There are
asogl Get Fl oat v, gl Get Bool eanv, and various other typed gl Get * functions. The number of values
this retrieves depends on the enumerator passed to it.

Glossary

material properties The set of inputs to the lighting equation that represent the characteristics of a surface. This includes the
surface's normal, diffuse reflectance, specular reflectance, any specular power values, and so forth. The
source of these values can come from many sources; uniform values for an object, fragment-shader inputs,
or potentially other sources.

instance name For uniform blocks (or other kinds of interface blocks), this name is used within a shader to name-qualifier
the members of the block. These are optional, unless there is a naming conflict, or unless an array needs to
be specified.

light clipping Light values drawn to the screen are clamped to the range [0, 1]. When lighting produces values outside of

thisrange, the light is said to be clipped by the range. This produces a very bright, flat section that loses all
detail and distinction in theimage. It is something best avoided.

high dynamic range lighting Lighting that uses values outside of the [0, 1] range. This alows for the use of a full range of lighting
intensities.

tone mapping The process of mapping HDR valuesto a [0, 1] range. This may or may not be alinear mapping.

colorspace The set of reference colors that define a way of representing a color in computer graphics, and the function
mapping between those reference colors and the actual colors. All colors are defined relative to a particular
colorspace.

linear colorspace A colorspace where the brightness of a color varies linearly with its values. Doubling the value of a color

doublesits brightness.

gamma correction The process of converting from alinear colorspace to a non-linear colorspace that a display device expects,
usually through the use of a power function. This process ensures that the display produces an image that
islinear.

246

Chapter 13. Lies and Impostors

Lighting in these tutorials has ultimately been a form of deception. An increasingly accurate one, but it is deception all the same. We are not
rendering round objects; we simply use lighting and interpolation of surface characteristics to make an object appear round. Sometimes we have
artifacts or optical illusions that show the lie for what it is. Even when the lie is near-perfect, the geometry of a model still does not correspond
to what the lighting makes the geometry appear to be.

Inthistutorial, wewill belooking at the ultimate expression of thislie. Wewill uselighting computationsto make an object appear to be something
entirely different from its geometry.

Simple Sham

We want to render a sphere. We could do this as we have done in previous tutorias. That is, generate a mesh of a sphere and render it. But
this will never be a mathematically perfect sphere. It is easy to generate a sphere with an arbitrary number of triangles, and thus improve the
approximation. But it will always be an approximation.

Spheres are very simple, mathematically speaking. They are smply the set of pointsin a space that are a certain distance from a specific point.
This sounds like something we might be able to compute in a shader.

Our first attempt to render a sphere will be quite simple. We will use the vertex shader to compute the vertex positions of a square in clip-space.
Thissquarewill be in the same position and width/height as the actual circle would be, and it will always face the camera. In the fragment shader,
we will compute the position and normal of each point along the sphere's surface. By doing this, we can map each point on the square to a point
on the sphere we are trying to render. This square is commonly called aflat card or billboard.

For those points on the square that do not map to a sphere point (ie: the corners), we have to do something special. Fragment shaders are required
to write a value to the output image. But they also have the ability to abort processing and write neither color information nor depth to the color
and depth buffers. We will employ this to draw our square-spheres.

This technique is commonly called impostors. The ideais that we're actually drawing a square, but we use the fragment shaders to make it look
like something else. The geometric shape is just a placeholder, a way to invoke the fragment shader over a certain region of the screen. The
fragment shader is where the real magic happens.

The tutorial project Basic Impostor demonstrates this technique. It shows a scene with several spheres, a directional light, and a moving point
light source.

247

Lies and Impostors

Figure 13.1. Basic Impostor

The camera movement is controlled in the same way as previoustutorials. The T key will toggle a display showing the look-at point. The - and
= keys will rewind and fast-forward the time, and the P key will toggle pausing of the time advancement.

The tutoria starts showing mesh spheres, to allow you to switch back and forth between actual meshes and impostor spheres. Each sphere is
independently controlled:

Table 13.1. Sphere Impostor Control Key Map

Lies and Impostors

Key Sphere
The black marble on the | ft.

The gold sphere on theright.

This tutorial uses a rendering setup similar to the last one. The shaders use uniform blocks to control most of the uniforms. There is a shared
global lighting uniform block, as well as one for the projection matrix.

Grifting Geometry

The way this program actually renders the geometry for the impostorsis interesting. The vertex shader looks like this:

Example 13.1. Basic Impostor Vertex Shader
#version 330

| ayout (st d140) uniform

out vec2 mappi ng;

uni form Proj ection

{
mat 4 caneraToCl i pMatri x;
b

uni form fl oat sphereRadi us;
uni form vec3 caner aSpher ePos;

voi d main()
{
vec2 of fset;
swi tch(gl _Vertexl D)

{
case 0:
//Bottom | eft
mappi ng = vec2(-1.0, -1.0);
of fset = vec2(-sphereRadi us, -sphereRadius);
br eak;
case 1:
[/ Top-left
mappi ng = vec2(-1.0, 1.0);
of fset = vec2(-sphereRadi us, sphereRadi us);
br eak;
case 2:
/1 Bottomright
mappi ng = vec2(1.0, -1.0);
of fset = vec2(sphereRadi us, -sphereRadius);
br eak;
case 3:
/] Top-right
mappi ng = vec2(1.0, 1.0);
of fset = vec2(sphereRadi us, sphereRadi us);
br eak;
}

vec4 camer aCor ner Pos = vec4(caner aSpherePos, 1.0);

249

Lies and Impostors

caner aCor ner Pos. xy += offset;

gl _Position = caneraTod ipMatrix * cameraCor ner Pos;

}

Notice anything missing? There are no input variables declared anywhere in this vertex shader.

It does still use an input variable: gl _Ver t ex| D. Thisisabuilt-in input variable; it contains the current index of this particular vertex. When
using array rendering, it's just the count of the vertex we are in. When using indexed rendering, it isthe index of this vertex.

When we render this mesh, we render 4 verticesasaG._TRI ANGLE_STRI P. Thisisrendered in array rendering mode, sothegl _VertexI D
will vary from 0 to 3. Our switch/case statement determines which vertex we are rendering. Since we're trying to render a square with atriangle
strip, the order of the vertices needs to be appropriate for this.

After computing which vertex we are trying to render, we use the radius-based offset as a bias to the camera-space sphere position. The Z value
of the sphere position is left alone, since it will always be correct for our square. After that, we transform the camera-space position to clip-
space as normal.

The output mappi ng isavaluethat is used by the fragment shader, as we will see below.

Since this vertex shader takes no inputs, our vertex array object does not need to contain anything either. That is, we never call
gl Enabl eVert exAttri bArray onthe VAO. Since no attribute arrays are enabled, we also have no need for a buffer object to store vertex

array data. Sowenever call gl Vert exAt t ri bPoi nt er . Wesimply generate an empty VAO withgl GenVer t exAr r ays and useit without
modification.

Racketeering Rasterization

Our lighting equations in the past needed only a position and normal in camera-space (as well as other material and lighting parameters) in order
to work. So the job of the fragment shader isto provide them. Even though they do not correspond to those of the actual trianglesin any way.

Here are the salient new parts of the fragment shader for impostors:
Example 13.2. Basic Impostor Fragment Shader
in vec2 mappi ng;

voi d I npostor(out vec3 caneraPos, out vec3 caneralNornal)

{

float |ensqgr = dot (nmappi ng, mapping);

if(lensqr > 1.0)

di scard;

canmer aNor mal = vec3(mapping, sqrt(1.0 - lensqgr));

canmeraPos = (caneraNornmal * sphereRadi us) + caneraSpherePos;
}
void main()
{

vec3 caner aPos;
vec3 caner aNor nal ;

| mpost or (caner aPos, camer aNor nal) ;
vecd accuniighting = M| .diffuseColor * Lgt.anbientlntensity;

for(int light = 0; light < nunberOLights; |ight++)
{

250

Lies and Impostors

accunli ghti ng += Comput eLi ghting(Lgt.lights[light],
caner aPos, cameraNor nal);

}

out put Col or = sqrt(accuniighting); //2.0 gamma correction

}

In order to compute the position and normal, we first need to find the point on the sphere that corresponds with the point on the square that we
are currently on. And to do that, we need away to tell where on the square we are.

Using gl _FragCoor d will not help, as it is relative to the entire screen. We need a value that is relative only to the impostor square. That is
the purpose of the mappi ng variable. When thisvariableisat (0, 0), we are in the center of the square, which is the center of the sphere. When
itisat (-1, -1), we are at the bottom left corner of the square.

Given this, we can now compute the sphere point directly “above” the point on the square, which isthe job of the | npost or function.

Before we can compute the sphere point however, we must make sure that we are actually on a point that has the sphere above it. This requires
only a simple distance check. Since the size of the square is equal to the radius of the sphere, if the distance of the mappi ng variable from its
(O, 0) point is greater than 1, then we know that this point is off of the sphere.

Here, we use a clever way of computing the length; we do not. Instead, we compute the square of the length. We know that if X?>Y2istrue,
then X > Y must also be true for all positive real numbers X and Y. So we just do the comparison as sgquares, rather than taking a square-root
to find the true length.

If the point isnot under the sphere, we execute something new: di scar d. Thedi scar d keyword isuniqueto fragment shaders. It tells OpenGL
that the fragment isinvalid and its data should not be written to the image or depth buffers. This allows usto carve out a shapein our flat square,
turning it into acircle.

A Word on Discard

Using di scar d sounds a lot like throwing an exception. Since the fragment's outputs will be ignored and discarded, you might expect
that executing this instruction will cause the fragment shader to stop executing. Thisis not necessarily the case.

Due to the way that shaders tend to work, multiple executions of the same shader are often operating at the same time. All of them are
running in lock-step with one another; they all execute instructions at the sametime, just on different datasets. If one of them does adiscard,
it still has to keep doing what it was doing, because the other three may not have discarded, since the discard was based on data that may
be different between each shader. This is also why branches in shaders will often execute both sides rather than actually branching; it
keeps the shader logic ssimpler.

However, that does not mean di scar d is without use for stopping unwanted processing. If al of the shaders that are running together
hit adi scar d, then they can all be aborted with no problems. And hardware often does this where possible. So if there is a great deal
of spatial coherency with discard, thisis useful.

The computation of the normal is based on simple trigonometry. The normal of a sphere does not change based on the sphere's radius. Therefore,
we can compute the normal in the space of the mapping, which uses a normalized sphere radius of 1. The normal of a sphere at apoint isin the
same direction as the direction from the sphere's center to that point on the surface.

Let'slook at the 2D case. To have a 2D vector direction, we need an X and Y coordinate. If we only have the X, but we know that the vector has
acertain length, then we can compute the Y component of the vector based on the Pythagorean theorem:

251

Lies and Impostors

Figure 13.2. Circle Point Computation
A

X2+Y? = R
Y +VR - X2

We simply use the 3D version of this. We have X and Y from mappi ng, and we know the length is 1.0. So we compute the Z value easily
enough. And since we are only interested in the front-side of the sphere, we know that the Z value must be positive.

Computing the position is also easy. The position of a point on the surface of a sphere is the normal at that position scaled by the radius and
offset by the center point of the sphere.

One final thing. Notice the square-root at the end, being applied to our accumulated lighting. This effectively simulates a gamma of 2.0, but
without the expensive pow function call. A sqrt call is much less expensive and far more likely to be directly built into the shader hardware.

Yes, thisis not entirely accurate, since most displays simulate the 2.2 gamma of CRT displays. But it's a lot less inaccurate than applying no
correction at all. Well discuss a much cheaper way to apply proper gamma correction in future tutorials.

Correct Chicanery

Our perfect sphere looks pretty nice. It has no polygona outlines and you can zoom in on it forever. However, it is unfortunately very wrong.

To see how, toggle back to rendering the mesh on sphere 1 (the central blue one). Then move the camera so that the sphere is at the left edge
of the screen. Then toggle back to impostor rendering.

252

Lies and Impostors

Figure 13.3. Bad | mpostor

What's going on here? The mesh sphere seems to be wider than the impostor sphere. This must mean that the mesh sphere is doing something
our impostor is not. Does this have to do with the inaccuracy of the mesh sphere?

Quite the opposite, in fact. The mesh sphereis correct. The problem isthat our impostor istoo simple.

Look back at how we did our computations. We map a sphere down to aflat surface. The problem isthat “down” in this case is in the camera-
space Z direction. The mapping between the surface and the sphere is static; it does not change based on the viewing angle.

Consider this 2D case:

Figure 13.4. Circle Projection

The dark line through the circle represents the square we drew. When viewing the sphere off to the side like this, we should not be able to see the
left-edge of the sphere facing perpendicular to the camera. And we should see some of the sphere on the right that is behind the plane.

So how do we solve this?

Use better math. Our last algorithm is a decent approximation if the spheres are somewhat small. But if the spheres are reasonably large (which
also can mean close to the camera), then our approximation is shown to be very fake. Our new algorithm needs to take this into account.

Thisalgorithm is based on aterm you may have heard before: ray tracing. Wewill not beimplementing afull ray tracing algorithm here; instead,
we will useit solely to get the position and normal of a sphere at a certain point.

253

Lies and Impostors

A ray isadirection and a position; it represents a line extending from the position along that direction. The points on the ray can be expressed
as the following equation:

Equation 13.1. Ray Equation

D= Ray Direction

% = Ray Origin

Poy=0Dt+6

Thet value can be positive or negative, but for our needs, welll stick with positive values.

For each fragment, we want to create aray from the camera position in the direction towards that point on the impostor square. Then we want to
detect the point on the sphere that it hits, if any. If the ray intersects the sphere, then we use that point and normal for our lighting equation.

The math for thisisfairly simple. The equation for the points on a sphereisthis:

Equation 13.2. Sphere Equation

R = Sphere Radius
% = Sphere Center

#P-% 2 =R

For any point P, if this equation is true, if the length between that point and the sphere's center equals the radius, then P is on the sphere. So
we can substitute our ray equation for P;

#0t+0-% # =R

Our ray goes from the camera into the scene. Since we're in camera space, the cameraiis at the origin. So O can be eliminated from the equation.
To solvefort , we need to get rid of that length. One way to do it is to re-express the sphere equation as the length squared. So then we get:

4P =R
N 2
#Dt- 6 # =R
The sguare of the length of a vector isthe same as that vector dot-producted with itself. So let's do that:
JAY N\
(Bt-). (bt- 6) =R
The dot product is distributive. Indeed, it follows most of the rules of scalar multiplication. This gives us:

(D-D)?- 2(D-B)+(6.8) =

While this equation has alot of vector elementsinit, asfar ast isconcerned, it isa scalar equation. Indeed, it is a quadratic equation, with respect
tot. Ah, good old algebra.

AC+Bx+C=0

X:-Bix/ZBAZTAC
A=D

B= - 2(6)
c=(%.%). R

254

Lies and Impostors

In case you've forgotten, the part under the square root in the quadratic formula is called the discriminant. If this value is negative, then the
equation has no solution. In terms of our ray test, this means the ray misses the sphere.

Asyou may recall, the square root can be either positive or negative. This gives us two t values. Which makes sense; the ray hits the spherein
two places: once going in, and once coming out. The correct t value that we're interested in is the smallest one. Once we have that, we can use
the ray equation to compute the point. With the point and the center of the sphere, we can compute the normal. And we're back in business.

Extorting and Expanding
To seethisdone, open up the last tutorial project. Since they use the exact same source, and since they use the same uniforms and other interfaces

for their shaders, there was no need to make another code project for it. To see the ray-traced version, press the J key; all impostors will use the
perspective version. To go back to the flat version, pressL.

Figure 13.5. Bad vs. Good

Thetop isthe origina impostor, the middle is the actual mesh, and the bottom is our new ray traced impostor.

The | npost or function in the new fragment shader implements our ray tracing algorithm. More important than this are the changes to the
vertex shader's computation of the impostor square:

Example 13.3. Ray Traced Impostor Square
const float g boxCorrection = 1.5;

void main()

255

Lies and Impostors

{

vec2 offset;

swi tch(gl _Vertexl D)

{

case O:
//Bottom | eft
mappi ng = vec2(-1.0, -1.0) * g_boxCorrection;
of fset = vec2(-sphereRadi us, -sphereRadius);
br eak;

case 1:
[/ Top-left
mappi ng = vec2(-1.0, 1.0) * g_boxCorrection;
of fset = vec2(-sphereRadi us, sphereRadi us);
br eak;

case 2:
/1 Bottomright
mappi ng = vec2(1.0, -1.0) * g_boxCorrection;
of fset = vec2(sphereRadi us, -sphereRadius);
br eak;

case 3:
/1 Top-right
mappi ng = vec2(1.0, 1.0) * g_boxCorrection;
of fset = vec2(sphereRadi us, sphereRadi us);
br eak;

}

vec4 camer aCor ner Pos = vec4(caner aSpherePos, 1.0);

caner aCor ner Pos. xy += offset * g_boxCorrection;

gl _Position = caneraTod ipMatrix * cameraCor ner Pos;

}

We have expanded the size of the square by 50%. What is the purpose of this? Well, let's [ook at our 2D image again.

The black line represents the square we used originally. There is a portion to the left of the projection that we should be able to see. However,
with proper ray tracing, it would not fit onto the area of the radius-sized square.

This means that we need to expand the size of the square. Rather than finding a clever way to compute the exact extent of the sphere's area
projected onto a square, it's much easier to just make the square bigger. Thisis even moreso considering that such math would have to take into

256

Lies and Impostors

account things like the viewport and the perspective matrix. Sure, we will end up running the rasterizer rather more than strictly necessary. But
it's overall much simpler.

Deceit in Depth

While the perspective version looks great, there remains one problem. Move the time around until the rotating grey sphere ducks underneath
the ground.

Figure 13.6. Bad Intersection

Hmm. Even though we've made it ook like a mathematically perfect sphere, it does not act like one to the depth buffer. Asfar asit is concerned,
it'sjust acircle (remember: di scar d prevents depth writes and tests as well).

Isthat the end for our impostors? Hardly.

Lies and Impostors

Part of the fragment shader's output is a depth value. If you do not write one, then OpenGL will happily use gl _Fr agCoor d. z as the depth
output from the fragment shader. Thisvalue will be depth tested against the current depth value and, if the test passes, written to the depth buffer.

But we do have the ability to write a depth value ourselves. To see how thisis done, load up the tutorial (using the same code again) and press
the H key. Thiswill cause all impostors to use depth-correct shaders.

Figure 13.7. Depth Correct Impostor

This shader isidentical to the ray traced version, except for these lines in the fragment shader:

Example 13.4. Depth Correct Fragment Shader
| npost or (caner aPos, caner aNor nal) ;

/1 Set the depth based on the new caneraPos.
vec4d clipPos = caneraTod ipMatrix * vecd(caneraPos, 1.0);
float ndcDepth = clipPos.z / clipPos.w,
gl _FragDepth = ((gl _Dept hRange. di ff * ndcDepth) +
gl _Dept hRange. near + gl _Dept hRange.far) / 2.0;

Basically, we go through the process OpenGL normally goes through to compute the depth. We just do it on the camera-space position we
computed with the ray tracing function. The position is transformed to clip space. The perspective division happens, transforming to normalized
device coordinate (NDC) space. The depth range function is applied, forcing the [-1, 1] range in the fragment shader to the range that the user
provided with gl Dept hRange.

We write the final depth to abuilt-in output variable gl _Fr agDept h.

258

Lies and Impostors

Fragments and Depth

The default behavior of OpenGL is, if a fragment shader does not write to the output depth, then simply take the gl _Fr agCoor d. z
depth as the depth of the fragment. Oh, you could do this manually. One could add the following statement to any fragment shader that
uses the default depth value:

gl _FragDepth = gl _FragCoord. z

This is, in terms of behavior a noop; it does nothing OpenGL would not have done itself. However, in terms of performance, thisis a
drastic change.

The reason fragment shaders are not required to havethislinein all of themisto allow for certain optimizations. If the OpenGL driver can
see that you do not set gl _Fr agDept h anywhere in the fragment shader, then it can dramatically improve performance in certain cases.

If the driver knows that the output fragment depth is the same as the generated one, it can do the whole depth test before executing the
fragment shader. Thisis called early depth test or early-z. This meansthat it can discard fragments before wasting precious time executing
potentially complex fragment shaders. Indeed, most hardware nowadays has complicated early z culling hardware that can discard multiple
fragments with asingle test.

The moment your fragment shader writes anything to gl _Fr agDept h, all of those optimizations have to go away. So generally, you
should only write a depth value yourself if you really need to do it.

Also, if your shader writes gl _Fr agDept h anywhere, it must ensure that it is always written to, no matter what conditional branches
your shader uses. The value is not initialized to a default; you either always write to it or never mention “gl _Fr agDept h” in your
fragment shader at all. Obviously, you do not always have to write the same value; you can conditionally write different values. But you
cannot write something in one path and not write something in another. Initialize it explicitly with gl _Fr agCoor d. z if you want to
do something like that.

Purloined Primitives

Our method of rendering impostor spheresis very similar to our method of rendering mesh spheres. In both cases, we set uniforms that define
the sphere's position and radius. We bind a material uniform buffer, then bind a VAO and execute a draw command. We do this for each sphere.

However, this seemsrather wasteful for impostors. Our per-vertex datafor the impostor isreally the position and the radius. If we could somehow
send this data 4 times, once for each square, then we could simply put all of our position and radius values in a buffer object and render every
sphere in one draw call. Of course, we would also need to find away to tell it which material to use.

We accomplish this task in the Geometry Impostor tutorial project. It looks exactly the same as before; it always draws impostors, using the
depth-accurate shader.

Impostor Interleaving

To see how this works, we will start from the front of the rendering pipeline and follow the data. This begins with the buffer object and vertex
array object we use to render.

Example 13.5. Impostor Geometry Creation

gl Bi ndBuf f er (GL_ARRAY_BUFFER, g_i nposter VBO ;
gl Buf f er Dat a(GL_ARRAY_BUFFER, NUMBER_OF_SPHERES * 4 * sizeof (float), NULL, G._STREAM DRAW ;

gl GenVertexArrays(1l, &g_inposterVAO;

gl Bi ndVert exArray(g_i nmpost er VAO) ;

gl Enabl eVertexAttri bArray(0);

gl VertexAttribPointer(0, 3, G__FLOAT, G_FALSE, 4 * sizeof(float), (void*)(0));
gl Enabl eVertexAttri bArray(1);

gl VertexAttribPointer(1, 1, G._FLOAT, G_FALSE, 4 * sizeof(float), (void*)(12));

259

Lies and Impostors

gl Bi ndVer t exArray(0);
gl Bi ndBuf f er (GL_ARRAY_BUFFER, 0);

This code introduces us to a new feature of gl Vert exAttri bPoi nter. In al prior cases the fifth parameter was 0. Now it is 4 *
si zeof (f1 oat) . What does this parameter mean?

This parameter isthe array's st r i de. It is the number of bytes from one value for this attribute to the next in the buffer. When this parameter
is 0, that means that the actual stride is the size of the base type (GL_FLQAT in our case) times the number of components. When the stride is
non-zero, it must be larger than that value.

What this means for our vertex data is that the first 3 floats represent attribute 0, and the next float represents attribute 1. The next 3 floats is
attribute 0 of the next vertex, and the float after that is attribute 1 of that vertex. And so on.

Arranging attributes of the same vertex alongside one another iscalled interleaving. It isavery useful technique; indeed, for performance reasons,
data should generally be interleaved where possible. One thing that it allows usto do is build our vertex data based on a struct:

struct VertexDat a

{

gl m:vec3 caneraPosition;
fl oat sphereRadi us;

b

Our vertex array object perfectly describes the arrangement of datain an array of Ver t exDat a objects. So when we upload our positions and
radii to the buffer object, we simply create an array of these structs, fill in the values, and upload them with gl Buf f er Dat a.

Misnamed and Maligned

So, our vertex data now consists of a position and a radius. But we need to draw four vertices, not one. How do we do that?

We could replicate each vertex data 4 times and use some simple gl _Ver t exl D math in the vertex shader to figure out which corner we're
using. Or we could get complicated and learn something new. That new thing is an entirely new programmatic shader stage: geometry shaders.

Our initial pipeline discussion ignored this shader stage, becauseit isan entirely optional part of the pipeline. If a program object does not contain
ageometry shader, then OpenGL just doesits normal stuff.

The most confusing thing about geometry shaders is that they do not shade geometry. Vertex shaders take a vertex as input and write a vertex
as output. Fragment shader take a fragment as input and potentially writes a fragment as output. Geometry shaders take a primitive as input and
write zero or more primitives as output. By all rights, they should be called “ primitive shaders.”

In any case, geometry shaders are invoked just after the hardware that collects vertex shader outputs into a primitive, but before any clipping,
transforming or rasterization happens. Geometry shaders get the values output from multiple vertex shaders, performs arbitrary computations on
them, and outputs one or more sets of values to new primitives.

In our case, the logic begins with our drawing call:

gl Bi ndVert exArray(g_i npost er VAO) ;
gl DrawArrays(GL_PO NTS, 0, NUMBER OF_ SPHERES);
gl Bi ndVert exArray(0);

This introduces a completely new primitive and primitive type: GL_PO NTS. Recall that multiple primitives can have the same base type.
GL_TRI ANGLE_STRI Pand GL_TRI ANGLES are both separate primitives, but both generatetriangles. G_._ PO NTS does not generatetriangle
primitives; it generates point primitives.

GL_PO NTS interprets each individual vertex as a separate point primitive. There are no other forms of point primitives, because points only
contain a single vertex worth of information.

The vertex shader is quite simple, but it does have some new things to show us:

Example 13.6. Vertex Shader for Points

#version 330

260

Lies and Impostors

| ayout (| ocati on
| ayout (| ocati on

0) in vec3 cameraSpher ePos;
1) in float sphereRadius;

out VertexData

{
vec3 caner aSpher ePos;
fl oat sphereRadi us

} out Dat a;

voi d main()
{
out Dat a. caner aSpher ePos
out Dat a. spher eRadi us

caner aSpher ePos;
spher eRadi us;

}

Ver t exDat a is not a struct definition, though it does look like one. It is an interface block definition. Uniform blocks are akind of interface
block, but inputs and outputs can also have interface blocks.

An interface block used for inputs and outputsis away of collecting them into groups. One of the main uses for these is to separate namespaces
of inputs and outputs using the interface name (out Dat a, in this case). This allows us to use the same names for inputs as we do for their
corresponding outputs. They do have other virtues, as we will soon see.

Do note that this vertex shader does not writeto gl _Posi ti on. That isnot necessary when avertex shader is paired with a geometry shader.

Speaking of which, let'slook at the global definitions of our geometry shader.

Example 13.7. Geometry Shader Definitions

#version 330
#ext ensi on GL_EXT _gpu_shader4 : enabl e

| ayout (st d140) uniform
| ayout (poi nts) in;
| ayout (triangle_strip, nmax_vertices=4) out;

uni form Proj ection

{
mat 4 caneraToC i pMatri x;
i
in VertexData
{
vec3 camner aSpher ePos;
fl oat sphereRadi us;
}overt[];
out FragData
{
flat vec3 camer aSpher ePos;
flat float sphereRadi us;
snoot h vec2 mappi ng;
i

Note

The#ext ensi on line existsto fix acompiler bug for NVIDIA's OpenGL. It should not be necessary.

261

Lies and Impostors

We see some new uses of thel ayout directive. Thel ayout (poi nt's) i n command is geometry shader-specific. It tells OpenGL that this
geometry shader isintended to take point primitives. Thisis required; also, OpenGL will fail to render if you try to draw something other than
GL_PQO NTS through this geometry shader.

Similarly, the output layout definition states that this geometry shader outputs triangle strips. The max_vert i ces directive states that we will
write at most 4 vertices. There are implementation defined limits on how largemax_ver ti ces can be. Both of these declarations are required
for geometry shaders.

Below the Pr oj ect i on uniform block, we have two interface blocks. The first one matches the definition from the vertex shader, with two
exceptions. It has a different interface name. But that interface name also has an array qualifier on it.

Geometry shaders take a primitive. And a primitive is defined as some number of verticesin a particular order. The input interface blocks define
what the input vertex datais, but there is more than one set of vertex data. Therefore, the interface blocks must be defined as arrays. Granted, in
our case, it isan array of length 1, since point primitives have only one vertex. But thisis still necessary even in that case.

We aso have another output fragment block. This one matches the definition from the fragment shader, as we will see a bit later. It does not
have an instance name. Also, note that several of the valuesuse thef | at qualifier. We could have just used snoot h, since we're passing the
same values for all of the triangles. However, it's more descriptive to use the f | at qualifier for values that are not supposed to be interpol ated.
It might even save performance.

Here is the geometry shader code for computing one of the vertices of the output triangle strip:

Example 13.8. Geometry Shader Vertex Computation

//Bottom | eft

mappi ng = vec2(-1.0, -1.0) * g_boxCorrection;

caner aSpherePos = vec3(vert[0].caneraSpherePos);

spher eRadi us = vert[0].sphereRadi us;

caner aCor ner Pos = vec4(vert[0].caneraSpherePos, 1.0);

caner aCor ner Pos. xy += vec2(-vert[O0].sphereRadi us, -vert[O0].sphereRadius) * g boxCorrection;
gl _Position = caneraTod i pMatrix * cameraCor ner Pos;

gl _PrimitivelD =gl _Primtivel D n;

Emit Vertex();

This code is followed by three more of these, using different mapping and offset values for the different corners of the square. The
caner aCor ner Pos isalocal variable that is re-used as temporary storage.

To output a vertex, write to each of the output variables. In this case, we have the three from the output interface block, as well as the built-in
variablesgl _Positionandgl _Prim tivel D(which we will discuss morein abit). Then, call Emi t Vert ex() ; this causes al of the
values in the output variables to be transformed into a vertex that is sent to the output primitive type. After calling this function, the contents
of those outputs are undefined. So if you want to use the same value for multiple vertices, you have to store the value in a different variable
or recompute it.

Note that clipping, face-culling, and al of that stuff happens after the geometry shader. This means that we must ensure that the order of our
output positions will be correct given the current winding order.

gl _Primtivel DI nisaspecial inputvalue. Muchlikegl _Vert exl Dfromthevertex shader,gl _Pri m ti vel DI nrepresentsthecurrent
primitive being processed by the geometry shader (once more reason for caling it a primitive shader). We write this to the built-in output
gl _Primtivel D, sothat the fragment shader can use it to select which material to use.

And speaking of the fragment shader, it's time to have alook at that.

Example 13.9. Fragment Shader Changes

in FragData

{
flat vec3 caneraSpher ePos;
flat float sphereRadi us;
snoot h vec2 mappi ng;

262

Lies and Impostors

b
out vec4 out put Col or;
| ayout (st d140) uniform

struct Material Entry

{

vec4 diffuseCol or;

vec4 specul ar Col or;

vec4 specul ar Shi ni ness; [/ ATl Array Bug fix. Not really a vec4.
b

const int NUVBER OF SPHERES = 4;
uni form Materi al

{
Mat eri al Entry materi al [NUVMBER _OF SPHERES] ;
} ML

Theinput interface isjust the mirror of the output from the geometry shader. What's more interesting is what happened to our material blocks.

Inour original code, we had an array of uniform blocks stored in asingle uniform buffer in C++. We bound specific portions of this material block
when we wanted to render with a particular material. That will not work now that we are trying to render multiple spheresin asingle draw call.

So, instead of having an array of uniform blocks, we have a uniform block that contains an array. We bind all of the materialsto the shader, and
let the shader pick which one it wants as needed. The source code to do thisis pretty straightforward.

Note

Notice that the material specul ar Shi ni ness became a vec4 instead of a simple float. This is due to an unfortunate bug in ATI's
OpenGL implementation.

Asfor how the material selection happens, that's simple. In our case, we use the primitive identifier. Thegl _Pri ni t i vel Dvauewritten from
the vertex shader isused toindex intotheM | . mat eri al [] array.

Do note that uniform blocks have a maximum size that is hardware-dependent. If we wanted to have a large palette of materials, on the order
of several thousand, then we may exceed this limit. At that point, we would need an entirely new way to handle this data. Once that we have
not learned about yet.

Or we could just split it up into multiple draw calls instead of one.

In Review

In this tutorial, you have learned the following:

 Impostors are objects who's geometric representation has little or no resemblance to what the viewer sees. These typically generate an object
procedurally by cutting fragments out to form a shape, and then use normals to do lighting computations on the cut-out.

» Fragments can be discarded from within a fragment shader. This prevents the outputs from the shader from being written to the final image.

» Ray tracing can be employed by a fragment shader to determine the position and normal for a point. Those values can be fed into the lighting
equation to produce a color value.

» Fragment shaders can change the depth value that is used for the depth test and is written to the framebuffer.

» Geometry shaders are a shader stage between the vertex shader and the rasterizer. They take a primitive as input and return one or more
primitives as output.

263

Lies and Impostors

Further Study

Try doing these things with the given programs.

e Thefirst version of our impostors was a sphere approximation. It was not useful for relatively large spheres, but it could be useful for small
ones. However, that approximation did not compute the depth of the fragment correctly. Make aversion of it that does.

» Change the geometry impostor tutorial to take another vertex input: the material to use. The vertex shader should passit along to the geometry
shader, and the geometry shader should hand it to the fragment shader. You can till usegl _Pri m ti vel Dastheway to tell the fragment
shader. Regardless of how you send it, you will need to convert the value to an integer at some point. That can be done with this constructor-
likesyntax: i nt (val ue_to_convert).

Further Research

Thisisan introduction to the concept of impostors. Indeed, the kind of ray tracing that we did has often been used to render more compl ex shapes
like cylinders or quadratic surfaces. But impostors are capable of much, much more.

In effect, impostors allow you to use the fragment shader to just draw stuff to an area of the screen. They can be used to rasterize perfect circles,
rather than drawing line-based approximations. Some have even used them to rasterize Bézier curves perfectly.

There are other impostor-based solutions. Most particle systems (a large and vibrant topic that you should investigate) use flat-cards to draw
pictures that move through space. These images can animate, changing from one image to another based on time, and large groups of these
particles can be used to simulate various phenomena like smoke, fire, and the like.

All of these subjects are worthy of your time. Of course, moving pictures through space requires being able to draw pictures. That means textures,
which coincidentally is the topic for our next section.

GLSL Features of Note

discard This fragment shader-only directive will cause the outputs of the fragment to be ignored. The fragment
outputs, including the implicit depth, will not be written to the framebuffer.

g_VertexID An input to the vertex shader of typeint. Thisisthe index of the vertex being processed.

gl_FragDepth An output from the fragment shader of type float. This value represents the depth of the fragment. If the
fragment shader does not use this value in any way, then the depth will be written automatically, using
gl _FragCoor d. z. If the fragment shader writes to it somewhere, then it must ensure that all codepaths
writetoit.

gl_PrimitivelD A geometry shader output and the corresponding fragment shader input of type int. If there is no geometry
shader, then this value will be the current count of primitives that was previously rendered in this draw call.
If there is a geometry shader, but it does not write to this value, then the value will be undefined.

gl_Primitivel Din A geometry shader input. It isthe current count of primitives previously processed in this draw call.
void EmtVertex();

Available on in the geometry shader, when this function is called, all output variables previously set by the geometry shader are consumed and
transformed into a vertex. The value of those variables becomes undefined after calling this function.

Glossary

billboard, flat card Terms used to describe the actual geometry used for impostors that are based on rendering camera-aligned
shapes.
impostor Any object who's geometry does not even superficially resemble the final rendered product. In these cases,

the mesh geometry is usually just a way to designate an area of the screen to draw to, while the fragment
shader does the real work.

264

Lies and Impostors

ray tracing

early depth test, early-z

interleaving

geometry shaders

interface block

For the purposes of thisbook, ray tracing is a technique whereby amathematical object istested against aray
(direction + position), to see if the ray intersects the object. At the point of intersection, one can generate a
normal. With a position and normal in hand, one can use lighting equations to produce an image.

An optimization in the depth test, where the incoming fragment's depth value is tested before the fragment
shader executes. If the fragment shader is long, this can save a great deal of time. If the fragment shader
exercises the option to modify or replace the fragment's depth, then the early depth test optimization will
not be active.

A way of storing vertex attributesin abuffer object. Thisinvolves entwining the attribute data, so that most or
all of each vertex'sattributesare spatially adjacent in the buffer object. Thisisas opposed to giving each vertex
attribute its own array. Interleaving can lead to higher rendering performance in vertex transfer limited cases.

A programmabl e stage between the vertex shader and the clipping/rasterization state. Geometry shaderstake
a primitive of a certain type as input, and returns zero or more primitives of a possibly different type as
output. The vertex datataken asinput does not have to match the vertex datataken as output, but the geometry
shader's output interface must match that of the fragment shader's input interface.

A ordered grouping of uniforms, shader inputs or shader outputs. When used with uniforms, these are called
uniform blocks. These are useful for name scoping, so that inputs and outputs can use the name that is most
convenient and descriptive.

265

Part IV. Texturing

If you areat al familiar with 3D graphics, you have probably heard the term “texture” before. And if you look at virtually any instruction material
on 3D graphics, they will introduce textures in the earliest parts of the work. Typically, this happens well before lighting is introduced.

This book is approximately halfway over and only now do we introduce textures. Thereis a good reason for this.

Consider everything you have learned up until now. You have learned how to transfer arbitrary data to vertex shaders, how to pass them to
fragment shaders, and how to compute colors from them. Y ou have learned how to transform positions of triangles and use this ability to provide
a perspective projection of a world as well as to position objects and have a mobile camera. You have learned how lighting works and how
to generate a lighting model. In the very last tutorial, we were able to convincingly render a mathematically perfect representation of a sphere
simply by rendering two triangles.

All of this has been done without textures. Thus, the first lesson this book has to teach you about texturesisthat they are not that important. What
you have learned is how to think about solving graphics problems without textures.

Many graphics texts overemphasi ze the importance of textures. Thisis mostly alegacy of the past. In the older days, before the availability of real
programmable hardware, you needed textures to do anything of real importance in graphics rendering. Textures were used to simulate lighting
and various other effects. If you wanted to do anything like per-fragment lighting, you had to use textures to do it.

Y es, textures areimportant for creating detailsin rendered images. They areimportant for being ableto vary material parameters over a polygonal
surface. And they have value in other areas as well. But there is so much more to rendering than textures, and this is especially true with
programmable hardware.

A texture is alook-up table; an array. Thereis alot of minutiae about accessing them, but at their core a texture is just a large array of some
dimensionality that you can access from a shader. Perhaps the most important lesson you could learn is that textures are tools. Use them where
appropriate, but do not et them become your primary solution to any rendering problem.

Chapter 14. Textures are not Pictures

Perhaps the most common misconception about texturesis that textures are pictures: images of skin, rock, or something else that you can look at
in an image editor. While it is true that many textures are pictures of something, it would be wrong to limit your thoughts in terms of textures to
just being pictures. Sadly, thisway of thinking about texturesis reinforced by OpenGL ; datain textures are “colors’ and many functions dealing
with textures have the word “image” somewhere in them.

The best way to avoid this kind of thinking is to have our first textures be of those non-picture types of textures. So as our introduction to the
world of textures, let us define a problem that textures can solve without having to be pictures.

We have seen that the Gaussian specular function is a pretty useful specular function. Its shininess value has anice range (0, 1], and it produces
pretty good resultsvisually. It hasfewer artifacts than theless complicated Blinn-Phong function. But thereis one significant problem: Gaussianis
much more expensive to compute. Blinn-Phong requires a single power-function; Gaussian requires not only exponentiation, but also an inverse-
cosine function. Thisisin addition to other operations like squaring the exponent.

Let us say that we have determined that the Gaussian specular function is good but too expensive for our needs.* So we want to find away to get
the equivalent quality of Gaussian specular but with more performance. What are our options?

A common tactic in optimizing math functions is a look-up table. These are arrays of some dimensionality that represents a function. For any
function F(x), where x is valid over some range [a, b], you can define a table that stores the results of the function at various points along the
valid range of x. Obvioudly if x has an infinite range, there is a problem. But if x has a finite range, one can decide to take some number of
values on that range and store them in atable.

The obvious downside of this approach is that the quality you get depends on how large this table is. That is, how many times the function is
evaluated and stored in the table.

The Gaussian specular function takes three parameters. the surface normal, the half-angle vector, and the specular shininess of the surface.
However, if we redefine the specular function in terms of the dot-product of the surface normal and the half-angle vector, we can reduce the

number of parameters to two. Also, the specular shininess is a constant value across a mesh. So, for any given mesh, the specular functionisa
function of one parameter: the dot-product between the half-angle vector and the surface normal.

Equation 14.1. Gaussian as Function of One Variable

Fd)=e (R

So how do we get alook-up table to the shader? We could use the obvious method; build auniform buffer containing an array of floats. Wewould
multiply the dot-product by the number of entriesin the table and pick atable entry based on that value. By now, you should be able to code this.

But lets say that we want another aternative; what else can we do? We can put our look-up table in atexture.

The First Texture

A texture is an object that contains one or more arrays of data, with all of the arrays having some dimensionality. The storage for a texture is
owned by OpenGL and the GPU, much like they own the storage for buffer objects. Textures can be accessed in a shader, which fetches data
from the texture at a specific location within the texture's arrays.

The arrays within a texture are called images; this is a legacy term, but it is what they are called. Textures have a texture type; this defines
characteristics of the texture as awhole, like the number of dimensions of the images and a few other special things.

Our first use of texturesisin the Basic Texture tutorial. This tutorial shows a scene containing a golden infinity symbol, with adirectional light
and a second moving point light source.

MThisis for demonstration purposes only. Y ou should not undertake this process in the real world unless you have determined with proper profiling that the specular function isa
performance problem that you should work to alleviate.

267

Textures are not Pictures

Figure 14.1. Basic Texture

The camera and the object can be rotated using the left and right mouse buttons respectively. Pressing the Spacebar toggles between shader-
based Gaussian specular and texture-based specular. The 1 through 4 keys switch to progressively larger textures, so that you can see the effects
that higher resolution look-up tables has on the visual result.

Normalized Integers

In order to understand how textures work, let's follow the data from our initial generation of the lookup tables to how the GLSL shader accesses
them. The function Bui | dGaussi anDat a generates the data that we want to put into our OpenGL texture.

Example 14.1. BuildGaussianData function

voi d Bui | dGaussi anDat a(std: : vect or <GLubyt e> &t ext ur eDat a,

268

Textures are not Pictures

i nt cosAngl eResol ution)

{
t extureDat a. resi ze(cosAngl eResol ution);
std::vector<G.ubyte>::iterator currlt = texturebData.begin();
for(int i CosAng = 0; iCosAng < cosAngl eResol ution; i CosAng++)
{
float cosAng = i CosAng / (float)(cosAngl eResolution - 1);
float angle = acosf(cosAng);
fl oat exponent = angle / g_specul ar Shi ni ness;
exponent = -(exponent * exponent);
fl oat gaussi anTerm = gl m: exp(exponent);
*currlt++ = (CGLubyte) (gaussi anTerm * 255. 0f);
}
}

This function fills a std::vector with bytes that represents our lookup table. It's a pretty simple function. The parameter
cosAngl eResol ut i on specifiesthe number of entriesin thetable. Aswe iterate over the range, we convert them into cosine values and then
perform the Gaussian specular computations.

However, the result of this computation is a float, not a GLubyte. Y et our array contains bytes. It is here that we must introduce a new concept
widely used with textures: normalized integers.

A normalized integer is away of storing floating-point values on the range [0, 1] in far fewer than the 32-bytes it takes for aregular float. The
idea is to take the full range of the integer and map it to the [0, 1] range. The full range of an unsigned integer is [0, 255]. So to map it to a
floating-point range of [0, 1], we simply divide the value by 255.

The above code takesthe gaussi anTer mand convertsit into a normalized integer.

This saves alot of memory. By using normalized integersin our texture, we save 4x the memory over a floating-point texture. When it comesto
textures, oftentimes saving memory improves performance. And sincethisis supposed to be a performance optimization over shader computations,
it makes sense to use a normalized integer value.

Texture Objects

Thefunction Cr eat eGaussi anText ur e calsBui | dGaussi anDat a to generatethe array of normalized integers. The rest of that function
uses the array to build the OpenGL texture object:

Example 14.2. CreateGaussianTextur e function

GLui nt CreateCGaussi anTexture(int cosAngl eResol uti on)
{
std::vector<G.ubyt e> textureData;
Bui | dGaussi anDat a(t ext ureDat a, cosAngl eResol ution);

GLui nt gaussText ure;

gl GenTextures(1, &gaussTexture);

gl Bi ndText ure(GL_TEXTURE_1D, gaussTexture);

gl Texl magelD(GL_TEXTURE 1D, 0, G._R8, cosAngl eResol ution, O,
GL_RED, GL_UNSI GNED_BYTE, &texturebData[0]);

gl TexParaneteri (GL_TEXTURE_1D, GL_TEXTURE_BASE_LEVEL, 0);

gl TexParaneteri (GL_TEXTURE 1D, G._TEXTURE _MAX LEVEL, O0);

gl Bi ndText ure(GL_TEXTURE_1D, 0);

return gaussTexture;

269

Textures are not Pictures

}

The gl GenText ur es function creates a single texture object, similar to other gl Gen* functions we have seen. gl Bi ndText ur e attaches
the texture object to the context. The first parameter specifies the texture's type. Note that once you have bound a texture to the context with a
certain type, it must always be bound with that same type. G__ TEXTURE_ 1D means that the texture contains one-dimensional images.

The next function, gl Tex| magelD is how we alocate storage for the texture and pass data to the texture. It is similar to gl Buf f er Dat a,
though it has many more parameters. The first specifies the type of the currently bound texture. As with buffer objects, multiple textures can be
bound to different texture type locations. So you could have atexture bound to G._ TEXTURE 1D and another boudnto GL_ TEXTURE_2D. But
it'sreally bad form to try to exploit this. It is best to just have one target bound at atime.

The second parameter is something we will talk about in the next tutorial. The third parameter is the format that OpenGL will use to store the
texture's data. The fourth parameter is the width of the image, which corresponds to the length of our lookup table. The fifth parameter must
always be 0; it represents an old feature no longer supported.

The last three parameters of all functions of the form gl Tex| mage* are special. They tell OpenGL how to read the texture datain our array.
This seems redundant, since we already told OpenGL what the format of the data was with the third parameter. This bears further examination.

Textures and buffer objects have many similarities. They both represent memory owned by OpenGL. The user can modify this memory with
various functions. Besides the fact that atexture object can contain multiple images, the mgjor difference isthe arrangement of dataasit is stored
by the GPU.

Buffer objects are linear arrays of memory. The data stored by OpenGL must be binary-identical to the data that the user specifies with
gl Buf f er (Sub) Dat a calls. The format of the data stored in a buffer object is defined externally to the buffer object itself. Buffer objects
used for vertex attributes have their formats defined by gl Vert exAtt ri bPoi nt er . The format for buffer objects that store uniform datais
defined by the arrangement of typesin a GLSL uniform block.

There are other ways that use buffer objects that allow OpenGL calls to fill them with data. But in al cases, the binary format of the datato be
stored isvery strictly controlled by the user. It isthe user's responsibility to make sure that the data stored there uses the format that OpenGL was
told to expect. Even when OpenGL itself is generating the data being stored in it.

Textures do not work this way. The format of an image stored in atexture is controlled by OpenGL itself. The user tells it what format to use,
but the specific arrangements of bytes is up to OpenGL. This allows different hardware to store textures in whatever way is most optimal for
accessing them.

Because of this, there is an intermediary between the data the user provides and the data that is actually stored in the texture. The data the user
provides must be transformed into the format that OpenGL uses internally for the texture's data. Therefore, gl Tex| mage* functions must
specify both the expected internal format and a description of how the texture data is stored in the user's array.

Pixel Transfer and Formats. This process, the conversion between an image's internal format and a user-provided array, is called a pixel
transfer operation. These are somewhat complex, but not too difficult to understand.

Each pixel in a texture is more properly referred to as a texel. Since texture data is accessed in OpenGL by the texel, we want our array of
normalized unsigned integers to each be stored in a single texel. So our input data has only one value per texel, that value is 8-bitsin size, and
it represents an normalized unisgned integer.

The last three parameters describe thisto OpenGL. The parameter G._ RED says that we are uploading a single component to the texture, namely
the red component. Components of texels are named after color components. Because this parameter does not end in “_INTEGER”, OpenGL
knows that the data we are uploading is either a floating-point value or a normalized integer value (which converts to a float when accessed
by the shader).

The parameter GL_UNSI GNED_BYTE says that each component that we are uploading is stored in an 8-bit unsigned byte. This, plus the pointer
to the data, isal OpenGL needsto read our data.

That describes the data format as we are providing it. The format parameter, the third parameter to the gl Tex| mage* functions, describes the
format of the texture'sinternal storage. The texture's format defines the properties of the texels stored in that texture:

e The components stored in the texel. Multiple components can be used, but only certain combinations of components are allowed. The
components include the RGBA of colors, and certain more exotic values we will discuss later.

270

Textures are not Pictures

e The number of bits that each component takes up when stored by OpenGL. Different components within atexel can have different bitdepths.

» The datatype of the components. Certain exotic formats can give different components different types, but most of them give them each the
same data type. Data types include normalized unsigned integers, floats, non-normalized signed integers, and so forth.

The parameter GL_R8 defines al of these. The*R” represents the components that are stored. Namely, the “red” component. Since textures used
to always represent image data, the components are named after components of a color vec4. Each component takes up “8” bits. The suffix of
the format represents the data type. Since unsigned normalized values are so common, they get the “no suffix” suffix; all other data types have
a specific suffix. Float formats use “f”; ared, 32-bit float internal format would use GL_R32F.

Note that this perfectly matches the texture data that we generated. We tell OpenGL to make the texture store unsigned normalized 8-bit integers,
and we provide unsigned normalized 8-bit integers as the input data.

Thisis not strictly necessary. We could have used GL_R16 as our format instead. OpenGL would have created a texture that contained 16-bit
unsigned normalized integers. OpenGL would then have had to convert our input datato the 16-bit format. It is good practice to try to match the
texture's format with the format of the data that you upload to OpenGL.

The callsto gl TexPar anet er set parameters on the texture object. These parameters define certain properties of the texture. Exactly what
these parameters are doing is something that will be discussed in the next tutorial.

Textures in Shaders

OK, so we have atexture object, which has atexture type. We need someway to represent that texturein GLSL. Thisisdone with something called
aGLSL sampler. Samplers are special typesin OpenGL ; they represent atexture that has been bound to the OpenGL context. For every OpenGL
texture type, there is a corresponding sampler type. So atexture that is of type G._ TEXTURE_1Dis paired with a sampler of type samplerlD.

The GLSL sampler type is very unusual. Indeed, it is probably best if you do not think of it like a normal basic type. Think of it instead as a
specific hook into the shader that the user can use to supply atexture. The restrictions on variables of sampler types are:

» Samplerscan only declared at the global scope asuni f or mor in function parameter listswith thei n qualifier. They cannot even be declared
aslocal variables.

» Samplers cannot be members of structs or uniform blocks.
» Samplers can be used in arrays, but the index for sampler arrays must be a compile-time constant.
» Samplers do not have values. No mathematical expressions can use sampler variables.

» Theonly use of variables of sampler type is as parameters to functions. User-defined functions can take them as parameters, and there are a
number of built-in functions that take samplers.

In the shader Text ur eGaussi an. f r ag, we have an example of creating a sampler:
uni f orm sanpl er 1D gaussi anText ur e;
This creates a sampler for a 1D texture type; the user cannot use any other type of texture with this sampler.

Texture Sampling. The process of fetching data from atexture, at a particular location, is called sampling. This is done in the shader as part
of the lighting computation:

Example 14.3. Shader Texture Access

vec3 hal f Angl e normal i ze(lightDir + viewDirection);
float texCoord = dot(halfAngle, surfaceNormal);
fl oat gaussi anTerm = texture(gaussi anTexture, texCoord).r;

271

Textures are not Pictures

gaussi anTerm = cosAngl nci dence != 0.0 ? gaussianTerm: O.O0;

Thethird line is where the texture is accessed. The function t ext ur e accesses the texture denoted by the first parameter (the sampler to fetch
from). It accesses the value of the texture from the location specified by the second parameter. This second parameter, the location to fetch from,
is called the texture coordinate. Since our texture has only one dimension, our texture coordinate also has one dimension.

Thet ext ur e function for 1D textures expects the texture coordinate to be normalized. This means something similar to normalizing integer
values. A normalized texture coordinate is a texture coordinate where the coordinate values range from [0, 1] refer to texel coordinates (the
coordinates of the pixels within the textures) to [0, texture-size].

What this means is that our texture coordinates do not have to care how big the texture is. We can change the texture's size without changing
anything about how we compute the texture coordinate. A coordinate of 0.5 will always mean the middle of the texture, regardless of the size
of that texture.

A texture coordinate values outside of the [0, 1] range must still map to a location on the texture. What happens to such coordinates depends
on values set in OpenGL that we will seelater.

Thereturn value of thet ext ur e functionisavec4, regardless of theimage format of the texture. So even though our texture'sformat isGL_R8,
meaning that it holds only one channel of data, we still get four in the shader. The other three components are 0, 0, and 1, respectively.

We get floating-point data back because our sampler isafloating-point sampler. Samplers use the same prefixes as vec types. A ivec4 representsa

vector of 4 integers, whileavec4 representsavector of 4 floats. Thus, anisamplerdD representsatexturethat returnsintegers, whileasamplerlDis
atexturethat returnsfloats. Recall that 8-bit normalized unsigned integersare just acheap way to store floats, so this matches everything correctly.

Texture Binding

We have atexture object, an OpenGL object that holds our image data with a specific format. We have a shader that contains a sampler uniform
that represents a texture being accessed by our shader. How do we associate a texture object with a sampler in the shader?

Althoughthe API isslightly more obfuscated dueto legacy issues, thisassociation is made essential ly the same way aswith uniform buffer objects.
The OpenGL context has an array of slots called texture image units, aso known as image units or texture units. Each image unit represents a

single texture. A sampler uniform in a shader is set to a particular image unit; this sets the association between the shader and the image unit. To
associate an image unit with a texture object, we bind the texture to that unit.

272

Textures are not Pictures

Figure 14.2. Texture Binding and Context

= Program Object

—-- uniform samplerlD texNamel

uniform sampler2D texName2

| - glActiveTexture(GL_TEXT!
T Teww s gl BI ndTeXture()

Though the idea is essentially the same, there are many API differences between the UBO mechanism and the texture mechanism. We will start
with setting the sampler uniform to an image unit.

With UBOs, this used a different API from regular uniforms. Because samplers are actual uniforms, the sampler API isjust the uniform API:

GLui nt gaussi anTextureUni f = gl Get Uni f ormLocati on(dat a.theProgram "gaussi anTexture");
gl UsePr ogr am(dat a. t hePr ogram ;
gl Uni f or mli (gaussi anTextureUni f, g_gaussTexUnit);

Sampler uniforms are considered 1-dimesional (scalar) integer values from the OpenGL side of the API. Do not forget that, in the GLSL side,
samplers have no value at all.

When it comes time to bind the texture object to that image unit, OpenGL again overloads existing API rather than making a new one the way
UBOs did:

gl ActiveTexture(GL_TEXTUREO + g_gaussTexUnit);
gl Bi ndTexture(GL_TEXTURE 1D, g_gaussTextures[g_currTexture]);

The gl Acti veText ure function changes the current texture unit. All subsequent texture operations, whether gl Bi ndText ur e,
gl Texl mage, gl TexPar anet er, etc, affect the texture bound to the current texture unit. To put it another way, with UBOs, it was possible

273

Textures are not Pictures

to bind a buffer object to GL_UNI FORM_BUFFER without overwriting any of the uniform buffer binding points. This is possible because there
are two functions for buffer object binding: gl Bi ndBuf f er which binds only to the target, and gl Bi ndBuf f er Range which binds to the
target and an indexed location.

Texture units do not have this. There is one binding function, gl Bi ndText ur e. And it aways binds to whatever texture unit happens to be
current. Namely, the one set by the last call to gl Act i veText ure.

What this meansisthat if you want to modify atexture, you must overwrite a texture unit that may aready be bound. Thisis usually not a huge
problem, because you rarely modify textures in the same area of code used to render. But you should be aware of this API oddity.

Also note the peculiar gl Act i veText ur e syntax for specifying theimage unit: G._ TEXTUREO + g_gaussTexUni t . Thisisthe correct
way to specify which texture unit, because gl Act i veText ur e isdefined in terms of an enumerator rather than integer texture image units.

If you look at the rendering function, you will find that the texture will always be bound, even when not rendering with the texture. Thisis
perfectly harmless; the contents of atexture image unit isignored unless a program has a sampler uniform that is associated with that image unit.

Sampler Objects

With the association between a texture and a program's sampler uniform made, there is till one thing we need before we render. There are a
number of parameters the user can set that affects how texture datais fetched from the texture.

In our case, we want to make sure that the shader cannot access texels outside of the range of the texture. If the shader tries, we want the shader
to get the nearest texel to our value. So if the shader passes a texture coordinate of -0.3, we want them to get the sametexel asif they passed 0.0.
In short, we want to clamp the texture coordinate to the range of the texture.

These kinds of settings are controlled by an OpenGL object called a sampler object. The code that creates a sampler object for our texturesis
inthe Cr eat eGaussi anText ur es function.

Example 14.4. Sampler Object Creation

gl GenSanpl ers(1, &g_gaussSanpl er);

gl Sanpl er Paranet eri (g_gaussSanpl er, G._TEXTURE MAG FI LTER, G._NEAREST);
gl Sanpl er Paranet eri (g_gaussSanpl er, G._TEXTURE M N FILTER, G._NEAREST);
gl Sanpl er Paranet eri (g_gaussSanpl er, G._TEXTURE WRAP_S, G._CLAMP_TO EDCE);

As with most OpenGL objects, we create a sampler object with gl GenSanpl er s. However, notice something unusual with the next series of
functions. We do not bind a sampler to the context to set parametersin it, nor does gl Sanpl er Par anet er take a context target. We simply
pass an object directly to the function.

In this above code, we set three parameters. The first two parameters are things we will discuss in the next tutorial. The third parameter,
GL_TEXTURE_WRAP_S, is how wetell OpenGL that texture coordinates should be clamped to the range of the texture.

OpenGL names the components of the texture coordinate “ strq” rather than “xyzw” or “uvw” asis common. Indeed, OpenGL has two different
names for the components:. “strq” is used in the main API, but “stpg” isused in GLSL shaders. Much like “rgba’, you can use “stpq” as swizzle
selectors for any vector instead of the traditional “xyzw”.

Note

Thereason for the odd naming isthat OpenGL triesto keep vector suffixesfrom conflicting. “uvw” does not work because“w” isalready
part of the “xyzw” suffix. In GLSL, the“r” in “strq” conflicts with “rgba’, so they had to go with “stpq” instead.

The GL_TEXTURE_WRAP_S parameter defines how the “s” component of the texture coordinate will be adjusted if it falls outside of the [0, 1]
range. Setting thisto GL_ CLAMP_TO_EDGE clamps this component of the texture coordinate to the edge of the texture. Each component of the
texture coordinate can have a separate wrapping mode. Since our textureisa 1D texture, its texture coordinates only have one component.

The sampler object is used similarly to how textures are associated with GLSL samplers: we bind them to atexture image unit. The APl is much
simpler than what we saw for textures:

gl Bi ndSanpl er (g_gaussTexUnit, g_gaussSanpler);

274

Textures are not Pictures

We pass the texture unit directly; thereisno need to add G._ TEXTUREDO to it to convert it into an enumerator. This effectively adds an additional
value to each texture unit.

Figure 14.3. Sampler Binding and Context

= Program Object

—— uniform samplerlD texNamel <

uniform sampler2D texName2

| - glActiveTexture(GL_TEXTL
STV UV VvV 4 gl BI ndTexture()

glUniform1i(..., 1) r

glBindSampler(1, ..) |

Note

Technically, we do not have to use a sampler object. The parameters we use for samplers could have been set into the texture object
directly with gl TexPar amet er . Sampler objects have alot of advantages over setting the value in the texture, and binding a sampler
object overrides parameters set in the texture. There are still some parameters that must be in the texture object, and those are not
overridden by the sampler object.

Texture Resolution

This tutorial creates multiple textures at a variety of resolutions. The resolution corresponding with the 1 is the lowest resolution, while the one
corresponding with 4 is the highest.

If we use resolution 1, we can see that it is a pretty rough approximation. We can very clearly see the distinction between the different texels
in our lookup table. It is a 64-texel lookup table.

275

Textures are not Pictures

Switching to the level 3 resolution shows more gradations, and looks much more like the shader calculation. This oneis 256 texels across.

The largest resolution, 4, is 512 texels, and it looks nearly identical to the pure shader version for this object.

276

Textures are not Pictures

Interpolation Redux

The next step when working with textures is to associate a texture with |ocations on the surface of an object. But before we can do that, we need
to have a discussion about what it means to interpolate a value across a triangle.

Thusfar, we have more or less glossed over the details of interpolation. We expanded on this earlier when we explained why per-vertex lighting
would not work for certain kinds of functions, aswell as when explaining why normals do not interpolate well. But now that we want to associate
vertices of atriangle with locations on a texture, we need to fully explain what interpolation means.

The main topic is linearity. In the earlier discussions, it was stressed that interpolation was linear. The question that was danced around is both
simple and obscure: linear in what space?

The perspective projection isanon-linear transform; that'swhy amatrix multiplication isinsufficient to expressit. Matrices can only handlelinear
transformations, and the perspective projection needs a division, which is non-linear. We have seen the effect of this non-linear transformation
before:

277

Textures are not Pictures

Figure 14.4. Projection and I nterpolation

_7 A

. 4
N ’
. ’
~
N ’
. oC,
. ’
N ’
. ’
~ ’
S 4 < I
< JR J
: ®D !
N ”
~ ’
[N ’
N ’
Y ’
S ’
N ’
. ’
S ’
N .
< J —
~ ’

Camera Space Nor

The transformation from normalized device coordinate space to window spaceis fully linear. So the problem is the transformation from camera
space to NDC space, the perspective projection.

From this diagram we see that lines which are parallel in camera space are not necessarily parallel in NDC space; this is one of the features of
non-linear transforms. But most important of all isthe fact that the distance between objects has changed non-linearly. In camera-space, the lines
parallel tothe Z axis are all equally spaced. In NDC space, they are not.

Look at the lines A and B. Imagine that these are the only two vertices in the object. In camera-space, the point halfway between them is C.
However, in NDC space, the point halfway between them is D. The points C and D are not that close to one another in either space.

So, what space has OpenGL been doing our interpolation in? It might seem obvious to say window space, since window space is the space that
the rasterizer (the hardware that does the interpolating) sees and uses. But if it had, we would have had a great many interpolation problems.

Consider interpolating camera space positions. This only works if the interpolation happens in camera-space (or some linear transform thereof).
L ook at the diagram again; the camera-space position C would be computed for the NDC location D. That would be very wrong.

So our interpolation has somehow been happening in camera space, even though the rasterizer only sees window space. What mechanism causes
this?

278

Textures are not Pictures

The ability to linearly interpolate values in pre-projection space is called perspective-correct interpolation. And we now get to the final reason
why our vertex shader provides values in clip-space rather than having the shader perform the perspective divide. The W term of clip-space is
vital for performing perspective-correct interpolation.

This makes sense; the clip-space W is after all what makes our transformation non-linear. Perspective-correction simply uses the clip-space W to
adjust the interpolation so that it happensin a space that is linear with respect to clip-space. And since clip-spaceis alinear transform of camera
space (using 4D homogeneous coordinates), everything works out. Technically, perspective-correct interpolation does not cause interpolation in
camera space, but it interpolatesin a space that is alinear transform from camera space.

To see the effects of perspective-correction most dramatically, fire up the Perspective Interpolation project.

There are no camera controls in this demo; the cameraisfixed so asto alow the illusion presented to work. Pressing the P key switches between
perspective-correct interpolation and window-space linear interpolation.

Figure 14.5. Per spective Correct I nterpolation

Left: Linear interpolation. Right: Perspective-correct interpolation

The interesting bit is as follows. Switch to the perspective-correct version (a message will appear in the console window) and press the S key.
Now, the P key no longer seems to have any effect; we seem to be trapped in linear-interpolation.

What happensisthat the Skey switches meshes. The “fake” meshisnot really ahalway; it is perfectly flat. It ismore or |ess amesh who's vertex
positions are in NDC-space, after multiplying the origina hallway by the perspective matrix. The difference is that there is no W coordinate;
it's just aflat object, an optical illusion. There is no perspective information for the perspective-correction logic to key on, so it looks just like
window-space linear interpolation.

The switch used to turn on or off perspective-correct interpol ation istheinterpolation qualifier. Previously, we said that there werethree qualifiers:
fl at,snoot h, and noper spect i ve. Thethird one was previously left undefined before; you can probably guess what it does now.

We are not going to use noper spect i ve intheimmediate future. Indeed, doing window space interpolation with a perspective projection is
exceedingly rare, far more rare than f | at . The important thing to understand from this section is that interpolation style matters. And snoot h
will be our default interpolation; fortunately, it is OpenGL's default too.

Texture Mapping

One of the most important uses of textures is to vary material parameters across a surface. Previously, the finest granularity that we could get
for material parameters is per-vertex values. Textures allow us to get a granularity down to the texel. While we could target the most common
material parameter controlled by textures (aka: the diffuse color), we will instead look at something less common. We will vary the specular
shininess factor.

279

Textures are not Pictures

To achievethisvariation of specular shininess, we must first find away to associate pointson our triangleswith texelson atexture. Thisassociation
is called texture mapping, since it maps between points on atriangle and locations on the texture. Thisis achieved by using texture coordinates
that correspond with positions on the surface.

Note

Some people refer to textures themselves as “texture maps.” This is sadly widespread terminology, but is incorrect. This text will not
refer to them as such, and you are strongly advised not to do the same.

In the last example, the texture coordinate was a value computed based on lighting parameters. The texture coordinate for accessing our shininess
texture will instead come from interpolated per-vertex parameters. Hence the prior discussion of the specifics of interpolation.

For simple cases, we could generate the texture coordinate from vertex positions. And in some later tutorials, we will. In the vast mgjority of
cases however, texture coordinates for texture mapping will be part of the per-vertex attribute data.

Since the texture map's coordinates come from per-vertex attributes, this will affect our mesh topography. It adds yet another channel with its
own topology, which must be massaged into the overall topology of the mesh.

To see texture mapping in action, load up the Material Texture tutorial. This tutorial uses the same scene as before, but the infinity symbol can
use atexture to define the specular shininess of the object.

280

Textures are not Pictures

Figure 14.6. Material Texture

The Spacebar switches between one of three rendering modes: fixed shininess with a Gaussian lookup-table, a texture-based shininess with a
Gaussian lookup-table, and a texture-based shininess with a shader-computed Gaussian term. The Y key switches between the infinity symbol
and aflat plane; this helps make it more obvious what the shininess looks like. The 9 key switches to a material with a dark diffuse color and
bright specular color; this makes the effects of the shininess texture more noticeable. Press the 8 key to return to the gold material.

Texture 2D

The 1 through 4 keys still switch to different resolutions of Gaussian textures. Speaking of which, that works rather differently now.

Previoudly, we assumed that the specular shininesswas afixed valuefor the entire surface. Now that our shininess values can come from atexture,
thisis not the case. With the fixed shininess, we had a function that took one parameter: the dot-product of the half-angle vector with the normal.
But with a variable shininess, we have afunction of two parameters. Functions of two variables are often called “two dimensional .”

281

Textures are not Pictures

It is therefore not surprising that we model such afunction with atwo-dimensional texture. The S texture coordinate represents the dot-product,
whilethe T texture coordinate is the shininess value. Both range from [0, 1], so they fit within the expected range of texture coordinates.

Our new function for building the data for the Gaussian term is as follows:

Example 14.5. BuildGaussianData in 2D

voi d Bui | dGussi anDat a(std: : vect or <GLubyt e> &t ext ur eDat a,
i nt cosAngl eResol uti on,
i nt shi ni nessResol ution)

{
t ext ureDat a. resi ze(shi ni nessResol uti on * cosAngl eResol ution);
std::vector<unsigned char>::iterator currlt = textureData.begin();
for(int iShin = 1; iShin <= shininessResol ution; iShin++)
{
float shininess = iShin / (float)(shininessResol ution);
for(int iCosAng = 0; iCosAng < cosAngl eResol ution; i CosAng++)
{
float cosAng = i CosAng / (float)(cosAngl eResolution - 1);
float angle = acosf(cosAng);
fl oat exponent = angle / shininess;
exponent = -(exponent * exponent);
fl oat gaussi anTerm = gl m: exp(exponent);
currlt = (unsigned char) (gaussi anTerm 255, 0f);
++currlt,
}
}
}

Thisfunctionwritesinto alD array of data. It writesafull set of valuesfor aparticular shininess, then writes the next valuesfor that shininess, and
so on. Thisisthe most standard way that image data is stored in virtually every image format. Naturally, thisis also how OpenGL takesits data.

However, notice that the texture data expects a lower-left origin: the first row, which corresponds to the smallest shininess value (a T value of
0), is the first row. Sadly, this not how most image formats store rows of pixel data; they tend to use a top-left orientation, so the first row in
most image formatsis the top row.

This brings us to how we present this data to OpenGL. The function is similar to what we saw before, only with a couple of changes.

Example 14.6. CreateGaussianTexturein 2D

GLui nt CreateGaussi anTexture(int cosAngl eResol ution, int shininessResol ution)
{

std::vector<unsigned char> textureDat a;

Bui | dGaussi anDat a(t ext ureDat a, cosAngl eResol uti on, shini nessResol ution);

GLui nt gaussText ure;

gl GenTextures(1, &gaussTexture);

gl Bi ndText ure(GL_TEXTURE_2D, gaussTexture);

gl Texl mage2D(GL_TEXTURE_2D, 0, G._R8, cosAngl eResol uti on, shini nessResol ution, O,
GL_RED, G._UNSI GNED_BYTE, &texturebData[0]);

gl TexParaneteri (GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);

gl TexParaneteri (GL_TEXTURE 2D, G._TEXTURE _MAX LEVEL, O0);

gl Bi ndText ure(G._TEXTURE_2D, 0);

return gaussTexture;

282

Textures are not Pictures

}

Here, we can see that we use the GL_ TEXTURE_2D target instead of the 1D version. We also use gl Tex| mage2D instead of the 1D version.
This takes both awidth and a height. But otherwise, the code is very similar to the previous version.

Image From a File

Our Gaussian texture comes from data we compute, but the specular shininess texture is defined by afile. For this, we use the GL Image library
that is part of the OpenGL SDK. While the GL Image library has functions that will directly create textures for us, it isinstructive to see amore
manual process.

Example 14.7. CreateShininessT extur e function

voi d Creat eShi ni nessTexture()

{

std::auto_ptr<gling::|nageSet> pl nageSet;

try

{
pl mageSet.reset (gling::|oaders::dds::LoadFronFil e("data\\min.dds"));
std::auto_ptr<gling::I|nage> pl mage(pl mageSet - >Get | mage(0, 0, 0));
gling::Dimensions dinms = pl mage->Cet Di nensi ons() ;
gl GenTextures(1, &g _shineTexture);
gl Bi ndText ure(GL_TEXTURE_2D, g_shi neTexture);
gl Texl mage2D(GL_TEXTURE 2D, 0, G._R8, dims.w dth, dins.height, O,

GL_RED, G._UNSI GNED BYTE, pl nage->Cet| nageData());

gl TexPar anmet eri (GL_TEXTURE_2D, G._TEXTURE BASE_LEVEL, O0);
gl TexPar anet eri (GL_TEXTURE_2D, G._TEXTURE_MAX LEVEL, 0);
gl Bi ndText ure(GL_TEXTURE 2D, 0);

}

catch(gling:: 1 mgeCreati onExcepti on &e)

{
printf(e.what());
t hr ow,

}

}

The GL Image library has a number of loaders for different image formats; the one we use in the first line of the try-block is the DDS loader.
DDS stands for “Direct Draw Surface,” but it really has nothing to do with Direct3D or DirectX. It is unique among image file formats

Thegl i ng: : | nageSet object also supports all of the unique features of textures; an | mageSet represents all of the images for a particular
texture. To get at the image data, we first select an image with the Get | mage function. We will discuss later what exactly these parameters
represent, but (0, O, 0) represents the single image that the DDS file contains.

Images in textures can have different sizes, so each gl i ng: : | mage object has its own dimensions, which we retrieve. After this, we use the
usual methods to upload the texture. The Get | mageDat a object returns a pointer to the data for that image as loaded from the DDSfile.

Shaders Textures in 2D

Since we are using texture objects of GL_ TEXTURE 2D type, we must use sampler2D samplersin our shader.

uni f orm sanpl er 2D gaussi anText ur e;
uni f orm sanpl er 2D shi ni nessText ur e;

We have two textures. The shininess texture determines our specular shininess value. This is accessed in the fragment shader's main function,
before looping over the lights:

283

Textures are not Pictures

Example 14.8. Shininess Texture Access

void main()

{

fl oat specul ar Shi ni ness = texture(shininessTexture, shinTexCoord).r;

vec4d accunlighting = M1 .diffuseCol or * Lgt.anbientlntensity;
for(int light = 0; light < nunber O Lights; |ight++)
{
accunli ghting += ConputeLi ghting(Lgt.lights[light],
caner aSpacePosi tion, vertexNornmal, specul ar Shi ni ness);

}

out put Col or = sqgrt(accunlighting); //2.0 gamma correction

}

The Conput eLi ght i ng function now takes the specular term as a parameter. It uses this as part of its access to the Gaussian texture:

Example 14.9. Gaussian Texture with Specular

vec3 hal fAngle = normalize(lightDir + viewDirection);

vec2 texCoord;

texCoord.s = dot (hal fAngl e, surfaceNormal);

texCoord.t = specul ar Shi ni ness;

fl oat gaussi anTerm = texture(gaussi anTexture, texCoord).r;

gaussi anTerm = cosAngl nci dence != 0.0 ? gaussianTerm: O0.O0;

The use of the Sand T components matches how we generated the lookup texture. The shader that computes the Gaussian term uses the specular
passed in, and is little different otherwise from the usual Gaussian computations.

Rendering with Shininess

We have two textures in this example, but we do not have two sampler objects (remember: sampler objects are not the same as sampler typesin
GLSL). We can use the same sampler object for accessing both of our textures.

Because they are 2D textures, they are accessed with two texture coordinates: S and T. So we need to clamp both Sand T in our sampler object:

gl GenSanpl ers(1, &g_textureSanpler);

gl Sanpl er Par anet eri (g_t extureSanpl er, GL_TEXTURE_NMAG FI LTER, GL_NEAREST);

gl Sanpl er Par anet eri (g_textureSanpl er, GL_TEXTURE_M N_FI LTER, GL_NEAREST);

gl Sanpl er Paraneteri (g_textureSanmpler, G_TEXTURE WRAP_S, G._CLAMP_TO EDCGE);
gl Sanpl er Paraneteri (g_textureSanmpler, G_TEXTURE WRAP_T, G._CLAMP_TO EDCGE);

When the time comes to render, the sampler is bound to both texture image units:

gl ActiveTexture(GL_TEXTUREO + g_gaussTexUnit);
gl Bi ndText ure(GL_TEXTURE 2D, g_gaussTextures[g_currTexture]);
gl Bi ndSanpl er (g_gaussTexUnit, g textureSanpler);

gl ActiveTexture(GL_TEXTUREO + g_shi neTexUnit);
gl Bi ndText ure(GL_TEXTURE 2D, g_shi neTexture);
gl Bi ndSanpl er (g_shi neTexUnit, g textureSanpler);

It is perfectly valid to bind the same sampler to more than one texture unit. Indeed, while many programs may have hundreds of individual
textures, they may have less than 10 distinct samplers. It is also perfectly valid to bind the same texture to different units that have different
samplers attached to them.

284

Textures are not Pictures

The Way of the Map

We use two objectsin thistutorial: aflat plane and an infinity symbol. The mapping of the planeisfairly obvious, but the infinity symbol's map
is more interesting. Topologically, the infinity symbol is no different from that of atorus.

Figure14.7. A Torus

- L LT Ty —p—

SRR
T E.i'. ..I'-k

That is, the infinity symbol and atorus have the same connectivity between vertices; those vertices are just in different positions.

Mapping an object onto a 2D plane generally means finding a way to slice the object into pieces that fit onto that plane. However, a torus is,
topologically speaking, equivalent to a plane. This plane is rolled into a tube, and bent around, so that each side connects to its opposing side
directly. Therefore, mapping a texture onto this means reversing the process. The tube is cut at one end, creating a cylinder. Then, it is cut
lengthwise, much like a car tire, and flattened out into a plane.

285

Textures are not Pictures

Exactly where those cuts need to be made is arbitrary. And because the specular texture mirrors perfectly in the Sand T directions, it is not
possible to tell exactly where the seams in the topology are. But they do need to be there.

What this does mean is that the vertices along the same have duplicate positions and normals. Because they have different texture coordinates,
their shared positions and normals must be duplicated to match what OpenGL needs.

Smudges on Glass

The best way to understand how the shininess texture affects the rendered result is to switch to the dark material with the 9 key. The plane also
shows this a bit easier than the curved infinity symbol.

Figure 14.8. Surface smudges

The areas with lower shininess, the bright areas, 1ook like smudge marks. While the bright marks in the highly shiny areas only reflect light when
the light source is very close to perfectly reflecting, the lower shininess areas will reflect light from much larger angles.

Oneinteresting thing to noteis how our look-up table works with theflat surface. Even at the highest resolution, 512 individual values, thelookup
tableis pretty poor; alot of concentric rings are plainly visible. It looked more reasonable on the infinity symbol because it was heavily curved,
and therefore the specular highlights were much smaller. On thisflat surface, the visual artifacts become much more obvious. The Spacebar can
be used to switch to a shader-based computation to see the correct version.

If our intent was to show a smudged piece of metal or highly reflective black surface, we could enhance the effect by also applying atexture that
changed the specular reflectance. Smudged areas don't tend to reflect as strongly as the shiny ones. We could use the same texture mapping (ie:
the same texture coordinates) and the specular texture would not even have to be the same size as our shininess texture.

There is one more thing to note about the shininess texture. The size of the texture is 1024x256 in size. The reason for that is that the textureis
intended to be used on the infinity symbol. This object islonger in model space than it is around. By making the texture map 4x longer in the axis
that is mapped to the S coordinate, we are able to more closely maintain the aspect ratio of the objects on the texture than the flat plane we see here.
All of those oval smudge marksyou seearein fact round in thetexture. They are still somewhat ovoid and distorted on theinfinity symbol though.

It is generally the job of the artist creating the texture mapping to ensure that the aspect ratio and stretching of the mapped object remains
reasonable for the texture. In the best possible case, every texel in the texture maps to the same physical size on the object's surface. Fortunately
for a graphics programmer, doing that isn't your job.

Unless of course your job iswriting the tool that the artists use to help them in this process.

286

Textures are not Pictures

In Review

In thistutorial, you have learned the following:

Textures are objects that store one or more arrays of data of some dimensionality. They can be created and filled with data from OpenGL.
Shaders can reference them with sampler types, and they can access them using texturing functions. The values in a texture have a specific
meaning; never forget what the texture and its stored data represent.

The data in textures can represent arbitrary information. They can be used to vary a material parameter across a surface, replace a complex
function with alook-up table, or anything else you might need a multi-dimensional array of valuesfor.

Vertex or geometry shader outputs interpolated across polygons can be interpolated linearly in window space or linearly in pre-projection
space. The GLSL interpolation qualifiers control which kind of interpolation happens.

Textures can be associated with points on a surface by giving those vertex attributes texture coordinates. The texture coordinate isinterpolated
across the triangl €'s surface and then used to fetch values from atexture. Thisis but a part of the utility of textures.

Further Study

Try doing these things with the given programs.

If you were to look at the look-up table for our specular function, you will see that much of it is very dark, if not actually at 0.0. Even when
the dot product is close to 1.0, it does not take very far before the specular value becomes negligible. One way to improve our |ook-up table
without having to use larger texturesis to change how we index the texture. If we index the texture by the square-root of the dot-product, then
there will be more room in the table for the values close to 1.0, and less for the values close to 0.0. Thisis similar to how gamma correction
works. Implement this by storing the values in the table based on the square-root of the dot-product, and then take the square-root of the dot-
product in the shader before accessing the texture.

Animate the texture coordinates in the texture mapping tutorial. Do this by sending an offset to the fragment shader which is applied to the
texture coordinates. Y ou can generate the offset based on the Framework::Timer g_| i ght Ti mer . Make sure to use the nod function on the
texture coordinates with a value of 1.0, so that the texture coordinate will always stay on the range [0, 1].

OpenGL Functions of Note

glGenTextures, glBindTexture, These functions create texture objects and bind them to a specific texture target in the OpenGL context.
glActiveTexture gl Acti veText ur e selects which texture unit the texture all texture object commands refer to, including

gl Bi ndText ur e. Thefirst time atexture is bound to atarget, that texture object takes on the texture type
associated with that target. It then becomesillegal to bind that texture to a different target. So if you bind a
textureto GL_ TEXTURE_2Dthefirst time, you cannot bind it to any other target ever again.

olTexImagelD, glTeximage2D Allocates storage for an image in the currently bound texture of the currently active texture unit. If the last

parameter is not NULL, then these functions will also upload data to that image. Otherwise, the content of
thisimage is undefined.

ol TexParameter Sets a parameter in the currently bound texture of the currently active texture unit.

glGenSamplers, These functions create sampler objects and bind them to the context for use.

glBindSampler

gl Sampl erParameter Sets a parameter to the given sampler object. Unlike most OpenGL functions that operate on objects, this

function takes a sampler object as a parameter; it does not require that the sampler object be bound to the
context.

GLSL Functions of Note

vec4 texture(sanpler texSanpler, vec texCoord);

287

Textures are not Pictures

Accesses the texture associated witht exSanpl er , at thelocation given by t exCoor d. The sampler type can be any of the sampler types. The
number of components of vec depends on the type of sampler used; a samplerlD takes asingle float, while a sampler2D takes avec2.

Glossary

look-up table

texture
image

texture type

normalized integers

pixel transfer

texe

GLSL sampler

sampling

texture coordinate

texture image unit
sampler object
perspective-correct
interpolation

texture mapping

A table that is used to represent an expensive function computation. The function is sampled at discrete
intervals. To access the function, the input values for the function are transformed into a discrete location in
the table and that valueis returned.

An object that contains one or more images of a particular dimensionality. The data in the images can be
fetched by the user in a shader. Textures have atype, which represents the nature of that particular texture.

An array of data of a particular dimensionality. Images can be 1D, 2D, or 3D in size. The points of datain
an image are 4-vector values, which can be floating point or integers.

Represents the basic nature of the texture. The texture type defines the dimensionality of the imagesit stores.
It defines the size of the texture coordinate that the texture takes, the number of images it can contain, and
various other information about the texture.

Aninteger that represents afl oating-point value on therange [0, 1] for unsigned integersand [-1, 1] for signed
integers. Normalized integers use their entire bitrange to represent a floating point value. The maximum
value for the integer's bitdepth represents the maximum floating point value, and the minimum value for the
integer's bitdepth represents the minimum floating point value.

The act of sending pixel datato an image in OpenGL, or receiving pixel datafrom OpenGL.

A pixel within a texture image. Used to distinguish between a pixel in a destination image and pixelsin
texture images.

A number of typesin GLSL that represents a texture bound to a texture image unit of the OpenGL context.
For every texture type in OpenGL, there is a matching sampler type. There are a number of restrictions on
the use of samplersin GLSL. They can only be declared globally as uniforms and as input parameters to
functions. They can only be used as the value passed to a function, whether user-defined or built-in.

The process of accessing data from one or more of the images of the texture, using a specific texture
coordinate.

A value that is used to access locations within a texture. Each texture type defines what dimensionality of
texture coordinate it takes (note that the texture type may define a different texture coordinate dimensionality
from the image dimensionality). Texture coordinates are often normalized on the range [0, 1]. This allows
texture coordinates to ignore the size of the specific texture they are used with.

Texture coordinates are comprised by the S, T, R, and Q components, much like regular vectors are composed
of X,Y, Z, and W components. In GLSL, the R component is called “P” instead.

An array of locations in the OpenGL context where texture objects are bound to. Programs can have their
GL SL sampler uniforms associated with one of the entries in this array. When using such a program, it will
use the texture object bound to that location to find the texture for that GLSL sampler.

An OpenGL object that defines how a texture is accessed in the shader. The parameters that are set on a
sampler object can also be set on atexture object, but if asampler isbound to the sameimage unit asatexture,
then the sampler takes precidence.

A scheme for interpolating values across the surface of atriangle in pre-projection space. This is necessary
when working with perspective projections. This is the default interpolation scheme in OpenGL; it can be
selectively disabled with the noper spect i ve GLSL qudlifier.

The association between one or moretexturesand positions on the surface. Thisassociation ismade by putting
texture coordinates in the per-vertex attribute data. Therefore, each triangle vertex has a texture coordinate.

288

Chapter 15. Many Images

In the last tutorial, we looked at textures that were not pictures. Now, we will ook at textures that are pictures. However, unlike the last tutorial,
where the textures represented some parameter in the light equation, here, we will just be directly outputting the values read from the texture.

Graphics Fudging

Before we begin however, there is something you may need to do. When you installed your graphics drivers, installed along with it was
an application that allows you to provide settings for your graphics driver. This affects how graphics applications render and so forth.

Thusfar, most of those settings have been irrelevant to us because everything we have done has been entirely in our control. The OpenGL
specification defined almost exactly what could and could not happen, and outside of actual driver bugs, the results we produced are
reproducible and nearly identical across hardware.

That is no longer the case, as of thistutorial.

Texturing has long been a place where graphics drivers have been given room to play and fudge results. The OpenGL specification plays
fast-and-loose with certain aspects of texturing. And with the driving need for graphics card makers to have high performance and high
image quality, graphics driver writers can, at the behest of the user, simply ignore the OpenGL spec with regard to certain aspects of
texturing.

Theimage quality settingsinyour graphicsdriver provide control over this. They arewaysfor youto tell graphicsdriversto ignore whatever
the application thinks it should do and instead do things their way. That is fine for a game, but right now, we are learning how things
work. If the driver starts pretending that we set some parameter that we clearly did not, it will taint our results and make it difficult to
know what parameters cause what effects.

Therefore, you will need to go into your graphics driver application and change all of those setting to the value that means to do what the
application says. Otherwise, the visual results you get for the following code may be very different from the given images. This includes
settings for antialiasing.

Playing Checkers

We will start by drawing asingle large, flat plane. The plane will have atexture of a checkerboard drawn on it. The camerawill hover above the
plane, looking out at the horizon as if the plane were the ground. Thisisimplemented in the Many Images tutorial project.

289

Many Images

Figure 15.1. Basic Checkerboard Plane

i Sy i el Fai
s i

¥ 3

=
=
=
=
-
=
=
-
[

The camera is automatically controlled, though it's motion can be paused with the P key. The other functions of the tutorial will be explained
aswe get to them.

If you look at the Bi gPl ane. xnl file, you will find that the texture coordinates are well outside of the [0, 1] range we are used to. They span
from [-64, 64] now, but the texture itself is only valid within the [0, 1] range.

Recall from the last tutorial that the sampler object has a parameter that controls what texture coordinates outside of the [0, 1] range mean. This
tutorial uses many samplers, but al of our samplers use the same Sand T wrap modes:

gl Sanpl er Par anet eri (g_sanpl ers[sanpl erl x], G._TEXTURE WRAP_S, G._REPEAT);
gl Sanpl er Par anet eri (g_sanpl ers[sanpl erl x], G._TEXTURE WRAP_T, G._REPEAT);

290

Many Images

We set the Sand T wrap modesto GL_ REPEAT. This means that values outside of the [0, 1] range wrap around to values within the range. So a
texture coordinate of 1.1 becomes 0.1, and a texture coordinate of -0.1 becomes 0.9. The ideais to make it as though the texture were infinitely
large, with infinitely many copies repeating over and over.

Note

It is perfectly legitimate to set the texture coordinate wrapping modes differently for different coordinates. Well, usually; this does not
work for certain texture types, but only because they take texture coordinates with special meanings. For them, the wrap modes are
ignored entirely.

Y ou may toggle between two meshes with the Y key. The aternative mesh is along, square corridor.

The shaders used here are very simple. The vertex shader takes positions and texture coordinates as inputs and outputs the texture coordinate
directly. The fragment shader takes the texture coordinate, fetches a texture with it, and writes that color value as output. Not even gamma
correction is used.

The texture in question is 128x128 in size, with 4 alternating black and white squares on each side. Each of the black or white squares is 32
pixels across.

Linear Filtering

While this example certainly draws a checkerboard, you can see that there are some visual issues. We will start finding solutions to this with
the least obvious glitchesfirst.

Take alook at one of the squares at the very bottom of the screen. Notice how the line looks jagged as it moves to the left and right. You can
see the pixels of it sort of crawl up and down as it shifts around on the plane.

Figure 15.2. Jagged Texture Edge

This is caused by the discrete nature of our texture accessing. The texture coordinates are al in floating-point values. The GLSL t ext ure
function internally convertsthese texture coordinates to specific texel values within the texture. So what value do you get if the texture coordinate
lands halfway between two texels?

That is governed by a process called texture filtering. Filtering can happen in two directions. magnification and minification. Magnification
happens when the texture mapping makes the texture appear bigger in screen space than its actual resolution. If you get closer to the texture,
relative to its mapping, then the texture is magnified relative to its natural resolution. Minification is the opposite: when the texture is being
shrunken relative to its natural resolution.

291

Many Images

In OpenGL, magnification and minification filtering are each set independently. That is what the GL_ TEXTURE MAG FI LTER and
GL_TEXTURE_M N_FI LTER sampler parameters control. We are currently using GL_ NEAREST for both; thisis called nearest filtering. This
mode means that each texture coordinate picks the texel value that it is nearest to. For our checkerboard, that means that we will get either black
or white.

Now this may sound fine, since our texture is a checkerboard and only has two actual colors. However, it is exactly this discrete sampling that
givesriseto the pixel crawl effect. A texture coordinate that is half-way between the white and the black is either white or black; asmall change
in the camera causes an instant pop from black to white or vice-versa.

Each fragment being rendered takes up a certain area of space on the screen: the area of the destination pixel for that fragment. The texture
mapping of the rendered surface to the texture gives atexture coordinate for each point on the surface. But a pixel isnot asingle, infinitely small
point on the surface; it represents some finite area of the surface.

Therefore, we can use the texture mapping in reverse. We can take the four corners of a pixel area and find the texture coordinates from them.
The area of this 4-sided figure, in the space of the texture, is the area of the texture that is being mapped to that location on the screen. With a
perfect texture accessing system, the value we get from the GLSL t ext ur e function would be the average value of the colorsin that area.

Figure 15.3. Nearest Sampling

The dot represents the texture coordinate's location on the texture. The box is the area that the fragment covers. The problem happens because a
fragment area mapped into the texture's space may cover some white area and some black area. Since nearest only picks asingle texel, which is
either black or white, it does not accurately represent the mapped area of the fragment.

292

Many Images

One obvious way to smooth out the differences is to do exactly that. Instead of picking a single sample for each texture coordinate, pick the
nearest 4 samples and then interpol ate the values based on how close they each are to the texture coordinate. To do this, we set the magnification
and minification filtersto G._ LI NEAR.

gl Sanpl er Paranet eri (g_sanpl ers[1], G._TEXTURE MAG FILTER, G._LI NEAR);
gl Sanpl er Paraneteri (g_sanplers[1], G._TEXTURE M N FILTER, G._LI NEAR);

Thisis called, surprisingly enough, linear filtering. In our tutorial, press the 2 key to see what linear filtering looks like; press 1 to go back to
nearest sampling.

Figure 15.4. Linear Filtering

=
—
-
=
——y
-
-
-y

That looks much better for the squares close to the camera. It creates a bit of fuzziness, but thisis generally alot easier for the viewer to tolerate
than pixel crawl. Human vision tends to be attracted to movement, and false movement like dot crawl! can be distracting.

293

Many Images

Needs More Pictures

Speaking of distracting, let's talk about what is going on in the distance. When the camera moves, the more distant parts of the texture look like
ajumbled mess. Even when the cameramotion is paused, it still doesn't look like a checkerboard.

What is going on thereisreally simple. The way our filtering works s that, for a given texture coordinate, we take either the nearest texel value,
or the nearest 4 texels and interpolate. The problem is that, for distant areas of our surface, the texture space area covered by our fragment is
much larger than 4 texels across.

Figure 15.5. Large Minification Sampling

The inner box represents the nearest texels, while the outer box represents the entire fragment mapped area. We can see that the value we get
with nearest sampling will be pure white, since the four nearest values are white. But the value we should get based on the covered areais some
shade of gray.

In order to accurately represent this area of the texture, we would need to sample from more than just 4 texels. The GPU is certainly capable of
detecting the fragment area and sampling enough values from the texture to be representative. But this would be exceedingly expensive, both
in terms of texture bandwidth and computation.

What if, instead of having to sample more texels, we had a number of smaller versions of our texture? The smaller versions effectively pre-
compute groups of texels. That way, we could just sample 4 texels from atexture that is close enough to the size of our fragment area.

294

Many Images

Figure 15.6. Mipmapped Minification Sampling

These smaller versions of an image are called mipmaps; they are also sometimes called mipmap levels. Previoudly, it was said that textures can
store multiple images. The additional images, for many texture types, are mipmaps. By performing linear sampling against alower mipmap level,
we get a gray value that, while not the exact color the coverage area suggests, is much closer to what we should get than linear filtering on the
large mipmap.

In OpenGL, mipmaps are numbered starting from 0. The 0 image isthe largest mipmap, what is usually considered the main texture image. When
people speak of atexture having a certain size, they mean the resolution of mipmap level 0. Each mipmap is half as small as the previous one.
So if our main image, mipmap level O, has a size of 128x128, the next mipmap, level 1, is 64x64. The next is 32x32. And so forth, down to
1x1 for the smallest mipmap.

For texturesthat are not square (which aswe saw inthe previoustutorial, isperfectly legitimate), the mipmap chain keeps going until all dimensions

are 1. So atexture who's size is 128x16 (remember: the texture's size is the size of the largest mipmap) would have just as many mipmap levels
as a 128x128 texture. The mipmap level 4 of the 128x16 texture would be 8x1; the next mipmap would be 4x1.

Note

Itisalso perfectly legal to havetexture sizesthat are not powers of two. For them, mipmap sizes are always rounded down. So a129x129
texture's mipmap 1 will be 64x64. A 131x131 texture's mipmap 1 will be 65x65, and mipmap 2 will be 32x32.

The DDSimage format is one of the few image formats that actually supports storing all of the mipmaps for atexturein the sasmefile. Most image
formats only allow oneimage in asinglefile. The texture loading code for our 128x128 texture with mipmapsis as follows:

Example 15.1. DDS Texture L oading with Mipmaps

std::string fil ename(LOCAL_FILE D R);
filename += "checker. dds";

std::auto_ptr<gling::InageSet> plmageSet (gling::|oaders::dds::LoadFronFile(filenanme.c_str()));

gl GenTextures(1, &g_checker Texture);
gl Bi ndText ure(GL_TEXTURE_2D, g_checker Texture);

295

Many Images

for(int m pmapLevel = 0; m pmapLevel < plmageSet->CGet M pmapCount (); m pnmapLevel ++)
{
glinmg::Singlelmge i nage = pl mageSet - >CGet | mage(m prmapLevel, 0, 0);
gling::Dinmensions dins = plmage->Cet Di nensi ons();

gl Texl mage2D(GL_TEXTURE_2D, ni pmapLevel, G._RGB8, dins.w dth, dins. height, O,
GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, inage. CGetlnmageData());

}

gl TexParaneteri (GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
gl TexParaneteri (GL_TEXTURE 2D, G._TEXTURE_MAX LEVEL, plmageSet->Cet M pmapCount () - 1);
gl Bi ndText ure(GL_TEXTURE_2D, 0);

Because the file contains multiple mipmaps, we must load each one in turn. The GL Image library considers each mipmap to be its own image.
The Get Di nensi ons member of gl i ng: : Si ngl el mage returns the size of the particular mipmap.

The gl Tex| mage2D function takes the mipmap level to load as the second parameter. The width and height parameters represent the size of
the mipmap in question, not the size of the base level.

Notice that the last statements have changed. The GL_ TEXTURE _BASE LEVEL and G._ TEXTURE MAX LEVEL parameters tell OpenGL
what mipmaps in our texture can be used. This represents a closed range. Since a 128x128 texture has 8 mipmaps, we use the range [0, 7]. The
base level of atextureisthelargest usable mipmap level, while the max level isthe smallest usablelevel. It ispossible to omit some of the smaller
mipmap levels. Note that level 0 is always the largest possible mipmap level.

Filtering based on mipmaps is unsurprisingly named mipmap filtering. This tutorial does not load two checkerboard textures; it only ever uses
one checkerboard. The reason mipmaps have not been used until now is because mipmap filtering was not activated. Setting the base and max
level is not enough; the sampler object must be told to use mipmap filtering. If it does not, then it will simply use the base level.

Mipmap filtering only works for minification, since minification represents afragment areathat islarger than the texture'sresolution. To activate
this, we use a special M PMAP mode of minification filtering.

gl Sanpl er Paramet eri (g_sanpl ers[2], G._TEXTURE MAG FILTER, GL_LI NEAR);
gl Sanpl er Paramet eri (g_sanplers[2], G._TEXTURE M N FILTER, GL_LI NEAR M PVAP_NEAREST) ;

The GL_LI NEAR_M PVAP_NEAREST minification filter means the following. For a particular call to the GLSL t ext ur e function, it will
detect which mipmap is the one that is nearest to our fragment area. This detection is based on the angle of the surface relative to the camera's
view!. Then, when it samples from that mipmap, it will use linear filtering of the four nearest samples within that one mipmap.

If you pressthe 3 key in the tutorial, you can see the effects of thisfiltering mode.

Mhisisasi mplification; a more thorough discussion is forthcoming.

296

Many Images

Figure 15.7. Hallway with Mipmapping

That's alot more reasonable. It isn't perfect, but it is much better than the random motion in the distance that we have previously seen.

It can be difficult to truly understand the effects of mipmap filtering when using normal textures and mipmaps. Therefore, if you press the
Spacebar, the tutorial will switch to aspecial texture. It is not loaded from afile; it isinstead constructed at runtime.

Normally, mipmaps are simply smaller versions of larger images, using linear filtering or various other algorithmsto compute areasonabl e scaled
down result. This specia texture's mipmaps are al flat colors, but each mipmap has a different color. This makes it much more obvious where
each mipmap is.

297

Many Images

Figure 15.8. Hallway with Special Texture

Now we can really see where the different mipmaps are. They don't quite line up on the corners. But remember: this just shows the mipmap
boundaries, not the texture coordinates themsel ves.

Special Texture Generation

The special mipmap viewing texture is interesting, as it demonstrates an issue you may need to work with when uploading certain textures:
alignment.

The checkerboard texture, though it only stores black and white values, actually has al three color channels, plus a fourth value. Since each
channel is stored as 8-bit unsigned normalized integers, each pixel takesup 4 * 8 or 32 bits, which is 4 bytes.

298

Many Images

OpenGL image uploading and downloading is based on horizontal rows of image data. Each row is expected to have a certain byte alignment.
The OpenGL default is 4 bytes; since our pixels are 4 bytes in length, every mipmap will have aline size in bytes that is a multiple of 4 bytes.
Even the 1x1 mipmap level is4 bytesin size.

Note that the internal format we provide is GL_RGB8, even though the components we are transferring are GL_ BGRA (the A being the fourth
component). This means that OpenGL will more or less discard the fourth component we upload. That isfine.

The issue with the special texture's pixel datais that it is not 4 bytes in length. The function used to generate a mipmap level of the specia
textureis asfollows:

Example 15.2. Special Texture Data

void Fill WthCol or (std::vect or<G.ubyte> &buffer,
GLubyte red, G.ubyte green, G.ubyte bl ue,
int width, int height)

{
i nt nunlexels = width * height;
buf fer.resi ze(nunifexel s * 3);
std::vector<G.ubyte>::iterator it = buffer.begin();
while(it !'= buffer.end())
{
*it++ = red;
*it++ = green;
*it++ = bl ue;
}
}

This creates atexture that has 24-bit pixels; each pixel contains 3 bytes.

That is fine for any width value that is a multiple of 4. However, if the width is 2, then each row of pixel datawill be 6 byteslong. That is not
amultiple of 4 and therefore breaks alignment.

Therefore, we must change the pixel alignment that OpenGL uses. The LoadM prmapText ur e function is what generates the special texture.
One of thefirst linesisthis:

GLint oldAlign = 0;
gl Cet | nt eger v(GL_UNPACK_ALI GNVENT, &ol dAli gn);
gl Pi xel St orei (GL_UNPACK_ALI GNMVENT, 1);

Thefirst two lines gets the old alignment, so that we can reset it once we are finished. The last line uses gl Pi xel St or ei

Note that the GL Image library does provide an alignment value; it is part of the Di mensi ons structure of an image. We have simply not used
it yet. In the last tutorial, our row widths were aligned to 4 bytes, so there was no chance of a problem. In this tutorial, our image datais 4-bytes
in pixel size, so it isalwaysintrinsically aligned to 4 bytes.

That being said, you should always keep row alignment in mind, particularly when dealing with mipmaps.

Filtering Between Mipmaps

Our mipmap filtering has been a dramatic improvement over previous efforts. However, it does create artifacts. One of particular concern isthe
change between mipmap levels. It is abrupt and somewhat easy to notice for amoving scene. Perhaps there is away to smooth that out.

Our current minification filtering picks a single mipmap level and selects a sample from it. It would be better if we could pick the two nearest
mipmap levels and blend between the values fetched from the two textures. This would give us a smoother transition from one mipmap level
to the next.

Thisis done by using GL_LI NEAR_M PMAP_LI NEAR minification filtering. The first LI NEAR represents the filtering done within a single
mipmap level, and the second LI NEAR represents the filtering done between mipmap levels.

To seethisin action, pressthe 4 key.

299

Many Images

Figure 15.9. Linear Mipmap Linear Comparison

E
r
r
F
r
4
4

That is an improvement. There are still issuesto work out, but it is much harder to see where one mipmap ends and another begins.

OpenGL actually allowsall combinations of NEAREST and LI NEARin minification filtering. Using nearest filtering within amipmap level while
linearly filtering between levels (GL_NEAREST_M PMAP_LI NEAR) is possible but not terribly useful in practice.

Filtering Nomenclature

If you are familiar with texture filtering from other sources, you may have heard the terms “bilinear filtering” and “trilinear filtering”
before. Indeed, you may know that linear filtering between mipmap levelsis commonly called trilinear filtering.

This book does not use that terminology. And for good reason: “trilinear filtering” isa misnomer.

To understand the problem, it is important to understand what “bilinear filtering” means. The “bi” in bilinear comes from doing linear
filtering along the two axes of a2D texture. So thereislinear filtering inthe Sand T directions (remember: standard OpenGL nomenclature
cals the 2D texture coordinate axes S and T); since that is two directions, it is called “bilinear filtering”. Thus “trilinear” comes from
adding athird direction of linear filtering: between mipmap levels.

Therefore, one could consider using GL_LI NEAR mag and min filtering to be bilinear, and using G__LI NEAR_M PMAP_LI| NEAR to
be trilinear.

That's all well and good... for 2D textures. But what about for 1D textures? Since 1D textures are one dimensional, GL_ LI NEAR mag and
min filtering only filtersin one direction: S. Therefore, it would be reasonable to call 1D GL_ LI NEAR filtering ssmply “linear filtering.”
Indeed, filtering between mipmap levels of 1D textures (yes, 1D textures can have mipmaps) would have to be called “bilinear filtering.”

And then there are 3D textures. GL_LI NEAR mag and min filtering filters in al 3 directions: S, T, and R. Therefore, that would have
to be called “trilinear filtering.” And if you add linear mipmap filtering on top of that (yes, 3D textures can have mipmaps), it would be
“quadrilinear filtering.”

Therefore, the term “trilinear filtering” means absolutely nothing without knowing what the texture's type is. Whereas
GL_LI NEAR_M PMAP_LI NEAR aways has a well-defined meaning regardless of the texture'stype.

Unlike geometry shaders, which ought to have been called primitive shaders, OpenGL does not enshrine this common misnomer into its
API. Thereisno G__TRI LI NEAR enum. Therefore, in this book, we can and will use the proper terms for these.

Anisotropy

Linear mipmap filtering is good; it eliminates most of the fluttering and oddities in the distance. The problem is that it replaces a lot of that
fluttering with... grey. Mipmap-based filtering works reasonably well, but it tends to over-compensate.

For example, take the diagonal chain of squares at the left or right of the screen. Expand the window horizontally if you need to.

300

Many Images

Figure 15.10. Main Diagonal

Pixels that are along this diagonal should be mostly black. As they get farther and farther away, the fragment area becomes more and more
distorted length-wise, relative to the texel area:

Figure 15.11. Long Fragment Area

301

Many Images

With perfect filtering, we should get a value that is mostly black. But instead, we get a much lighter shade of grey. The reason has to do with
the specifics of mipmapping and mipmap selection.

Mipmaps are pre-filtered versions of the main texture. The problem isthat they arefiltered in both directions equally. Thisisfineif the fragment
areais sguare, but for oblong shapes, mipmap selection becomes more problematic. The particular algorithm used is very conservative. It selects
the smallest mipmap level possible for the fragment area. So long, thin areas, in terms of the values fetched by the texture function, will be no
different from a square area.

Figure 15.12. L ong Fragment with Sample Area

The large square represents the effective filtering box, while the diagonal area is the one that we are actually sampling from. Mipmap filtering
can often combine texel values from outside of the sample area, and in this particularly degenerate case, it pulls in texel values from very far
outside of the sample area.

This happens when thefilter box isnot asguare. A squarefilter box is said to beisotropic: uniformin all directions. Therefore, anon-square filter
box is anisotropic. Filtering that takes into account the anisotropic nature of a particular filter box is naturally called anisotropic filtering.

The OpenGL specificationisusually very particular about most things. It explainsthe details of which mipmap is selected aswell ashow closeness
is defined for linear interpolation between mipmaps. But for anisotropic filtering, the specification is very loose as to exactly how it works.

The general ideaisthis. The implementation will take some number of samples that approximates the shape of thefilter box in the texture. It will
select from mipmaps, but only when those mipmaps represent a closer filtered version of area being sampled. Here is an example:

302

Many Images

Figure 15.13. Parallelogram Sample Area

Some of the samplesthat are entirely within the sample area can use smaller mipmaps to reduce the number of samples actually taken. The above
image only needs four samples to approximate the sample area: the three small boxes, and the larger box in the center.

All of the sample values will be averaged together based on aweighting algorithm that best represents that sample's contribution to the filter box.
Again, thisisal very generally; the specific algorithms are implementation dependent.

Run the tutorial again. The 5 key turns activates aform of anisotropic filtering.

303

Many Images

Figure 15.14. Anisotropic Filtering

That's an improvement.

Sample Control

Anisotropic filtering requires taking multiple samples from the various mipmaps. The control on the quality of anisotropic filtering isin limiting
the number of samples used. Raising the maximum number of samples taken will generally make the result look better, but it will also decrease
performance.

Thisisdone by setting the GL_ TEXTURE_MAX_ANI SOTROPY_EXT sampler parameter:

gl Sanpl er Paramet eri (g_sanpl ers[4], G._TEXTURE MAG FILTER, GL_LI NEAR);
gl Sanpl er Paramet eri (g_sanpl ers[4], G._TEXTURE_ M N FILTER, GL_LI NEAR_M PNAP_LI NEAR) ;

304

Many Images

gl Sanpl er Par anmet erf (g_sanpl ers[4], G._TEXTURE_MAX_ANI SOTROPY_EXT, 4.0f);

This represents the maximum number of samples that will be taken for any texture accesses through this sampler. Note that we still use linear
mipmap filtering in combination with anisotropic filtering. While you could theoretically use anisotropic filtering without mipmaps, you will get
much better performance if you use it in tandem with linear mipmap filtering.

The max anisotropy is afloating point value, in part because the specific nature of anisotropic filtering is left up to the hardware. But in general,
you can treat it like an integer value.

There is alimit to the maximum anisotropy that we can provide. This limit is implementation defined; it can be queried with gl Get Fl oat v,
since the value is afloat rather than an integer. To set the max anisotropy to the maximum possible value, we do this.

A fl oat maxAni so = 0. Of;
gl Get Fl oat v(GL_MAX_TEXTURE_MAX_ANI SOTROPY_EXT, &maxAni so);

gl Sanpl er Paramet eri (g_sanpl ers[5], G._TEXTURE MAG FILTER, G._LI NEAR);
gl Sanpl er Paramet eri (g_sanpl ers[5], GL_TEXTURE_ M N _FILTER, GL_LI NEAR_M PNAP_LI NEAR) ;
gl Sanpl er Par amet erf (g_sanpl ers[5], G._TEXTURE_MAX_ANI SOTROPY_EXT, maxAni so);

To see theresults of this, pressthe 6 key.

305

Many Images

Figure 15.15. Max Anisotropic Filtering

-
|
i
[
 d
r

That looks pretty good now. There are still some issues out in the distance. Remember that your image may not look exactly like this one, since
the details of anisotropic filtering are implementation specific.

You may be concerned that none of the filtering techniques produces perfect results, even the max anisotropic one. In the distance, the texture
still becomes afeatureless grey even along the diagonal. The reason is because rendering large checkerboard is perhaps one of the most difficult
problems from atexture filtering perspective. This becomes even worse when it is viewed edge on, as we do here.

Indeed, the repeating checkerboard texture was chosen specifically because it highlights the issues in a very obvious way. A more traditional

diffuse color texture typically looks much better with reasonable filtering applied. Also, there is one issue that we are currently missing that will
be applied in the next tutorial.

Many Images

A Matter of EXT

You may have noticed the “EXT” suffix on G._ TEXTURE_MAX_ANI SOTROPY_EXT. This suffix means that this enumerator comes from an
OpenGL extension. First and foremost, this means that this enumerator is not part of the OpenGL Specification.

An OpenGL extension is a modification of OpenGL exposed by a particular implementation. Extensions have published documents that explain
how they change the standard GL specification; this allows usersto be able to use them correctly. Because different implementations of OpenGL
will implement different sets of extensions, there is a mechanism for querying whether an extension is implemented. This allows user code to
detect the availability of certain hardware features and use them or not as needed.

Thereare several kinds of extensions. There are proprietary extensions; these are created by a particular vendor and arerarely if ever implemented
by another vendor. In some cases, they are based on intellectual property owned by that vendor and thus cannot be implemented without explicit
permission. The enums and functions for these extensions end with a suffix based on the proprietor of the extension. An NVIDIA-only extension
would end in “NV,” for example.

ARB extensionsare aspecial class of extension that is blessed by the OpenGL ARB (who governsthe OpenGL specification). These aretypically
created as a collaboration between multiple members of the ARB. Historically, they have represented functionality that implementations were
highly recommended to implement.

EXT extensions are a class between the two. They are not proprietary extensions, and in many cases were created through collaboration among
ARB members. Y et at the sametime, they arenot “ blessed” by the ARB. Historically, EXT extensions have been used astest bedsfor functionality
and APIs, to ensure that the API is reasonable before promoting the feature to OpenGL core or to an ARB extension.

TheG._TEXTURE_MAX_ANI SOTROPY_EXT enumerator ispart of the EXT_texture filter_anisotropic extension. Sinceit isan extension rather
than core functionality, it is usually necessary for the user to detect if the extension is available and only use it if it was. If you look through the
tutorial code, you will find no code that does this test.

The reason for that is simply alack of need. The extension itself dates back to the GeForce 256 (not the GeForce 250GT; the original GeForce),
way back in 1999. Virtually all GPUs since then have implemented anisotropic filtering and exposed it through this extension. That is why the
tutorial does not bother to check for the presence of this extension; if your hardware can run these tutorials, then it exposes the extension.

If it is so ubiquitous, why has the ARB not adopted the functionality into core OpenGL ? Why must anisotropic filtering be an extension that is
de facto guaranteed but not technically part of OpenGL? Thisis because OpenGL must be Open.

The“Open” in OpenGL refersto the availability of the specification, but also to the ability for anyone to implement it. Asit turns out, anisotropic
filtering hasintellectual property issuesassociated withit. If it were adopted into the core, then core OpenGL would not be able to be implemented
without licensing the technology from the holder of the IP. It is not a proprietary extension because none of the ARB members have the IP; it
isheld by athird party.

Therefore, you may assume that anisotropic filtering is available through OpenGL. But it is technically an extension.

How Mipmap Selection Works

Previously, we discussed mipmap selection and interpolation in terms related to the geometry of the object. That is true, but only when we are
dealing with simple texture mapping schemes, such as when the texture coordinates are attached directly to vertex positions. But as we saw in
our first tutorial on texturing, texture coordinates can be entirely arbitrary. So how does mipmap selection and anisotropic filtering work then?

Very carefully.

Imagine a 2x2 pixel area of the screen. Now imagine that four fragment shaders, all from the same triangle, are executing for that screen area.
Since the fragment shaders from the same triangle are all guaranteed to have the same uniforms and the same code, the only thing that is different
among them isthe fragment inputs. And because they are executing the same code, you can conceive of them executing in lockstep. That is, each
of them executes the same instruction, on their individual dataset, at the same time.

Under that assumption, for any particular value in afragment shader, you can pick the corresponding 3 other valuesin the other fragment shaders
executing alongside it. If that value is based solely on uniform or constant data, then each shader will have the same value. But if it is based on
input values (in part or in whole), then each shader may have a different value, based on how it was computed and what those inputs were.

307

Many Images

So, let'slook at the texture coordinate value; the particular value used to access the texture. Each shader has one. I that value is associated with
the triangl€'s vertices, via perspective-correct interpolation and so forth, then the difference between the shaders values will represent the window
space geometry of the triangle. There are two dimensions for a difference, and therefore there are two differences: the difference in the window
space X axis, and the window space Y axis.

These two differences, sometimes called gradients or derivatives, are how mipmapping actually works. If the texture coordinate used is just an
interpolated input value, which itself is directly associated with a position, then the gradients represent the geometry of the triangle in window
space. If the texture coordinate is computed in more unconventional ways, it still works, as the gradients represent how the texture coordinates
are changing across the surface of the triangle.

Having two gradients allows for the detection of anisotropy. And therefore, it provides enough information to reasonably apply anisotropic
filtering algorithms.

Now, you may hotice that this process is very conditional. Specifically, it requires that you have 4 fragment shaders all running in lock-step.
There are two circumstances where that might not happen.

The most obvious is on the edge of atriangle, where a 2x2 block of neighboring fragments is not possible without being outside of the triangle
area. Thiscaseis actualy trivially covered by GPUs. No matter what, the GPU will rasterize each triangle in 2x2 blocks. Even if some of those
blocks are not actualy part of the triangle of interest, they will still get fragment shader time. This may seem inefficient, but it's reasonable
enough in cases where triangles are not incredibly tiny or thin, which is quite often. The results produced by fragment shaders outside of the
triangle are simply discarded.

The other circumstance is through deliberate user intervention. Each fragment shader running in lockstep has the same uniforms but different
inputs. Since they have different inputs, it is possible for them to execute a conditional branch based on these inputs (an if-statement or other
conditional). This could cause, for example, the left-half of the 2x2 quad to execute certain code, while the other half executes different code.
The 4 fragment shaders are no longer in lock-step. How does the GPU handleit?

Well... it doesn't. Dealing with this requires manual user intervention, and it is atopic we will discuss later. Sufficeit to say, it makes everything
complicated.

Performance

Mipmapping has some unexpected performance characteristics. A texture with a full mipmap pyramid will take up ~33% more space than just
the base level. So there is some memory overhead. The unexpected part is that this is actualy a memory vs. speed tradeoff, as mipmapping
usually improves performance.

If atextureis going to be minified significantly, providing mipmaps is a performance benefit. The reason is this: for a highly minified texture,
the texture accesses for adjacent fragment shaderswill be very far apart. Texture sampling units like texture access patterns where thereis a high
degree of locality, where adjacent fragment shaders access texels that are very near one another. The farther apart they are, the less useful the
optimizationsin the texture samplers are. Indeed, if they are far enough apart, those optimizations start becoming performance penalties.

Textures that are used as |ookup tables should generally not use mipmaps. But other kinds of textures, like those that provide surface details,
can and should where reasonable.

While mipmapping isfree, linear mipmap filtering, G._LI NEAR_M PMAP_LI NEAR, isgenerally not free. But the cost of it israther small these
days. For those textures where mipmap interpolation makes sense, it should be used.

Anisotropic filtering is even more costly, as one might expect. After al, it means taking more texture samples to cover a particular texture area.
However, anisotropic filtering is aimost always implemented adaptively. This means that it will only take extra samples for fragments where it
detects that thisis necessary. And it will only take enough samplesto fill out the area, up to the maximum the user provides of course. Therefore,
turning on anisotropic filtering, even just 2x or 4x, only hurts for the fragments that need it.

In Review

In thistutorial, you have learned the following:

e Visua artifacts can appear on objects that have textures mapped to them due to the discrete nature of textures. These artifacts are most
pronounced when the texture's mapped size is larger or smaller than its actual size.

308

Many Images

« Filtering techniques can reduce these artifacts, transforming visual popping into something more visually palatable. Thisis most easily done
for texture magnification.

» Mipmaps are reduced size versions of images. The purpose behind them is to act as pre-filtered versions of images, so that texture sampling
hardware can effectively sample and filter lots of texels all at once. The downside is that it can appear to over-filter textures, causing them to
blend down to lower mipmaps in areas where detail could be retained.

* Filtering can be applied between mipmap levels. Mipmap filtering can produce quite reasonable resultswith arelatively negligible performance
penalty.

 Anisotropic filtering attempts to rectify the over-filtering problems with mipmapping by filtering based on the coverage area of the texture

access. Anisotropic filtering is controlled with a maximum value, which represents the maximum number of additional samples the texture
access will use to compose the final color.

Further Study

Try doing these things with the given programs.

 Use non-mipmap filtering with anisotropic filtering and compare the results with the mipmap-based anisotropic version.

» Change the G._TEXTURE_MAX_ LEVEL of the checkerboard texture. Subtract 3 from the computed max level. This will prevent OpenGL
from accessing the bottom 3 mipmaps: 1x1, 2x2, and 4x4. See what happens. Notice how there is less grey in the distance, but some of the
shimmering from our non-mipmapped version has returned.

» Go back to Basic Texturein the previoustutorial and modify the sampler to use linear mag and min filtering on the 1D texture. Seeif thelinear
filtering makes some of the lower resolution versions of the table more palatable. If you wereto try thiswith the 2D lookup texturein Material
Texture tutorial, it would cause filtering in both the Sand T coordinates. This would mean that it would filter across the shininess of the table

aswell. Try this and see how this affects the results. Also try using linear filtering on the shininess texture.

Glossary

texture filtering

nearest filtering

linear filtering

mipmap, mipmap level

mipmap filtering

anisotropic filtering

The process of fetching the value of a texture at a particular texture coordinate, potentially involving
combining multiple texel values together.

Filtering can happen in two directions: magnification and minification. Magnification happens when the
fragment area projected into atextureis smaller than the texel itself. Minification happens when the fragment
area projection islarger than atexel.

Texture filtering where the texel closest to the texture coordinate is the value returned.

Texture filtering where the closest texel values in each dimension of the texture are access and linearly
interpolated, based on how close the texture coordinate was to those values. For 1D textures, this picks two
values and interpolates. For 2D textures, it picks four; for 3D textures, it selects 8.

Subimages of atexture. Each subsegquence mipmap of atextureishalf the size, rounded down, of the previous
image. The largest mipmap is the base level. Many texture types can have mipmaps, but some cannot.

Texture filtering that uses mipmaps. The mipmap choosen when mipmap filtering is used is based on the
angle of the texture coordinate, relative to the screen.

Mipmap filtering can be nearest or linear. Nearest mipmap filtering picks a single mipmap and returns the
value pulled from that mipmap. Linear mipmap filtering pics samples from the two nearest mipmaps and
linearly interpolates between them. The sample returned in either case can have linear or nearest filtering
applied within that mipmap.

Texture filtering that takes into account the anisotropy of the texture access. This requires taking multiple
samples from a surface that covers an irregular area of the surface. This works better with mipmap filtering.

309

Many Images

OpenGL extension Functionality that is not part of OpenGL proper, but can be conditionally exposed by different
implementations of OpenGL.

310

Chapter 16. Gamma and Textures

In the last tutorial, we had our first picture texture. That was a simple, flat scene; now, we are going to introduce lighting. But before we can do
that, we need to have a discussion about what is actually stored in the texture.

The sRGB Colorspace

One of the most important things you should keep in mind with textures is the answer to the question, “what does the datain this texture mean?’
In the first texturing tutorial, we had many textures with various meanings. We had:

» A 1D texture that represented the Gaussian model of specular reflections for a specific shininess value.

* A 2D texture that represented the Gaussian model of specular reflections, where the S coordinate represented the angle between the normal
and the half-angle vector. The T coordinate is the shininess of the surface.

» A 2D texture that assigned a specular shininess to each position on the surface.

It isvital to know what data a texture stores and what its texture coordinates mean. Without this knowledge, one could not effectively use those
textures.

Earlier, we discussed how important colors in alinear colorspace was to getting accurate color reproduction in lighting and rendering. Gamma
correction was applied to the output color, to map the linear RGB values to the gamma-correct RGB values the display expects.

At the time, we said that our lighting computations all assume that the colors of the vertices were linear RGB values. Which means that it was
important that the creator of the model, the one who put the colorsin the mesh, ensure that the colors being added were in fact linear RGB colors.
If the modeller failed to do this, if the modeller's colors were in a non-linear RGB colorspace, then the mesh would come out with colors that
were substantially different from what he expected.

The same goes for textures, only much moreso. And that is for one very important reason. Load up the Gamma Ramp tutorial.

Figure 16.1. Gamma Ramp

These are just two rectangles with a texture mapped to them. The top one is rendered without the shader's gamma correction, and the bottom one
is rendered with gamma correction. These textures are 320x64 in size, and they are rendered at exactly this size.

The texture contains five greyscale color blocks. Each block increases in brightness from the one to its left, in 25% increments. So the second
block to the left is 25% of maximum brightness, the middle block is 50% and so on. This means that the second block to the left should appear
half as bright as the middle, and the middle should appear half as bright as the far right block.

311

Gamma and Textures

Gamma correction exists to make linear values appear properly linear on a non-linear display. It corrects for the display's non-linearity. Given
everything we know, the bottom rectangle, the one with gamma correction which takeslinear values and converts them for proper display, should
appear correct. The top rectangle should appear wrong.

And yet, we see the exact opposite. The relative brightness of the various blocksis off in the bottom block, but not the top. Why does this happen?

Because, while the apparent brightness of the texture values increases in 25% increments, the color values that are used by that texture do not.
This texture was not created by simply putting 0.0 in thefirst block, 0.25 in the second, and so forth. It was created by an image editing program.
The colors were selected by their apparent relative brightness, not by simply adding 0.25 to the values.

Thismeansthat the color values have already been gamma corrected. They cannot bein alinear colorspace, because the person creating theimage
selected colors based the colors on their appearance. Since the appearance of a color is affected by the non-linearity of the display, the texture
artist was effectively selected post-gamma corrected color values. To put it ssimply, the colorsin the texture are already in anon-linear color space.

Since the top rectangle does not use gamma correction, it is simply passing the pre-gamma corrected color valuesto the display. It simply works
itself out. The bottom rectangle effectively performs gamma correction twice.

Thisis al well and good, when we are drawing a texture directly to the screen. But if the colors in that texture were intended to represent the
diffuse reflectance of a surface as part of the lighting equation, then thereis amajor problem. The color valuesretrieved from the texture are non-
linear, and all of our lighting equations need the input values to be linear.

We could un-gammacorrect the texture values manually, either at load time or in the shader. But that isentirely unnecessary and wasteful. Instead,
we can just tell OpenGL the truth: that the texture isnot in alinear colorspace.

Virtually every image editing program you will ever encounter, from the almighty Photoshop to the humble Paint, displays colorsin anon-linear
colorspace. But they do not use just any non-linear colorspace; they have settled on a specific colorspace called the SRGB colorspace. So when
an artist selects a shade of green for example, they are selecting it from the SRGB colorspace, which is non-linear.

How commonly used is the SRGB colorspace? It's built into every JPEG. It's used by virtually every video compression format and tool. It is
assumed by virtual every image editing program. In general, if you get an image from an unknown source, it would be perfectly reasonable to
assume the RGB values are in SRGB unless you have specific reason to believe otherwise.

The sRGB colorspace is an approximation of agamma of 2.2. It is not exactly 2.2, but it is close enough that you can display an SRGB image to
the screen without gamma correction. Which is exactly what we did with the top rectangle.

Because of the ubiquity of the SRGB colorspace, SRGB decoding logic is built directly into GPUs these days. And naturally OpenGL supports
it. Thisis done via special image formats.

Example 16.1. SRGB Image For mat
std::auto_ptr<gling::lnmageSet> plnageSet (gling::loaders::sth::LoadFronFile(filenane.c_str()));

gling::Singlelmge i nage = pl mageSet - >Get | mage(0, 0, 0);
gling::D nmensions dins = inage. Get D nensi ons();

gling:: QoenG.Pi xel TransferParans pxTrans = gli ng:: Get Upl oadFor mat Type(pl nageSet - >Get Format (), 0);
gl Bi ndText ure(GL_TEXTURE_2D, g_textures[0]);

gl Texl mage2D(G._TEXTURE 2D, 0, G._RGB8, dins.w dth, dinms. height, O,
pxTrans. format, pxTrans.type, image. GetlnageData());
gl TexPar anet eri (GL_TEXTURE_2D, G._TEXTURE_BASE_LEVEL, O0);
gl TexParanet eri (GL_TEXTURE 2D, G._TEXTURE MAX LEVEL, pl nageSet->Get M pnapCount() - 1);

gl Bi ndText ure(GL_TEXTURE 2D, g_textures[1]);

gl Texl mge2D(GL_TEXTURE 2D, 0, GL_SRGB8, dins.w dth, dins.height, O,
pxTrans. format, pxTrans.type, image. GetlnageData());

gl TexPar anet eri (GL_TEXTURE_2D, G._TEXTURE_BASE_LEVEL, 0);

312

Gamma and Textures

gl TexParaneteri (GL_TEXTURE 2D, G._TEXTURE_MAX LEVEL, plmageSet->Cet M pmapCount () - 1);
gl Bi ndText ure(GL_TEXTURE_2D, 0);

This code loads the same texture data twice, but with a different texture format. The first one uses the GL_ RGB8 format, while the second one
uses G__ SRGBS8. The latter identifies the texture's color data as being in the SRGB colorspace.

To see what kind of effect this has on our rendering, you can switch between which texture is used. The 1 key switches the top texture between
linear RGB (which from now on will be called IRGB) and sSRGB, while 2 does the same for the bottom.

Figure 16.2. Gamma Ramp with sSRGB Images

When using the SRGB version for both the top and the bottom, we can see that the gamma correct bottom one is right.

When atexture uses one of the SRGB formats, texture access functions to those textures do things dlightly differently. When they fetch atexel,
OpenGL automatically linearizes the color from the SRGB colorspace. This is exactly what we want. And the best part is that the linearisation
cost is nhegligible. So there is no need to play with the data or otherwise manually linearize it. OpenGL doesit for us.

Note that the shader does not change. It still uses aregular sampler2D, accesses it with a 2D texture coordinate and thet ext ur e function, etc.
The shader does not have to know or care whether the image dataisin the SRGB colorspace or alinear one. It simply callsthet ext ur e function
and expectsit to return IRGB color values.

Pixel Positioning

Thereisan interesting thing to note about the rendering in thistutorial. Not only doesit use an orthographic projection (unlike most of our tutorials
since Tutorial 4), it does something special with its orthographic projection. In the pre-perspective tutorials, the orthographic projection was used
essentially by default. We were drawing vertices directly in clip-space. And since the W of those vertices was 1, clip-space isidentical to NDC
space, and we therefore had an orthographic projection.

It is often useful to want to draw certain objects using window-space pixel coordinates. Thisis commonly used for drawing text, but it can also
be used for displaying images exactly asthey appear in atexture, as we do here. Since a vertex shader must output clip-space values, the key isto
develop amatrix that transforms window-space coordinatesinto clip-space. OpenGL will handle the conversion back to window-spaceinternally.

Thisisdone viather eshape function, as with most of our projection matrix functions. The computation is actually quite simple.

Example 16.2. Window to Clip Matrix Computation

glutil::MatrixStack pershMatrix;
pershatri x. Transl ate(-1.0f, 1.0f, 0.0f);

313

Gamma and Textures

pershatri x. Scal e(2.0f / w, -2.0f / h, 1.0f);

Thegoal isto transform window-space coordinatesinto clip-space, which isidentical to NDC space since the W component remains 1.0. Window-
space coordinates have an X range of [0, w) and Y range of [0, h). NDC space has X and Y ranges of [-1, 1].

The first step isto scale our two X and Y ranges from [0, w/h) to [0, 2]. The next step is to apply a simply offset to shift it over to the [-1, 1]
range. Don't forget that the transforms are applied in the reverse order from how they are applied to the matrix stack.

There is one thing to note however. NDC space has +X going right and +Y going up. OpenGL's window-space agrees with this; the origin of
window-space is at the lower-left corner. That is nice and all, but many people are used to a top-left origin, with +Y going down.

In thistutorial, we use atop-left origin window-space. That iswhy the Y scaleis negated and why the Y offset is positive (for alower-left origin,
we would want a negative offset).

Note

By negating the Y scale, we flip thewinding order of objects rendered. Thisisnormally not aconcern; most of the time you are working
in window-space, you aren't relying on face culling to strip out certain triangles. In thistutorial, we do not even enable face culling. And
oftentimes, when you are rendering with pixel-accurate coordinates, face culling isirrelevant and should be disabled.

Vertex Formats

Inall of the previoustutorials, our vertex data has been arrays of floating-point values. For thefirst time, that is not the case. Since we are working
in pixel coordinates, wewant to specify vertex positionswith integer pixel coordinates. Thisiswhat thevertex datafor thetwo rectangleslook like:

const GLushort vertexData[] = {
90, 80, O, 0,
90, 16, O, 65535,
410, 80, 65535, O,
410, 16, 65535, 65535,

90, 176, 0, 0,

90, 112, 0, 65535,
410, 176, 65535, O,
410, 112, 65535, 65535,

b

Our vertex data has two attributes: position and texture coordinates. Our positions are 2D, as are our texture coordinates. These attributes are
interleaved, with the position coming first. So thefirst two columns above are the positions and the second two columns are the texture coordinates.

Instead of floats, our datais composed of GLushorts, which are 2-byte integers. How OpenGL interprets them is specified by the parameters to
gl Vert exAttri bPoi nt er. It caninterpret them in two ways (technically 3, but we don't use that here):

Example 16.3. Vertex For mat

gl Bi ndVert exArray(g_vao);

gl Bi ndBuf f er (GL_ARRAY_BUFFER, g dat aBuf fer Qbj ect);

gl Enabl eVertexAttri bArray(0);

gl VertexAttribPointer(0, 2, G._UNSI GNED SHORT, G._FALSE, 8, (void*)0);
gl Enabl eVertexAttri bArray(5);

gl VertexAttribPointer(5, 2, G._UNSI GNED SHORT, G._TRUE, 8, (void*)4);

gl Bi ndVer t exArray(0);
gl Bi ndBuf f er (GL_ARRAY_BUFFER, 0);

Attribute O is our position. We see that the typeis not GL_FLOAT but GL__UNSI GNED_SHORT. This matches the C++ type we use. But the
attribute taken by the GLSL shader is a floating point vec2, not an integer 2D vector (which would be ivec2 in GLSL). How does OpenGL
reconcile this?

314

Gamma and Textures

It depends on the fourth parameter, which defines whether the integer value is normalized. If it is set to G._FALSE, then it is not normalized.
Therefore, it is converted into afloat as though by standard C/C++ casting. An integer value of 90 is cast into a floating-point value of 90.0f.
And thisis exactly what we want.

WEell, that is what we want to for the position; the texture coordinate is a different matter. Normalized texture coordinates should range from [O,
1] (unless we want to employ wrapping of some form). To accomplish this, integer texture coordinates are often, well, normalized. By passing
GL_ TRUE to the fourth parameter (which only works if the third parameter is an integer type), we tell OpenGL to normalize the integer value
when converting it to afloat.

Thisnormalization works exactly asit doesfor texel value normalization. Since the maximum value of a GLushort is 65535, that value is mapped
to 1.0f, while the minimum value 0 is mapped to 0.0f. So thisisjust adlightly fancy way of setting the texture coordinatesto 1 and 0.

Note that all of thisconversionisfree, interms of performance. Indeed, it is often auseful performance optimization to compact vertex attributes
as small asisreasonable. It is better in terms of both memory and rendering performance, since reading less data from memory takes less time.

OpenGL isjust fine with using normalized shorts alongside 32-hit floats, normalized unsigned bytes (useful for colors), etc, al in the same vertex
data (though not within the same attribute). The above array could have use GLubyt e for the texture coordinate, but it would have been difficult
to write that directly into the code as a C-style array. In areal application, one would generally not get meshes from C-style arrays, but from files.

sRGB and Mipmaps

The principle reason lighting functions require IRGB values is because they perform linear operations. They therefore produce inaccurate results
on non-linear colors. Thisisnot limited to lighting functions; all linear operations on colors require alRGB value to produce a reasonabl e resullt.

One important linear operation performed on texel vaues is filtering. Whether magnification or minification, non-nearest filtering does some
kind of linear arithmetic. Since thisis al handled by OpenGL, the question is this: if a texture isin an SRGB format, does OpenGL's texture
filtering occur before converting the texel valuesto IRGB or after?

The answer is quite simple: filtering comes after linearizing. So it does the right thing.
Note

It's not quite that ssimple. The OpenGL specification technically leaves it undefined. However, if your hardware can run these tutorials
without modifications (ie: your hardwareis OpenGL 3.3 capable), then odds are it will do theright thing. It isonly on pre-3.0 hardware
where thisis a problem.

A bigger question is this: do you generate the mipmaps correctly for your textures? Mipmap generation was somewhat glossed over in the last
tutorial, as tools generally do this for you. In general, mipmap generation involves some form of linear operation on the colors. For this process
to produce correct results for SRGB textures, it needs to linearize the sSRGB color values, perform its filtering on them, then convert them back
to sSRGB for storage.

Unless you are writing texture processing tools, this question is answered by asking your texture tools themselves. Most freely available texture
tools are completely unaware of non-linear colorspaces. Y ou can tell which ones are aware based on the options you are given at mipmap creation

time. If you can specify a gamma for your texture, or if there is some setting to specify that the texture's colors are SRGB, then the tool can do
the right thing. If no such option exists, then it cannot. For SRGB textures, you should use a gamma of 2.2, which iswhat SRGB approximates.

Note

The DDS plugin for GIMP is a good, free tool that is aware of linear colorspaces. NVIDIA's command-line texture tools, also free,
areaswell.

To see how this can affect rendering, load up the Gamma Checkers project.

315

Gamma and Textures

Figure 16.3. Gamma Checkers

Thisworks like the filtering tutorials. The 1 and 2 keys respectively select linear mipmap filtering and anisotropic filtering (using the maximum
possible anisotropy).

We can see that this looks a bit different from the last time we saw it. The distant grey field is much darker than it was. Thisis because we are
using SRGB colorspace textures. While the white and black are the same in SRGB (1.0 and 0.0 respectively), a 50% blend of them (0.5) is not.
The sRGB texture assumes the 0.5 color isthe sSRGB 0.5, so it becomes darker than we would expect.

Initially, we render with no gamma correction. To toggle gamma correction, press the a key. This restores the view to what we saw previoudly.

However, the texture we are using is actually wrong. 0.5, as previously stated, is not the SRGB color for a 50% blend of black and white. In the
sRGB colorspace, that color would be ~0.73. The texture is wrong because its mipmaps were not generated in the correct colorspace.

To switch to atexture who's mipmaps were properly generated, press the g key.

Figure 16.4. Gamma Correct with Gamma Mipmaps

This still looks different from the last tutorial. Which naturally tells us that not rendering with gamma correction before was actually a problem,
as this version looks much better. The grey blends much better with the checkerboard, as the grey is now correctly halfway between white and
black. The take-home point hereis that ensuring linearity in al stages of the pipelineis always important. Thisincludes mipmap generation.

316

Gamma and Textures

SRGB and the Screen

Thusfar, we have seen how to use SRGB texturesto store gamma-corrected images, such that they are automatically linearized upon being fetched
from a shader. Since the SRGB colorspace closely approximates agamma of 2.2, if we could use an SRGB image as the image we render to, we
would automatically get gamma correction without having to put it into our shaders. But thiswould requiretwo things: the ability to specify that the
screen image is SRGB, and the ability to state that we are outputting linear values and want them converted to the SRGB col orspace when stored.

Naturally, OpenGL provides both of these. To see how they work, load up the last project, Gamma Landscape. This shows off some textured
terrain with a day/night cycle and afew lights running around.

Figure 16.5. Gamma L andscape

It uses the standard mouse-based controls to move around. As before, the 1 and 2 keys respectively select linear mipmap filtering and anisotropic
filtering. The main feature is the non-shader-based gamma correction. Thisis enabled by default and can be toggled by pressing the SpaceBar .

317

Gamma and Textures

sRGB Screen I mage. The processfor setting thisup isabit confusing, but isultimately quite simplefor our tutorials. The OpenGL specification
specifies how to use the OpenGL rendering system, but it does not specify how to create the OpenGL rendering system. That is relegated to
platform-specific APIs. Therefore, while code that uses OpenGL is platform-neutral, that code is ultimately dependent on platform-specific
initialization code to create the OpenGL context.

These tutorials rely on FreeGLUT for setting up the OpenGL context and managing the platform-specific APIs. The f r amewor k. cpp fileis
responsible for doing the initialization setup work, telling FreeGLUT exactly how we want our screen image set up. In order to allow different
tutorials to adjust how we set up our FreeGLUT screen image, the framework callsthe def aul t s function.

Example 16.4. Gamma L andscape defaults Function

unsi gned int defaults(unsigned int displayMde, int & dth, int &height)
{

}

Thedi spl ayMode argument isabitfield that contains the standard FreeGLUT display mode flags set up by the framework. This function must
return that bitfield, and all of our prior tutorials have returned it unchanged. Here, we change it to include the GLUT _SRGB flag. That flag tells
FreeGLUT that we want the screen image to be in the SRGB colorspace.

return displayMde | G.UT_SRGB;

Linear to SRGB Conversion. This aoneisinsufficient. We must also tell OpenGL that our shaders will be writing linear colorspace values
and that these values should be converted to SRGB before being written to the screen. Thisis done with asimple gl Enabl e command:

Example 16.5. Enable SRGB Conversion

i f(g_useGammuaDi spl ay)

gl Enabl e(G._FRAVEBUFFER_SRGB) ;
el se

gl D sabl e(G._FRAVMEBUFFER_SRGB) ;

The need for thisis not entirely obvious, especially since we cannot manually turn off SRGB-to-linear conversion when reading from textures.
The ability to disable linear-to-sRGB conversion for screen rendering is useful when we are drawing something directly in the SRGB colorspace.
For example, it is often useful to have parts of the interface drawn directly in the SRGB colorspace, while the actual scene being rendered uses
color conversion.

Note that the color conversion is just as free in terms of performance asit is for texture reads. So you should not fear using this as much and
as often as reasonable.

Having this automatic gamma correction is better than manual gamma correction because it covers everything that is written to the screen. In
prior tutorials, we had to manually gamma correct the clear color and certain other colors used to render solid objects. Here, we simply enable
the conversion and everything is affected.

The process of ensuring a linear pipeline from texture creation, through lighting, through to the screen is commonly called gamma-correct
texturing. The nameis a bit of a misnomer, as “texturing” is not a requirement; we have been gamma-correct since Tutorial 12's introduction of
that concept (except for Tutorial 15, where we looked at filtering). However, textures are the primary source of potential failures to maintain a
linear pipeline, as many image formats on disc have no way of saying if theimage dataisin SRGB or linear. So the name still makes some sense.

In Review

In thistutorial, you have learned the following:

At all times, it isimportant to remember what the meaning of the data stored in atextureis.

» Most of thetime, when atexture representsactual colors, those colorsareinthe SRGB colorspace. An appropriateimage format must be sel ected.
 Linear operations like filtering must be performed on linear values. All of OpenGL's operations on sRGB textures do this.

» Similarly, the generation of mipmaps, a linear operation, must perform conversion from sRGB to IRGB, do the filtering, and then convert
back. Since OpenGL does not (usually) generate mipmaps, it is incumbent upon the creator of the image to ensure that the mipmaps were
generated properly.

318

Gamma and Textures

* Lighting operations need linear values.

» The framebuffer can also be in the SRGB colorspace. OpenGL also requires a special enable when doing so, thus allowing for some parts of
the rendering to be SRGB encoded and other parts not.

OpenGL Functions of Note

glEnable/

Enables/disables the conversion from linear to SRGB. When this is enabled, colors written by the fragment

glDisable(GL_FRAMEBUFFER_SRI@G8r to an SRGB image are assumed to be linear. They are therefore converted into the SRGB colorspace.

Glossary

SRGB colorspace

gamma-correct texturing

When this is disabled, the colors written by the fragment shader are assumed to already be in the sSRGB
colorspace; they are written exactly as given.

A non-linear RGB colorspace, which approximates a gamma of 2.2. The vast majority of image editing
programs and operating systems work in the SRGB colorspace by default. Therefore, most images you will
encounter will be in the SRGB colorspace.

OpenGL has the ability to work with SRGB textures and screen images directly. Accesses to SRGB textures
will return IRGB values, and writes to SRGB screen images can be converted from linear to SRGB values,
so long as a proper enable is used.

The process of ensuring that all textures, images, and other sources and destinations of colors (such as vertex
attributes) are either aready in IRGB or are converted to/from the linear colorspace as needed. Texturesin
the sRGB format are part of that, but so is rendering to an SRGB screen image (or manually doing gamma
correction). These provide automatic correction. Manual correction may need to be applied to vertex color
attributes, and for proper interpolation, this correction needs to be applied before interpolation.

319

Chapter 17. Spotlight on Textures

Previously, we have seen textures used to vary surface parameters. But we can use textures to vary something else: light intensity. In this way,
we can simulate light sources who's intensity changes with something more than just distance from the light.

Our first effort in varying light intensity with textures will be to build an incandescent flashlight. The light beam from aflashlight is not asingle
solid intensity, due to the way the mirrors focus the light. A texture is the simplest way to define this pattern of light intensity.

Post-Projection Space

Before we can look at how to use atexture to make a flashlight, we need to make a short digression. Perspective projection will be an important
part of how we make atexture into a flashlight, so we need to revisit perspective projection. Specifically, we need to look at what happens when
transforming after a perspective projection operation.

Open up the project called Double Projection. It renders four objects, using various textures, in a scene with asingle directional light and agreen
point light.

Figure 17.1. Double Projection

Thistutoria displaystwo images of the same scene. The image on the left is the view of the scene from one camera, while theimage on theright
is the view of the scene from another camera. The difference between the two cameras is mainly in where the camera transformation matrices
are applied.

The left camera works normally. It is controlled by the left mouse button, the mouse wheel, and the WASD keys, as normal. The right camera
however providesthe view direction that is applied after the perspective projection matrix. The sequence of transformsthuslookslikethis: Model
-> Left Camera -> Projection -> Right Camera. The right camerais controlled by the right mouse button; only orientation controls work on it.

320

Spotlight on Textures

The idea is to be able to look at the shape of objects in normalized device coordinate (NDC) space after a perspective projection. NDC space
isa[-1, 1] box centered at the origin; by rotating objects in NDC space, you will be able to see what those objects look like from a different
perspective. Pressing the SpaceBar will reset the right camera back to a neutral view.

Note that post-perspective projection space objects are very distorted, particularly in the Z direction. Also, recall one of the fundamental tricks
of the perspective projection: it rescales objects based on their Z-distance from the camera. Thus, objects that are farther away are physically
smaller in NDC space than closer ones. Thus, rotating NDC space around will produce results that are not intuitively what you might expect
and may be very disorienting at first.

For example, if we rotate the right camerato an above view, relative to whatever the left camerais, we see that all of the objects seems to shrink
down into avery small width.

Figure 17.2. Top View Projection

4 [

This is due to the particulars of the perspective projection's work on the Z coordinate. The Z coordinate in NDC space is the result of the clip-
space Z divided by the negative of the camera-space Z. This forces it into the [-1, 1] range, but the clip-space Z aso is affected by the zNear
and zFar of the perspective matrix. The wider these are, the more narrowly the Z is compressed. Objects farther from the camera are compressed
into smaller ranges of Z; we saw this in our look at the effect of the camera Z-range on precision. Close objects use more of the [-1, 1] range
than those farther away.

This can be seen by moving the left camera close to an object. The right camera, from a top-down view, has a much thicker view of that object
inthe Z direction.

321

Spotlight on Textures

Figure 17.3. Near View Projection

Pressingthe Y key will toggle depth clamping in the right camera. This can explain some of the unusual things that will be seen there. Sometimes
the wrong objects will appear on top of each other; when this happens, it is almost aways due to a clamped depth.

The reason why depth clamping matters so much in the right screen is obviousif you think about it. NDC spaceisa[-1, 1] square. But that is not
the NDC space we actually render to. We are rendering to arotated portion of this space. So the actua [-1, 1] space that gets clipped or clamped
isdifferent from the one we see. We are effectively rotating a square and cutting off any parts of it that happen to be outside of the square viewing
area. Thisiseasy to seeinthe X and Y directions, but in Z, it results in some unusual views.

Scene Graphs

Thisisthefirst code in the tutorial to use the scene graph part of the framework. The term scene graph refers to a piece of software that manages
a collection of objects, typically in some kind of object hierarchy. In this case, the Scene. h part of the framework contains a class that loads an
XML description of ascene. This description includes meshes, shaders, and texturesto load. These assets are then associated with named objects
within the scene. So a mesh combined with a shader can be rendered with one or more textures.

The purpose of this system is to remove a lot of the boilerplate code from the tutorial files. The setup work for the scene graph is far less
complicated than the setup work seen in previous tutorials.

As an example, here is the scene graph to load and link a particular shader:
Example 17.1. Scene Graph Shader Definition

<pr og
xm:id="p_unlit"

322

Spotlight on Textures

vert="Unlit.vert"

frag="Unlit.frag"

nodel -t o- canmer a="nodel ToCanerahMatri x" >

<bl ock nane="Projection" binding="0"/>
</ pr og>

Thexm : i d givesit aname; thisis used by objectsin the scene to refer to this program. It also provides away for other code to talk to it. Most
of the rest is self-explanatory. nodel -t 0- caner a deserves some explanation.

Rendering the scene graph is done by calling the scene graph's render function with a camera matrix. Since the objects in the scene graph store
their own transformations, the scene graph combines each object's local transform with the given camera matrix. But it still needs to know how
to provide that matrix to the shader. Thus, nodel -t o- caner a specifies the name of the mat4 uniform that receives the model-to-camera
transformation matrix. There is a similar matrix for normals that is given the inverse-transpose of the model-to-camera matrix.

The bl ock element is the way we associate a uniform block in the program with a uniform block binding point. There is a similar element for
sanpl er that specifies which texture unit that a particular GLSL sampler is bound to.

Objects in scene graph systems are traditionally called “nodes,” and this scene graph is no exception.

Example 17.2. Scene Graph Node Definition

<node

name="spi nBar "

nmesh="m_| ongBar"

prog="p_lit"

pos="-7 0 8"

orient="-0.148446 0.554035 0.212003 0. 791242"

scal e="4">

<texture nane="t_stone_pillar" unit="0" sanpler="anisotropic"/>
</ node>

Nodes have a number of properties. They have a name, so that other code can reference them. They have a mesh that they render and a program
they use to render that mesh. They have a position, orientation, and scale transform. The orientation is specified as a quaternion, with the W
component specified last (this is different from how gim::fquat specifiesit. The W there comes first). The order of these transforms is scale,
then orientation, then translation.

Thisnodealso hasatextureboundtoit.t _st one_pi | | ar wasatexturethat wasloadedinat ext ur e command. Theuni t property specifies
thetexture unit to use. And thesanpl er property defineswhich of the predefined samplersto use. Inthiscase, it uses asampler with ansiotropic
filtering to the maximum degree alowed by the hardware. The texture wrapping modes of this sampler are to wrap the Sand T coordinates.

Thisiswhat the C++ setup code looks like for the entire scene:

Example 17.3. Double Projection L oadAndSetupScene
std::auto_ptr<Framework:: Scene> pScene(new Framework: : Scene("dp_scene.xm ")) ;

st d: : vect or <Framewor k: : NodeRef > nodes;

nodes. push_back(pScene- >Fi ndNode(" cube"));
nodes. push_back(pScene->Fi ndNode("ri ghtBar"));
nodes. push_back(pScene- >Fi ndNode("I eani ngBar")) ;
nodes. push_back(pScene- >Fi ndNode(" spi nBar"));

Associ at eUni f or MmN t hNodes(nodes, g_I i ght NunBi nder, "nunber Of Li ghts");
Set St at eBi nder Wt hNodes(nodes, g_Iight NunBi nder);

GLuint unlit = pScene->Fi ndProgranm("p_unlit");
Framewor k: : Mesh *pSpher eMesh = pScene- >Fi ndMesh(" m sphere");

323

Spotlight on Textures

/I No nore things that can throw.

g_spinBarOrient = nodes[3].NodeGetOrient();

g_unlitProg = unlit;

g_unl it Model ToCaneraMatri xUnif = gl Get Uni formLocation(unlit, "nodel ToCanmeraMatrix");
g_unlitObjectColorUnif = gl GetUniformnmLocation(unlit, "objectColor");

std:: swap(nodes, g_nodes);
nodes.clear(); //If something was there already, delete it.

std:: swap(pSphereMesh, g_pSphereMesh);

Framewor k: : Scene *pd dScene = g_pScene;
g_pScene = pScene.rel ease();
pScene. reset (pd dScene); //1f something was there already, delete it.

This code does some fairly simple things. The scene graph system is good, but we still need to be able to control uniforms not in blocks manually
from external code. Specifically in this case, the number of lightsis a uniform, not a uniform block. To do this, we need to use a uniform state
binder,g_| i ght NunBi nder , and setitintoall of thenodesin the scene. Thisbinder allows usto set the uniform for all of the objects (regardless
of which program they use).

Thep_unl it shaderisnever actually used in the scene graph; we just use the scene graph as a convenient way to load the shader. Similarly, the

m_spher e mesh isnot used in a scene graph node. We pull references to both of these out of the graph and use them ourselves where needed.
We extract some uniform locations from the unlit shader, so that we can draw unlit objects with colors.

Note

The code as written here is designed to be exception safe. Most of the functions that find nodes by name will throw if the name is not
found. What this exception safety means is that it is easy to make the scene reloadable. It only replaces the old values in the global
variables after executing all of the code that could throw an exception. This way, the entire scene, along with all meshes, textures, and
shaders, can bereloaded by pressing Enter . If something goeswrong, the new scenewill not beloaded and an error message is displayed.

Two of the objects in the scene rotate. Thisis easily handled using our list of objects. In the di spl ay method, we access certain nodes and
change their transforms them:

g_nodes[0] . NodeSet Orient (gl m:rotate(gl m:fquat(),
360.0f * g_tinmer.CetAl pha(), glm:vec3(0.0f, 1.0f, 0.0f)));

g_nodes[3] . NodeSet Ori ent (g_spinBarOrient * glm:rotate(gl m:fquat(),
360.0f * g_tinmer.CetAl pha(), glm:vec3(0.0f, 0.0f, 1.0f)));

We simply set the orientation based on atimer. For the second one, we previously stored the object's orientation after loading it, and use that as
the reference. This allows usto rotate about itslocal Z axis.

Multiple Scenes

The split-screen trick used here is actually quite simple to pull off. It's also one of the advantages of the scene graph: the ability to easily re-
render the same scene multiple times.

The first thing that must change is that the projection matrix cannot be set in the old r eshape function. That function now only sets the new
width and height of the screen into global variables. Thisisimportant because we will be using two projection matrices.

The projection matrix used for the left sceneis set up like this:

Example 17.4. L eft Projection Matrix

glm:ivec2 displaySize(g_displayWdth / 2, g _displayHeight);

324

Spotlight on Textures

{
glutil::MtrixStack pershMatrix;
pershatri x. Perspective(60.0f, (displaySize.x / (float)displaySize.y), g fzNear, g _fzFar);
Proj ecti onBl ock proj Dat a;
proj Dat a. cameraToCl i pMatri x = persMatri x. Top();
gl Bi ndBuf f er (GL_UNI FORM BUFFER, g_proj ecti onUni f or mnBuffer);
gl Buf f er Dat a(GL._UNI FORM BUFFER, si zeof (Proj ecti onBl ock), &projData, G._STREAM DRAW ;
gl Bi ndBuf f er (GL_UNI FORM BUFFER, 0);
}

gl Viewport (0, 0O, (G.sizei)displaySize.x, (GLsizei)displaySize.y);
g_pScene- >Render (nodel Matri x. Top());

Noticethat di spl aySi ze usesonly half of the width. And this half width is passed into the gl Vi ewport call. It isalso used to generate the
aspect ratio for the perspective projection matrix. It isthegl Vi ewpor t function that causes our window to be split into two halves.

What is more interesting is the right projection matrix computation:

Example 17.5. Right Projection Matrix

{
glutil::MatrixStack pershMatri x;
pershatri x. Appl yMatri x(gl m:mat4(gl m: mat3(g_persVi ewPol e. Cal cMatrix())));
pershatri x. Perspective(60.0f, (displaySize.x / (float)displaySize.y), g fzNear, g fzFar);
Proj ecti onBl ock proj Dat a;
proj Dat a. caneraToC i pMatri x = persMatri x. Top();
gl Bi ndBuf f er (GL_UNI FORM BUFFER, g_proj ecti onUni for nBuffer);
gl Buf f er Dat a(G._UNI FORM BUFFER, si zeof (Proj ecti onBl ock), &projData, G._STREAM DRAW ;
gl Bi ndBuf f er (GL_UNI FORM BUFFER, 0);
}

i f(!g_bDepthd anpProj)
gl Di sabl e(G._DEPTH _CLAMP) ;
gl Vi ewport (di splaySi ze.x + (g _displayWdth % 2), O,
(CGLsi zei) displaySi ze. x, (GLsizei)displaySize.y);
g_pScene- >Render (nodel Matri x. Top());
gl Enabl e(G._DEPTH_CLAMP) ;

Notice that we first take the camera matrix from the perspective view and apply it to the matrix stack before the perspective projection itself.
Remember that transforms applied to the stack happen in reverse order. This means that vertices are projected into 4D homogeneous clip-space
coordinates, then are transformed by a matrix. Only the rotation portion of the right camera matrix is used. The translation is removed by the
conversion to amat3 (which takes only the top-left 3x3 part of the matrix, which if you recall containsthe rotation), then turnsit back into a mat4.

Notice also that the viewport's X location is biased based on whether the display'swidthisodd or not (g_di spl ayW dt h % 2 isOif itiseven,
1lif itisodd). Thismeansthat if the width is stretched to an odd number, there will be a one pixel gap between the two views of the scene.

Intermediate Projection

One question may occur to you: how isit possible for our right camera to provide a rotation in NDC space, if it is being applied to the end of
the projection matrix? After al, the projection matrix goes from camera space to clip-space. The clip-space to NDC space transform is done by
OpenGL after our vertex shader has done thismatrix multiply. Do we not need the shader to divide the clip-space valuesby W, then do therotation?

325

Spotlight on Textures

Obviously not, since this code works. But just because code happens to work doesn't mean that it should. So let's see if we can prove that it
does. To do this, we must prove this:

Y_ _T*%
T"wW= =W

Thismight look like asimple proof by inspection due to the associative nature of these, but it isnot. The reason is quite simple: w and w' may not
be the same. The value of w isthe fourth component of v; w' is the fourth component of what resultsfrom T*v. If T changes w, then the equation
isnot true. But at the same time, if T doesn't change w, if w == w', then the equation istrue.

WEell, that makes things quite simple. We simply need to ensure that our T does not alter w. Matrix multiplication tellsusthat w' is the dot product
of V and the bottom row of T.

w :T03*V.X +T13*V.y+T23*V.Z +T33*V.W

Therefore, if the bottom row of T is (0, 0, O, 1), then w == w'. And therefore, we can use T before the division. Fortunately, the only matrix we
have that has a different bottom row is the projection matrix, and T is the rotation matrix we apply after projection.

So this works, as long as we use the right matrices. We can rotate, trandate, and scale post-projective clip-space exactly as we would post-
projective NDC space. Which is good, because we get to preserve the w component for perspective-correct interpolation.

The take-home lesson here is very simple: projections are not that specia as far as transforms are concerned. Post-projective space is mostly just
another space. It may be a 4-dimensional homogeneous coordinate system, and that may be an odd thing to fully understand. But that does not
mean that you can't apply aregular matrix to objectsin this space.

Projective Texture

In order to create our flashlight effect, we need to do something called projective texturing. Projective texturing is a special form of texture
mapping. It isaway of generating texture coordinates for atexture, such that it appears that the texture is being projected onto a scene, in much
the same way that a film projector projects light. Therefore, we need to do two things: implement projective texturing, and then use the value
we sample from the projected texture as the light intensity.

The key to understanding projected texturing isto think backwards, compared to the visua effect we are trying to achieve. We want to take a2D
texture and make it look like it is projected onto the scene. To do this, we therefore do the opposite: we project the scene onto the 2D texture. We
want to take the vertex positions of every object in the scene and project them into the space of the texture.

Sincethisis a perspective projection operation, and it involves transforming vertex positions, naturally we need amatrix. Thisis math we already
know: we have vertex positionsin model space. We transform them to a camera space, one that is different from the one we use to view the scene.
Then we use a perspective projection matrix to transform them to clip-space; both the matrix and this clip-space are again different spaces from
what we use to render the scene. Once perspective divide later, and we're done.

That last part is the small stumbling block. See, after the perspective divide, the visible world, the part of the world that is projected onto the
texture, livesin a[-1, 1] sized cube. That is the size of NDC space, though it is again a different NDC space from the one we use to render. The
problem isthat the range of the texture coordinates, the space of the 2D texture itself, is[0, 1].

This is why we needed the prior discussion of post-projective transforms. Because we need to do a post-projective transform here: we have to
transform the XY coordinates of the projected position from [-1, 1] to [0, 1] space. And again, we do not want to have to perform the perspective
divide ourselves; OpenGL has specia functions for texture accesses with a divide. Therefore, we encode the translation and scale as a post-
projective transformation. As previously demonstrated, thisis mathematically identical to doing the transform after the division.

This entire process represents a new kind of light. We have seen directional lights, which are represented by a light intensity coming from a
single direction. And we have seen point lights, which are represented by a position in the world which castslight in al directions. What we are
defining now is typically called a spotlight: alight that has a position, direction, and oftentimes a few other fields that limit the size and nature
of the spot effect. Spotlights cast light on a cone-shaped area.

We implement spotlights via projected textures in the Projected Light project. This tutorial uses a similar scene to the one before, though with
dightly different numbers for lighting. The main difference, scene wise, is the addition of atextured background box.

326

Spotlight on Textures

Figure 17.4. Projected Light

The camera controls work the same way as before. The projected flashlight, represented by the red, green, and blue axes, is moved with the IJKL
keyboard keys, with O and U moving up and down, respectively. The right mouse button rotates the flashlight around; the blue line points in
the direction of the light. The flashlight's position and orientation are built around the camera controls, so it rotates around a point in front of the
flashlight. It translates relative to its current facing as well. As usual, holding down the Shift key will cause the flashlight to move more slowly.

Pressing the G key will toggle all of the regular lighting on and off. This makesit easier to see just the light from our projected texture.

Flashing the Light

Let usfirst look at how we achieve the projected texture effect. We want to take the model space positions of the vertices and project them onto
the texture. However, there is one minor problem: the scene graph system provides a transform from model space into the visible camera space.
We need atransform to our special projected texture camera space, which has a different position and orientation.

We resolve this by being clever. We already have positions in the viewing camera space. So we simply start there and construct a matrix from
view camera space into our texture camera space.

Example 17.6. View Camera to Projected Texture Transform

glutil::MtrixStack |ightProj Stack;

/| Text ure-space transform

i ght Proj Stack. Transl ate(0.5f, 0.5f, 0.0f);

I'i ght Proj St ack. Scal e(0.5f, 0.5f, 1.0f);

/I Project. Z-range is irrel evant.

I i ght Proj St ack. Perspective(g_light FOvVs[g_currFOVI ndex], 1.0f, 1.0f, 100.0f);
/[l Transform from main canera space to |ight canmera space.

I i ght Proj Stack. Appl yMatri x(li ght Vi ew);

I i ght Proj Stack. Appl yMatri x(gl m:inverse(canmeraMatrix));

g_l i ght Proj Mat Bi nder. Set Val ue(| i ght Proj St ack. Top());

327

Spotlight on Textures

Reading the modifications to | i ght Pr oj St ack in bottom-to-top order, we begin by using the inverse of the view camera matrix. This
transforms all of our vertex positions back to world space, since the view camera matrix is a world-to-camera matrix. We then apply the world-
to-texture-camera matrix. Thisisfollowed by a projection matrix, which uses an aspect ratio of 1.0. The last two transforms move us from [-1,
1] NDC spaceto the [0, 1] texture space.

The zNear and zFar for the projection matrix are almost entirely irrelevant. They need to be within the allowed ranges (strictly greater than 0, and
zFar must be larger than zNear), but the values themselves are meaningless. We will discard the Z coordinate entirely later on.

We use a matrix uniform binder to associate that transformation matrix with all of the objects in the scene. Thisis al we need to do to set up
the projection, as far as the matrix math is concerned.

Our vertex shader (pr oj Li ght . ver t) takes care of things in the obvious way:
lightProjPosition = caneraToLi ghtProj Matrix * vec4(caneraSpacePosition, 1.0);

Notethat thislineispart of thevertex shader; | i ght Pr oj Posi t i on ispassedto thefragment shader. One might think that the projection would
work best in the fragment shader, but doing it per-vertex is actualy just fine. The only time one would need to do the projection per-fragment
would beif onewas using imposters or was otherwise modifying the depth of the fragment. Indeed, because it works per-vertex, projected textures
were a preferred way of doing cheap lighting in many situations.

In the fragment shader, pr oj Li ght . f r ag, we want to use the projected texture as alight. We have the Conput eLi ght i ng function in this
shader from prior tutorials. All we need to do is make our projected light appear to be aregular light.

Per Li ght currLight;
currLi ght.caneraSpaceli ght Pos = vec4(camner aSpaceProj Li ght Pos, 1.0);
currLight.lightintensity =

textureProj (l1ightProjTex, |ightProjPosition.xyw) * 4.0;

currLight.lightintensity = lightProjPosition.w> 0 ?
currLight.lightintensity : vec4(0.0);

We create a simple structure that wefill in. Later, we pass this structure to Conput eLi ght i ng, and it does the usual thing.

The view camera space position of the projected light is passed in as a uniform. It is necessary for our flashlight to properly obey attenuation,
aswell asto find the direction towards the light.

The next line is where we do the actual texture projection. Thet ext ur ePr oj is atexture accessing function that does projective texturing.
Eventhough| i ght Pr oj Tex isasampler2D (for 2D textures), the texture coordinate has three dimensions. All formsof t ext ur ePr o take
one extra texture coordinate compared to the regular t ext ur e function. This extra texture coordinate is divided into the previous one before
being used to access the texture. Thus, it performs the perspective divide for us.

Note

Mathematically, there is virtually no difference between using t ext ur ePr oj and doing the divide ourselves and calling t ext ur e
with the results. While there may not be a mathematical difference, there very well may be a performance difference. There may be
speciaized hardware that does the division much faster than the genera -purpose opcodes in the shader. Then again, there may not.
However, usingt ext ur ePr oj will certainly be no dower thant ext ur e in the general case, soit's still agood idea.

Notice that the value pulled from the textureis scaled by 4.0. Thisis done because the color values stored in the texture are clamped to the [0, 1]
range. To bring it up to our high dynamic range, we need to scale the intensity appropriately.

The texture being projected is bound to a known texture unit globally; the scene graph already associates the projective shader with that texture
unit. So there is no need to do any special work in the scene graph to make objects use the texture.

The last statement is special. It compares the W component of the interpolated position against zero, and sets the light intensity to zero if the W
component isless than or equal to 0. What is the purpose of this?

It stops this from happening:

328

Spotlight on Textures

Figure 17.5. Back Projected Light

The projection math doesn't care what side of the center of projection an object is on; it will work either way. And since we do not actually do
clipping on our texture projection, we need some way to prevent this from happening. We effectively need to do some form of clipping.

Recall that, given the standard projection transform, the W component is the negation of the camera-space Z. Since the camerain our camera
space is looking down the negative Z axis, al positions that are in front of the camera must have aW > 0. Therefore, if W isless than or equa
to 0, then the position is behind the camera.

Spotlight Tricks

The size of the flashlight can be changed simply by modifying the field of view in the texture projection matrix. Pressing the Y key will increase
the FOV, and pressing the N key will decrease it. An increase to the FOV means that the light is projected over a greater area. At alarge FOV,
we effectively have an entire hemisphere of light.

Another interesting trick we can play is to have multi-colored lights. Press the 2; this will change to a texture that contains spots of various
different colors.

329

Spotlight on Textures

Figure 17.6. Colored Spotlight

Thiskind of complex light emitter would not be possible without using atexture. Well it could be possible without textures, but it would require
alot more processing power than a few matrix multiplies, a division in the fragment shader, and a texture access. Press the 1 key to go back
to the flashlight texture.

There is one final issue that can and will crop up with projected textures: what happens when the texture coordinates are outside of the [0, 1]
boundary. With previoustextures, we used either G._ CLAMP_TO_EDGE or GL_ REPEAT for the Sand T texture coordinate wrap modes. Repeat
is obviously not a good idea here; thus far, our sampler objects have been clamping to the texture's edge. That worked fine because our edge
texels have al been zero. To see what happens when they are not, press the 3 key.

Figure 17.7. Edge Clamped Light

330

Spotlight on Textures

That rather ruins the effect. Fortunately, OpenGL does provide a way to resolve this. It gives us a way to say that texels fetched outside of the
[0, 1] range should return a particular color. As before, thisis set up with the sampler object:

Example 17.7. Border Clamp Sampler Objects

gl Sanpl er Paramet eri (g_sanpl ers[1], G._TEXTURE WRAP_S,

GL_CLAMP_TO BORDER) ;
gl Sanpl er Paramet eri (g_sanpl ers[1], G._TEXTURE WRAP_T, G _

AVP_TO_BORDER) ;

Qe

float color[4] = {0.0f, 0.0f, 0.0f, 1.0f};
gl Sanpl er Par amet erfv(g_sanpl ers[1], G._TEXTURE BORDER _COLOR, col or);

TheSand T wrap modesaresetto G._ CLAMP_TO_BORDER. Then the border's color is set to zero. To toggle between the edge clamping sampler
and the border clamping one, pressthe H key.

Figure 17.8. Border Clamped Light

That's much better now.

Line Drawing

Y ou may have noticed that the position and orientation of the light was shown by three lines forming the three directions of an axis. These
are anew primitive type: lines.

Lines have auniform width no matter how close or far away they are from the camera. Point primitives are defined by one vertex, triangle
primitives by 3. So it makes sense that lines are defined by two vertices.

Just as triangles can come in strips and fans, lines have their own variations. GL_ LI NES are like G._ TRI ANGLES: alist of independent
lines, with each line coming from individual pairs of vertices. G._LI NE_STRI P represents a sequence of lines attached head to tail;
every vertex has aline to the previous vertex and the next in the list. GL_LI NE_LOOP is like a strip, except the last and first vertices
are also connected by aline.

Thisisal encapsulated in the Framework's Mesh class. The axis used here (and later on in the tutorials) isasimple

331

Spotlight on Textures

Pointing Projections

Spotlights represent alight that has position, direction, and perhaps an FOV and some kind of aspect ratio. Through projective texturing, we can
make spotlights that have arbitrary light intensities, rather than relying on uniform values or shader functions to compute light intensity. That is
all well and good for spotlights, but there are other forms of light that might want varying intensities.

It doesn't really make sense to vary the light intensity from a directiona light. After all, the while point of directiona lights is that they are
infinitely far away, so all of the light from them is uniform, in both intensity and direction.

Varying the intensity of a point light is a more reasonable possibility. We can vary the point light's intensity based on one of two possible
parameters: the position of the light and the direction from the light towards a point in the scene. The latter seems far more useful; it represents
alight that may cast more or less brightly in different directions.

To do this, what we need is atexture that we can effectively access via a direction. While there are ways to convert a 3D vector direction into a
2D texture coordinate, we will not use any of them. We will instead use a special texture type creates specifically for exactly this sort of thing.

The common term for this kind of texture is cube map, even though it is a texture rather than a mapping of atexture. A cube map textureis a
texture where every mipmap level is 6 2D images, not merely one. Each of the 6 images represents one of the 6 faces of a cube. The texture
coordinates for a cube map are a 3D vector direction; the texture sampling hardware selects which face to sample from and which texel to pick
based on the direction.

It isimportant to know how the 6 faces of the cube map fit together. OpenGL defines the 6 faces based on the X, Y, and Z axes, in the positive
and negative directions. This diagram explains the orientation of the S and T coordinate axes of each of the faces, relative to the direction of
the facesin the cube.

332

Spotlight on Textures

Figure 17.9. Cube Map Face Orientation

+Y
+7
----------------- > + X
Positive X Positive Y Positive Z
Y +7 Y
-z +X +X

Negative X NegativeY Negative Z
Y -Z Y

+Z +X -X

Thisinformation is vital for knowing how to construct the various faces of a cube map.

To use acube map to specify the light intensity changes for a point light, we ssimply need to do the following. First, we get the direction from the
light to the surface point of interest. Then we use that direction to sample from the cube map. From there, everything is normal.

The issue is getting the direction from the light to the surface point. Before, a point light had no orientation, and this made sense. It cast light
uniformly in all directions, so even if it had an orientation, you would never be able to tell it was there. Now that our light intensity can vary,
the point light now needs to be able to orient the cube map.

The easiest way to handle this is a simple transformation trick. The position and orientation of the light represents a space. If we transform the
position of objectsinto that space, then the direction from the light can easily be obtained. The light's position relative to itself is zero, after all.
So we need to transform positions from some space into the light's space. We will see exactly how thisis done momentarily.

Cube map point lights are implemented in the Cube Point Light project. This puts afixed point light using a cube map in the middle of the scene.
The orientation of the light can be changed with the right mouse button.

333

Spotlight on Textures

Figure 17.10. Cube Point Light

This cube texture has various different light arrangements on the different sides. One side even has green text on it. As before, you can use the
G key to toggle the non-cube map lights off.

Pressing the 2 key switches to atexture that |ooks somewhat resembles a planetarium show. Pressing 1 switches back to the first texture.

Cube Texture Loading

We have seen how 2D textures get loaded over the course of 3 tutorials now, so we use GL Image's functions for creating a texture directly from
ImageSet. Cube map textures require special handling, so let'slook at this now.

Example 17.8. Cube Texture Loading

std::string filename(Franmework:: FindFileO Throw(g texDefs[tex].filenane));
std::auto_ptr<gling::I|nageSet> plmageSet (gling::|oaders::dds::LoadFronFile(filenane.c_str()));

gl Bi ndText ure(GL_TEXTURE_CUBE_MAP, g_light Textures[tex]);
gl TexPar anet eri (G._TEXTURE_CUBE_MAP, GL_TEXTURE BASE LEVEL, 0);
gl TexPar anet eri (G._TEXTURE_CUBE_MAP, GL_TEXTURE MAX LEVEL, 0);

glinmg::Dinensions dins = pl mageSet - >Get Di nensi ons() ;
GLenum i mageFormat = (GLenum) gl i ng: : Get | nt er nal For mat (pl nageSet - >Get Format (), 0);

for(int face = 0; face < 6; ++face)

{
gling::Singlelmge img = pl mageSet - >Get | mage(0, 0, face);
gl Conpr essedTexl mage2D(G._ TEXTURE_CUBE_MAP_PQCSI TI VE_X + f ace,
0, imageFormat, dinms.w dth, dins.height, O,
i mg. Get | mageByt eSi ze(), ing. GetlmageData());
}

gl Bi ndText ur e(GL_TEXTURE_CUBE_MAP, 0);

The DDS format is one of the few image file formats that can actually store al of the faces of a cube map. Similarly, the glimg::ImageSet class
can store cube map faces.

334

Spotlight on Textures

The first step after loading the cube map faces is to hind the texture to the GL_TEXTURE CUBE_IMAP texture binding target. Since
this cube map is not mipmapped (yes, cube maps can have mipmaps), we set the base and max mipmap levels to zero. The cal to
gling:: Getlnternal For mat isused to allow GL Image to tell usthe OpenGL image format that corresponds to the format of the loaded
texture data.

From there, we loop over the 6 faces of the texture, get the Singlelmage for that face, and load each face into the OpenGL texture. For the
moment, pretend the call to gl Conpr essedTex| nage2Disacall to gl Tex| nmage2D; they do similar things, but the final few parameters
are different. It may seem odd to call a TexImage2D function when we are uploading to a cube map texture. After al, a cube map textureis a
completely different texture type from 2D textures.

However, the “TexIimage” family of functions specify the dimensionality of the image data they are allocating an uploading, not the specific
texture type. Since a cube map is simply 6 sets of 2D image images, it uses the “TexImage2D” functions to allocate the faces and mipmaps.
Which face is specified by the first parameter.

OpenGL has six enumerators of the form GL_TEXTURE CUBE_MAP_POSI Tl VE/ NEGATI VE_X/ Y/ Z. These enumerators are ordered,
starting with positive X, so we can loop through all of them by adding the numbers [0, 5] to the positive X enumerator. That iswhat we do above.
The order of these enumeratorsis:

1. POSITIVE_X
2. NEGATIVE_X

3. POSITIVE_Y

4. NEGATIVE_Y

5. POSITIVE_Z

6. NEGATIVE_Z

This mirrors the order that the ImageSet stores them in (and DDSfiles, for that matter).
The samplers for cube map textures also needs some adjustment:

gl Sanpl er Paraneteri (g_sanpl ers[0], G._TEXTURE WRAP_S, G._CLAMP_TO EDGE);
gl Sanpl er Paraneteri (g_sanpl ers[0], G._TEXTURE WRAP_T, G._CLAMP_TO EDGE);
gl Sanpl er Paraneteri (g_sanpl ers[0], G._TEXTURE WRAP_R, G._CLAMP_TO EDGE);

Cube maps take 3D texture coordinates, so wrap modes must be specified for each of the three dimensions of texture coordinates. Since this cube
map has no mipmaps, the filtering issimply set to G__ LI NEAR.

Texture Compression

Now we will take alook at why we are using gl Conpr essedTex| mage2D. And that requires a discussion of image formats and sizes.

Images take up a lot of memory. And while disk space and even main memory are fairly generous these days, GPU memory is always at a
premium. Especialy if you have lots of textures and those textures are quite large. The smaller that texture data can be, the more and larger
textures you can have in a complex scene.

Thefirst stop for making this data smaller isto use a smaller image format. For example, the standard RGB color format stores each channel as
an 8-hit unsigned integer. This is usually padded out to make it 4-byte aligned, or a fourth component (alpha) is added, making for an RGBA
color. That's 32-hits per texel, which iswhat GL_ RGBA8 specifies. A first pass for making this data smaller isto store it with fewer bits. OpenGL
provides GL_RGB565 for those who do not need the fourth component, or GL_ RGBA4 for those who do. Both of these use 16-bits per texel.

They both also can produce unpleasant visual artifacts for the textures. Plus, OpenGL does not allow such texturesto be in the SRGB col orspace;
thereisno GL_SRGB565 format.

For files, thisisasolved problem. There are anumber of traditional compressed image formats: PNG, JPEG, GIF, etc. Some are | ossless, meaning
that the exact input image can be reconstructed. Others are lossy, which means that only an approximation of the image can be returned. Either
way, these all formats have their benefits and downsides. But they are all better, in terms of visual quality and space storage, than using 16-bit
per texel image formats.

335

Spotlight on Textures

They aso have one other thing in common: they are absolutely terrible for textures, in terms of GPU hardware. These formats are designed to be
decompressed all at once; you decompress the entire image when you want to seeit. GPUs don't want to do that. GPUs generally accesstexturesin
pieces; they access certain sections of amipmap level, then access other sections, etc. GPUs gain their performance by being incredibly parallel:
multiple different invocations of fragment shaders can be running simultaneously. All of them can be accessing different textures and so forth.

Stopping that processes to decompress a 5S0KB PNG would pretty much destroy rendering performance entirely. These formats may be fine for
storing files on disk. But they are simply not good formats for being stored compressed in graphics memory.

Instead, there are special formats designed specifically for compressing textures. These texture compression formats are designed specifically
to be friendly for texture accesses. It is easy to find the exact piece of memory that stores the data for a specific texd. It takes no more than 64
bits of data to decompress any one texel. And so forth. These al combine to make texture compression formats useful for saving graphics card
memory, while maintaining reasonable image quality.

Theregular gl Tex| mage2D functionis not capable of directly uploading compressed texture data. The pixel transfer information, the last three
parametersof gl Tex| mage2D, issimply not appropriate for dealing with compressed texture data. Therefore, OpenGL uses adifferent function
for uploading texture data that is already compressed.

gl Conpr essedTex| mage2D(G._TEXTURE_CUBE_MAP_POSI TI VE_X + f ace,
0, inmageFormat, dins.w dth, dins. height, O,
i mg. Get | mageByt eSi ze(), ing. CGetlmageData());

Instead of taking OpenGL enums that define what the format of the compressed datais, gl Conpr essedTex| nage2Ds last two parameters
are very simple. They specify how big the compressed image data is in bytes and provide a pointer to that image data. That is because
gl Compr essedTex| mage2D does not allow for format conversion; the format of the pixel data passed to it must exactly match what the
image format saysit is. This also means that the GL_UNPACK_ALI GNVENT has no effect on compressed texture uploads.

Cube Texture Space

Creating the cube map texture was just the first step. The next step is to do the necessary transformations. Recall that the goal is to transform
the vertex positions into the space of the texture, defined relative to world space by a position and orientation. However, we ran into a problem
previously, because the scene graph only provides a model-to-camera transformation matrix.

This problem still exists, and we will solve it in exactly the same way. We will generate a matrix that goes from camera space to our cube map
light's space.

Example 17.9. View Camerato Light Cube Texture

glutil::MtrixStack |ightProj Stack;
I'i ght Proj Stack. Appl yMatri x(gl m:inverse(lightView));
i ght Proj Stack. Appl yMatri x(gl m:inverse(canmeraMatrix));

g_l i ght Proj Mat Bi nder . Set Val ue(Ili ght Proj St ack. Top());

gl m:vecd4 worldLi ghtPos = |ightView 3];
glm:vec3 lightPos = gl m:vec3(canmeraMatri x * worl dLi ght Pos);

g_canLi ght PosBi nder . Set Val ue(l i ght Pos) ;

This code is rather simpler than the prior time. Again reading bottom up, we transform by the inverse of the world-to-camera matrix, then we
transform by the inverse of the light matrix. Thel i ght Vi ewmatrix isinverted because the matrix is ordinarily designed to go from light space
to world space. So weinvert it to get the world-to-light transform. The light's position in world space is taken similarly.

The vertex shader (cubeLight.vert) is about what you would expect:
I i ght SpacePosition = (cameraTolLi ght Proj Matrix * vec4(caneraSpacePosition, 1.0)).xyz;

Thel i ght SpacePosi ti on isoutput from the vertex shader and interpolated. Again we find that this interpolates just fine, so there is no
need to do this transformation per-fragment.

336

Spotlight on Textures

The fragment shader code (cubelLi ght . f r ag) is pretty simple. First, we have to define our GLSL samplers:

uni f orm sanpl er 2D di f f useCol or Tex;
uni f orm sanpl er Cube | i ght CubeTex;

Because cube maps are a different texture type, they have a different GLSL sampler type as well. Attempting to use texture with the one type
on a sampler that uses a different type results in unpleasantness. It's usually easy enough to keep these things straight, but it can be a source
of errors or non-rendering.

The code that fetches from the cube texture is as follows:

Per Li ght currLight;
currLi ght.caneraSpaceli ght Pos = vec4(caneraSpaceProj Li ght Pos, 1.0);

vec3 dirFronLi ght = normalize(lightSpacePosition);
currLight.lightintensity =
texture(lightCubeTex, dirFronLight) * 6.0f;

We simply normalize the light-space position, since the cube map's space has the light position at the origin. We then usethet ext ur e to access
the cubemap, the same one we used for 2D textures. This is possible because GLSL overloads thet ext ur e based on the type of sampler. So
whent ext ur e is passed a samplerCube, it expects a vec3 texture coordinate.

In Review

In thistutorial, you have learned the following:

» Vertex positions can be further manipulated after a perspective projection. Thus the perspective transform is not special. The shape of objects
in post-proj ective space can be unusual and unexpected.

» Textures can be projected onto meshes. This is done by transforming those meshes into the space of the texture, which is equivalent to
transforming the texture into the space of the meshes. The transform is governed by its own camera matrix, as well as a projection matrix and
a post-projective transform that transforms it into the [0, 1] range of the texture.

» Cube maps are textures that have 6 face images for every mipmap level. The 6 faces are arranged in a cube. Texture coordinates are effectively
directions of avector centered within the cube. Thus a cube map can provide a varying value based on adirection in space.

Further Study

Try doing these things with the given programs.

* In the spotlight project, change the projection texture coordinate from a full 4D coordinate to a 2D. Do this by performing the divide-by-W
step directly in the vertex shader, and simply pass the ST coordinates to the fragment shader. Just uset ext ur e instead of t ext ur ePr 0j
in the fragment shader. See how that affects things. Also, try doing the perspective divide in the fragment shader and see how this differsfrom
doing it in the vertex shader.

« In the spotlight project, change the interpolation style from snoot h to noper spect i ve. See how non-perspective-correct interpolation
changes the projection.

* Instead of using a projective texture, build a lighting system for spot lights entirely within the shader. It should have a maximum angle; the
larger the angle, the wider the spotlight. It should also have an inner angle that is smaller than the maximum angle. This the the point where
thelight startsfalling off. At the maximum angle, the light intensity goes to zero; at the minimum angle, thelight intensity isfull. The key here
is remembering that the dot product between the spotlight's direction and the direction from the surface to the light is the cosine of the angle
between the two vectors. The acos function can be used to compute the angle (in radians) from the cosine.

Further Research

Cube maps are fairly old technology. The version used in GPUs today derive from the Renderman standard and earlier works. However, before
hardware that allowed cubemaps became widely available, there were alternative techniques that were used to achieve similar effects.

337

Spotlight on Textures

The basic idea behind all of these is to transform a 3D vector direction into a 2D texture coordinate. Note that converting a 3D direction into a
2D planeis a problem that was encountered long before computer graphics. It is effectively the global mapping problem: how you create a 2D
map of a 3D spherical surface. All of these techniques introduce some distance distortion into the 2D map. Some distortion is more acceptable
in certain circumstances than others.

One of the more common pre-cube map techniques was sphere mapping. This required a very heavily distorted 2D texture, so the results left
something to be desired. But the 3D-to-2D computations were simple enough to be encoded into early graphics hardware, or performed quickly
on the CPU, so it was acceptable as a stop-gap. Other techniques, such as dual paraboloid mapping, were also used. The latter used a pair of
textures, so they ate up more resources. But they required less heavy distortions of the texture, so in some cases, they were a better tradeoff.

OpenGL Functions of Note

glCompressedTexImage2D Allocates a 2D image of the given size and mipmap for the current texture, using the given compressed image
format, and uploads compressed pixel data. The pixel data must exactly match the format of the data defined
by the compressed image format.

GLSL Functions of Note

vec4 textureProj (sanmpler texSanpler, vec texCoord);

Accesses the texture associated with t exSanpl er , using post-projective texture coordinates specified by t exCoor d. The sampler type can
be many of the sampler types, but not samplerCube, among a few others. The texture coordinates are in homogeneous space, so they have one
more components than the number of dimensions of the texture. Thus, the number of componentsint exCoor d for a sampler of type samplerlD
isvec2. For sampler2D, it isvec3.

Glossary

scene graph The general term for adata structure that holds the objects within a particular scene. Objectsin a scene graph
often have parent-child relationships for their transforms, as well as references to the shaders, meshes, and
textures needed to render them.

projective texturing A texture mapping technique that generates texture coordinates to make a 2D texture appear to have been
projected onto a surface. Thisis done by transforming the vertex positions of objects into the scene through
aprojective series of transformationsinto the space of the texture itself.

spotlight source A light source that emitsfrom aposition in the world in agenerally conical shape along aparticular direction.
Some spot lights have a full orientation, while others only need a direction. Spotlights can be implemented
in shader code, or more generally via projective texturing techniques.

cube map texture A type of texture that uses 6 2D images to represent faces of a cube. It takes 3D texture coordinates that
represent a direction from the center of a cube onto one of these faces. Thus, each texel on each of the 6 faces
comesfrom auniquedirection. Cube mapsallow databased on directionsto vary based on stored texture data.

texture compression A set of image formats that stores texel data in a small format that is optimized for texture access. These

formats are not as small as speciaized image file formats, but they are designed for fast GPU texture fetch
access, while still saving significant graphics memory.

338

Part V. Framebuffer

Render targets and framebuffer blending are key components to many advanced effects. These tutorials will cover many per-framebuffer
operations, from blending to render targets.

Part VI. Advanced Lighting

Simple diffuse lighting and directional shadows are useful, but better, more effective lighting models and patterns exist. These tutorials will
explore those, from Phong lighting to reflections to HDR and blooming.

Appendix A. Further Study

G

Topics of Interest

This book should provide a firm foundation for understanding graphics development. However, there are many subjects that it does not cover
which are also important in rendering. Here isalist of topics that you should investigate, with a quick introduction to the basic concepts.

Thislist is not intended to be a comprehensive tour of all interesting graphical effects. It is simply an introduction to a few concepts that you
should spend some time investigating. There may be others not on thislist that are worthy of your time.

Vertex Weighting. All of our meshes have had fairly simple linear transformations applied to them (outside of the perspective projection).
However, the mesh for a human or human-like character needs to be able to deform based on animations. The transformation for the upper arm
and the lower arm are different, but they both affect vertices at the elbow in some way.

The system for dealing with thisis called vertex weighting or skinning (note: “skinning”, as a term, has also been applied to mapping a texture
on an object. So be aware of that when doing searches). A character is made of a hierarchy of transformations; each transform is called a bone.
Vertices are weighted to particular bones. Whereit getsinteresting isthat vertices can have weightsto multiple bones. This meansthat the vertex's
final position is determined by a weighted combination of two (or more) transforms.

Vertex shaders generally do this by taking an array of matrices as a uniform block. Each matrix is a bone. Each vertex contains a vec4 which
contains up to 4 indices in the bone matrix array, and another vec4 that contains the weight to use with the corresponding bone. The vertex is
multiplied by each of the four matrices, and the results are averaged together.

This processis made more complicated by normals and the tangent-space basis necessary for bump mapping. And it is complicated even further by
atechnique called dual quaternion skinning. Thisis done primarily to avoid issues with certain bones rotating relative to one another. It prevents
vertices from pinching inwards when the wrist bone is rotated 180 degrees from the forearm.

BRDFs. Theterm Bidirectional Reflectance Distribution Function (BRDF) refersto aspecial kind of function. It isafunction of two directions:
the direction towards the incident light and the direction towards the viewer, both of which are specified relative to the surface normal. Thislast
part makes the BRDF independent of the surface normal, asit isan implicit parameter in the equation. The output of the BRDF is the percentage
of light from the light source that is reflected along the view direction. Thus, the output of the BRDF is multiplesinto the incident light intensity
to produce the output light intensity.

By dl rights, this sounds like alighting equation. And it is. Indeed, every lighting equation in this book can be expressed in the form of a BRDF.
One of the things that make BRDFs as a class of equations interesting is that you can actually take a physical object into alab, perform a series
of tests on it, and produce a BRDF table out of them. This BRDF table, typically expressed as a texture, can then be directly used by a shader
to show how a surface in the real world actually behaves under lighting conditions. This can provide much more accurate results than using
models as we have done.

Scalable Alpha Testing. We have seen how apha-test works viadi scar d: afragment is culled if its alpha is beneath a certain threshold.
However, when magnifying atexture providing that alpha, it can create an unfortunate stair-step effect along the border between the culled and
unculled part. It is possible to avoid these artifacts, if one preprocesses the texture correctly.

Valve software's Chris Green wrote a paper entitled Improved Alpha-Tested Magnification for Vector Textures and Special Effects. This paper
describes a way to take a high-resolution version of the alpha and convert it into a distance field. Since distances interpolate much better in a
spatial domain like images, using distance-based culling instead of edge-based culling produces a much smoother result even with a heavily
magnified image.

The depth field can aso be used to do other effects, like draw outlines around objects or drop shadows. And the best part is that it is a very
inexpensive technique to implement. It requires some up-front preprocessing, but what you get in the end is quite powerful and very performance-
friendly.

Screen-Space Ambient Occlusion. One of the many difficult processes when doing rasterization-based rendering is dealing with
interreflection. That is, light reflected from one object that reflects of f of another. We covered thisby providing asingle ambient light as something
of ahack. A useful one, but a hack nonetheless.

341

Further Study

Screen-space ambient occlusion (SSAO) isthe term given to a hacky modification of this already hacky concept. Theideaworkslike this. If two
objects form an interior corner, then the amount of interreflected light for the pixels around that interior corner will be less than the general level
of interreflection. Thisis a generally true statement. What SSAO does is find all of those corners, in screen-space, and decreases the ambient
light intensity for them proportionately.

Doing thisin screen space requires access to the screen space depth for each pixel. So it combines very nicely with deferred rendering techniques.
Indeed, it can simply be folded into the ambient lighting pass of deferred rendering, though getting it to perform reasonably fast is the biggest
challenge. But the results can ook good enough to be worth the effort.

Light Scattering. When light passes through the atmosphere, it can be absorbed and reflected by the atmosphere itself. After al, thisis why
the sky is blue: because it absorbs some of the light coming from the sun, tinting the sunlight blue. Clouds are also aform of this: light that hits
the water vapor that comprises cloudsisreflected around and scattered. Thin clouds appear white because much of the light still makesit through.
Thick clouds appear dark because they scatter and absorb so much light that not much passes through them.

All of these are light scattering effects. The most common in real-time scenarios is fog, which meteorologically speaking, is ssimply alow-lying
cloud. Ground fog is commonly approximated in graphics by applying a change to the intensity of the light reflected from a surface towards
the viewer. The farther the light travels, the more of it is absorbed and reflected, converting it into the fog's color. So objects that are extremely
distant from the viewer would be indistinguishable from the fog itself. The thickness of the fog is based on the distance light has to travel before
it becomes just more fog.

Fog can aso be volumetric, localized in a specific region in space. Thisis often doneto create the effect of aroom full of steam, smoke, or other
particulate aerosols. Volumetric fog is much more complex to implement than distance-based fog. Thisis complicated even more by objects that
have to move through the fog region.

Fog system deal with the light reflected from a surface to the viewer. Generalized light scattering systems deal with light from alight source that
is scattered through fog. Think about car headlights in a fog: you can see the beam reflecting off of the fog itself. That is an entirely different
can of worms and a general implementation is very difficult to pull off. Specific implementations, sometimes called “ God rays’ for the effect of
strong sunlight on dust particlesin adark room, can provide some form of this. But they generally have to be special cased for every occurrence,
rather than a generalized technique that can be applied.

Non-Photor ealistic Rendering. Talking about non-photorealistic rendering (NPR) as one thing is like talking about non-Elephant biology as
one thing. Photorealism may have the majority of the research effort in it, but the depth of non-photorealistic possibilities with modern hardware
is extensive.

These techniques often extend beyond mere rendering, from how textures are created and what they store, to exaggerated models, to various other
things. Once you leave the comfort of approximately realistic lighting models, all bets are off.

In terms of just the rendering part, the most well-known NPR technique is probably cartoon rendering, also known as cel shading. The ideawith
realistic lighting isto light a curved object so that it appears curved. With cel shading, the ideais often to light a curved object so that it appears
flat. Or at least, so that it approximates one of the many different styles of cel animation, some of which are more flat than others. This generally
means that light has only a few intensities: on, perhaps a slightly less on, and off. This creates a sharp highlight edge in the model, which can
give the appearance of curvature without afull gradient of intensity.

Coupled with cartoon rendering is some form of outline rendering. Thisis a bit more difficult to pull off in an aesthetically pleasing way. When
an artist is drawing cel animation, they have the ability to fudge things in arbitrary ways to achieve the best result. Computers have to use an
algorithm, which is morelikely to be a compromise than a perfect solution for every case. What looks good for outlinesin one case may not work
in another. So testing the various outlining techniquesis vital for pulling off a convincing effect.

Other NPR techniquesinclude drawing objectsthat 1ook like pencil sketches, which require more texture work than rendering system work. Some
find ways to make what could have been a photorealistic rendering look like an oil painting of some form, or in some cases, the glossy colorsof a
comic book. And so on. NPR hasasitslimitsthe user'simagination. And the cleverness of the programmer to find away to makeit work, of course.

342

Appendix B. History of PC Graphics Hardware

A Programmer's View

For those of you had the good fortune of not being graphics programmers during the formative years of the development of consumer graphics
hardware, what follows is a brief history. Hopefully, it will give you some perspective on what has changed in the last 15 years or so, aswell as
an idea of how grateful you should be that you never had to suffer through the early days.

Voodoo Magic

In the years 1995 and 1996, a number of graphics cardswere released. Graphics processing via specialized hardware on PC platforms was nothing
new. What was new about these cards was their ability to do 3D rasterization.

The most popular of these for that era was the VVoodoo Graphics card from 3Dfx Interactive. It was fast, powerful for its day, and provided high
quality rendering (again, for its day).

The functionality of this card was quite bare-bones from a modern perspective. Obvioudy there was no concept of shaders of any kind. Indeed,
it did not even have vertex transformation; the Voodoo Graphics pipeline began with clip-space values. This required the CPU to do vertex
transformations. This hardware was effectively just atriangle rasterizer.

That being said, it was quite good for its day. Asinputs to its rasterization pipeline, it took vertex inputs of a 4-dimensional clip-space position
(though the actual space was not necessarily the same as OpenGL's clip-space), a single RGBA color, and a single three-dimensional texture
coordinate. The hardware did not support 3D textures; the extra component was in case the user wanted to do projective texturing.

The texture coordinate was used to map into a single texture. The texture coordinate and color interpolation was perspective-correct; in those
days, that was a significant selling point. The venerable Playstation 1 could not do perspective-correct interpol ation.

The value fetched from the texture could be combined with the interpolated color using one of three math functions: additions, multiplication, or
linear interpolation based on the texture's alpha value. The alpha of the output was controlled with a separate math function, thus allowing the
user to generate the alpha with different math than the RGB portion of the output color. Thiswas the sum total of its fragment processing.

It had framebuffer blending support. Its framebuffer could even support adestination al phavalue, though you had to give up having adepth buffer
to getit. Probably not agood tradeoff. Outside of that issue, its blending support was superior evento OpenGL 1.1. It could use different sourceand
destination factors for the alpha component than the RGB component; the old GL 1.1 forced the RGB and A to be blended with the same factors.

The blending was even performed with full 24-bit color precision and then downsampled to the 16-bit precision of the output upon writing.

From a modern perspective, spoiled with our full programmability, this all looks incredibly primitive. And, to some degree, it is. But compared
to the pure CPU solutions to 3D rendering of the day, the VVoodoo Graphics card was a monster.

It'sinteresting to note that the simplicity of the fragment processing stage owes as much to thelack of inputsasanything else. When the only values
you have to work with are the color from atexture lookup and the per-vertex interpolated color, therereally is not all that much you could do with
them. Indeed, aswewill seein the next phases of hardware, increasesin the complexity of the fragment processor was areaction to increasing the
number of inputsto the fragment processor. When you have more data to work with, you need more complex operations to make that data useful.

Dynamite Combiners

The next phase of hardware came, not from 3Dfx, but from a new company, NVIDIA. While 3Dfx's Voodoo Il was much more popular than
NVIDIA's product, the NVIDIA Riva TNT (released in 1998) was more interesting in terms of what it brought to the table for programmers.
Voodoo Il was purely a performance improvement; TNT was the next step in the evolution of graphics hardware.

Like other graphics cards of the day, the TNT hardware had no vertex processing. Vertex datawas in clip-space, as normal, so the CPU had to do
all of the transformation and lighting. Where the TNT shone was in its fragment processing. The power of the TNT isinit's name; TNT stands
for TwiN Texdl. It could access from two textures at once. And while the Voodoo Il could do that as well, the TNT had much more flexibility
to its fragment processing pipeline.

History of PC Graphics Hardware

In order to accomidate two textures, the vertex input was expanded. Two textures meant two texture coordinates, since each texture coordinate
was directly bound to a particular texture. While they were alowing two of things, NVIDIA aso allowed for two per-vertex colors. The idea
here has to do with lighting equations.

For regular diffuse lighting, the CPU-computed color would simply be dot(N, L), possibly with attenuation applied. Indeed, it could be any
complicated diffuselighting function, sinceit wasall onthe CPU. Thisdiffuselight intensity would be multiplied by thetexture, which represented
the diffuse absorption of the surface at that point.

This becomes less useful if you want to add a specular term. The specular absorption and diffuse absorption are not necessarily the same, after
all. And while you may not need to have a specular texture, you do not want to add the specular component to the diffuse component before you
multiply by their respective colors. Y ou want to do the addition afterwards.

This is simply not possible if you have only one per-vertex color. But it becomes possible if you have two. One color is the diffuse lighting
value. The other color is the specular component. We multiply the first color by the diffuse color from the texture, then add the second color
as the specular reflectance.

Which brings us nicely to fragment processing. The TNT's fragment processor had 5 inputs: 2 colors sampled from textures, 2 colorsinterpolated
from vertices, and asingle “ constant” color. The latter, in modern parlance, is the equivalent of a shader uniform value.

That's a lot of potential inputs. The solution NVIDIA came up with to produce a final color was a bit of fixed functionality that we will call
the texture environment. It is directly analogous to the OpenGL 1.1 fixed-function pipeline, but with extensions for multiple textures and some
TNT-specific features.

Theideaisthat each texture has an environment. The environment is a specific math function, such as addition, subtraction, multiplication, and
linear interpolation. The operands to this function could be taken from any of the fragment inputs, as well as a constant zero color value.

It can al so use the result from the previous environment as one of its arguments. Textures and environments are numbered, from zero to one (two
textures, two environments). The first one executes, followed by the second.

If you look at it from a hardware perspective, what you have is a two-opcode assembly language. The available registers for the language are
two vertex colors, a single uniform color, two texture colors, and a zero register. There is also a single temporary register to hold the output
from the first opcode.

Graphics programmers, by this point, had gotten used to multipass-based algorithms. After all, until TNT, that wasthe only way to apply multiple
textures to asingle surface. And even with TNT, it had a pretty confining limit of two textures and two opcodes.

Thiswas powerful, but quite limited. Two opcodes really was not enough.

The TNT cards also provided something el se: 32-bit framebuffers and depth buffers. While the Voodoo cards used high-precision math internally,
they still wrote to 16-bit framebuffers, using a technique called dithering to make them look like higher precision. But dithering was nothing
compared to actual high precision framebuffers. And it did nothing for the depth buffer artifacts that a 16-bit depth buffer gave you.

While the original TNT could do 32-hit, it lacked the memory and overall performance to really show it off. That had to wait for the TNT2.
Combined with product delays and some poor strategic movesby 3Dfx, NVIDIA became one of the dominant playersin the consumer PC graphics
card market. And that was cemented by their next card, which had real power behind it.

History of PC Graphics Hardware

Tile-Based Rendering

While all of this was going on, a small company called PowerVR released its Series 2 graphics chip. PowerVR's approach to rendering
was fundamentally different from the standard rendering pipeline.

They used what they called a “deferred, tile-based renderer.” The ideais that they store al of the clip-space triangles in a buffer. Then,
they sort this buffer based on which triangles cover which areas of the screen. The output screen is divided into a number of tiles of a
fixed size. Say, 8x8in size.

For each tile, the hardware finds the triangles that are within that tile's area. Then it does all the usual scan conversion tricks and so forth.
It even automatically does per-pixel depth sorting for blending, which remains something of a selling point (no more having to manually
sort blended objects). After rendering that tile, it moves on to the next. These operations can of course be executed in parallel; you can
have multiple tiles being rasterized at the same time.

The idea behind this is to avoid having large image buffers. You only need a few 8x8 depth buffers, so you can use very fast, on-chip
memory for it. Rather than having to deal with caches, DRAM, and large bandwidth memory channels, you just have a small block of
memory where you do all of your logic. Y ou still need memory for textures and the output image, but your bandwidth needs can be devoted
solely to textures.

For atime, these cards were competitive with the other graphics chip makers. However, the tile-based approach simply did not scale well
with resolution or geometry complexity. Also, they missed the geometry processing bandwagon, which really hurt their standing. They fell
farther and farther behind the other major players, until they stopped making desktop parts altogether.

However, they may ultimately have the last laugh; unlike 3Dfx and so many others, PowerVR still exists. They provided the GPU for the
Sega Dreamcast console. And while that consolewas amarket failure, it did show where PowerV R'strue strength lay: embedded platforms.

Embedded platforms tend to play to their tile-based renderer's strengths. Memory, particularly high-bandwidth memory, eats up power;
having less memory means longer-lasting mobile devices. Embedded devices tend to use smaller resolutions, which their platform excels
at. And with low resolutions, you are not trying to push nearly as much geometry.

Thanksto these facts, PowerV R graphics chips power the vast majority of mobile platformsthat have any 3D rendering in them. Just about
every iPhone, Droid, iPad, or similar device is running PowerV R technology. And that's a growth market these days.

Vertices and Registers

The next stage in the evolution of graphics hardware again came from NVIDIA. While 3Dfx released competing cards, they were again behind
the curve. The NVIDIA GeForce 256 (not to be confused with the GeForce GT250, a much more modern card), released in 1999, provided
something truly new: avertex processing pipeline.

The OpenGL API has always defined a vertex processing pipeline (it was fixed-function in those days rather than shader-based). And NVIDIA
implemented it in their TNT-era drivers on the CPU. But only with the GeForce 256 was this actually implemented in hardware. And NVIDIA
essentially built the entire OpenGL fixed-function vertex processing pipeline directly into the GeForce hardware.

Thiswas primarily a performance win. Whileit wasimportant for the progress of hardware, aless-well-known improvement of the early GeForce
hardware was more important to its future.

In the fragment processing pipeline, the texture environment stages were removed. In their place was a more powerful mechanism, what NVIDIA
called “register combiners.”

The GeForce 256 provided 2 regular combiner stages. Each of these stages represented up to four independent opcodes that operated over the
register set. The opcodes could result in multiple outputs, which could be written to two temporary registers.

What isinteresting is that the register values are no longer limited to color values. Instead, they are signed values, on the range[-1, 1]; they have
9 bits of precision or so. Whiletheinitial color or texture values are on [0, 1], the actual opcodes themselves can perform operations that generate
negative values. Opcodes can even scale/bias their inputs, which allow them to turn unsigned colors into signed values.

345

History of PC Graphics Hardware

Because of this, the GeForce 256 was the first hardware to be able to do functional bump mapping, without hacks or tricks. A single register
combiner stage could do 2 3-vector dot-products at atime. Textures could store normals by compressing themto a[0, 1] range. Thelight direction
could either be a constant or interpolated per-vertex in texture space.

Now granted, this still was a primitive form of bump mapping. There was no way to correct for texture-space values with binormals and tangents.
But this was at least something. And it really was the first step towards programmability; it showed that textures could truly represent values
other than colors.

Therewasalso asinglefinal combiner stage. Thiswasamuch morelimited stage than the regular combiner stages. It could do alinear interpolation
operation and an addition; this was designed specifically to implement OpenGL's fixed-function fog and specular computations.

Theregister file consisted of two temporary registers, two per-vertex colors, two texture colors, two uniform values, the zero register, and afew
other values used for OpenGL fixed-function fog operations. The color and texture registers were even writeable, if you needed more temporaries.

There were a few other sundry additions to the hardware. Cube textures first came onto the scene. Combined with the right texture coordinate
computations (now in hardware), you could have reflective surfaces much more easily. Anisotropic filtering and multisampling also appeared
at this time. The limits were relatively small; anisotropic filtering was limited to 4x, while the maximum number of samples was restricted to
two. Compressed texture formats also appeared on the scene.

What we see thus far as we take steps towards true programmability is that increased complexity in fragment processing starts pushing for other
needs. The addition of a dot product allows lighting computations to take place per-fragment. But you cannot have full texture-space bump
mapping because of the lack of a normal/binormal/tangent matrix to transform vectors to texture space. Cubemaps allow you to do arbitrary
reflections, but computing reflection directions per-vertex requires interpolating reflection normals, which does not work very well over large
polygons.

This also saw the introduction of something called arectangle texture. Thistexture type is something of an odd duck that still remainsin current
day. It was away of creating a texture of arbitrary size; until then, textures were limited to powers of two in size (though the sizes did not have
to be the same). The texture coordinates for rectangle textures are not normalized; they were in texture space values.

The GPU Divide

When NVIDIA released the GeForce 256, they coined the term “Geometry Processing Unit” or GPU. Until this point, graphics chips
were called exactly that: graphics chips. The term GPU was intended by NVIDIA to differentiate the GeForce from al of its competition,
including the final cards from 3DfXx.

Because the term was so reminiscent to CPUs, the term took over. Every graphics chip is a GPU now, even ones released before the term
came to exist.

In truth, the term GPU never really made much sense until the next stage, where the first cards with actual programmability came onto
the scene.

Programming at Last

How do you define a demarcation between non-programmable graphics chips and programmabl e ones? We have seen that, even in the humble
TNT days, there were a couple of user-defined opcodes with several possible input values.

One way is to consider what programming is. Programming is not simply a mathematical operation; programming needs conditional logic.
Therefore, it is not unreasonable to say that something is not truly programmable until there is the possibility of some form of conditional logic.

And itisat this point where that first truly appears. It appears first in the vertex pipeline rather than the fragment pipeline. This seems odd until
onerealizes how crucial fragment operations are to overall performance. It therefore makes sense to introduce heavy programmability in the less
performance-critical areas of hardware first.

The GeForce 3, released in 2001 (amere 3 years after the TNT), wasthefirst hardware to providethislevel of programmability. While GeForce 3
hardware did indeed have the fixed-function vertex pipeline, it also had very flexible programmable pipeline. The retaining of the fixed-function

346

History of PC Graphics Hardware

code was a performance need; the vertex shader was not as fast as the fixed-function one. It should be noted that the original X-Box's GPU,
designed in tandem with the GeForce 3, eschewed the fixed-functionality altogether in favor of having multiple vertex shadersthat could compute
several vertices at atime. Thiswas eventually adopted for later GeForces.

Vertex shaders were pretty powerful, even in their first incarnation. While there was no conditional branching, there was conditional logic, the
equivalent of the ?: operator. These vertex shaders exposed up to 128 vec4 uniforms, up to 16 vec4 inputs (still the modern limit), and could
output 6 vec4 outputs. Two of the outputs, intended for colors, were lower precisions than the others. There was a hard limit of 128 opcodes.
These vertex shaders brought full swizzling support and a plethora of math operations.

The GeForce 3 also added up to two more textures, for atotal of four textures per triangle. They were hooked directly into certain per-vertex
outputs, because the per-fragment pipeline did not have real programmability yet.

At this point, the holy grail of programmability at the fragment level was dependent texture access. That is, being able to access a texture, do
some arbitrary computations on it, and then access another texture with the result. The GeForce 3 had some facilities for that, but they were
not very good ones.

The GeForce 3 used 8 register combiner stages instead of the 2 that the earlier cards used. Their register files were extended to support two extra
texture colors and a few more tricks. But the main change was something that, in OpenGL terminology, would be called “texture shaders.”

What texture shaders did was allow the user to, instead of accessing a texture, perform a computation on that texture's texture unit. This was
much like the old texture environment functionality, except only for texture coordinates. The textures were arranged in a sequence. And instead
of accessing a texture, you could perform a computation between that texture unit's coordinate and possibly the coordinate from the previous
texture shader operation, if there was one.

It was not very flexible functionality. It did allow for full texture-space bump mapping, though. While the 8 register combiners were enough to
do afull matrix multiply, they were not powerful enough to normalize the resulting vector. However, you could normalize a vector by accessing
aspecia cubemap. The values of this cubemap represented a normalized vector in the direction of the cubemap's given texture coordinate.

But using that required spending atotal of 3 texture shader stages. Which meant you get a bump map and a normalization cubemap only; there
was no room for adiffuse map in that pass. It also did not perform very well; the texture shader functions were quite expensive.

True programmability came to the fragment shader from ATI, with the Radeon 8500, released in late 2001.

The 8500's fragment shader architecture was pretty straightforward, and in terms of programming, it is not too dissimilar to modern shader
systems. Texture coordinates would come in. They could either be used to fetch from atexture or be given directly as inputs to the processing
stage. Up to 6 textures could be used at once. Then, up to 8 opcodes, including a conditional operation, could be used. After that, the hardware
would repeat the process using registers written by the opcodes. Those registers could feed texture accesses from the same group of textures used
in thefirst pass. And then another 8 opcodes would generate the output color.

It also had strong, but not full, swizzling support in the fragment shader. Register combiners had very little support for swizzling.

This eraof hardware was also the first to allow 3D textures. Though that was as much amemory concern as anything else, since 3D texturestake
up lots of memory which was not available on earlier cards. Depth comparison texturing was also made available.

While the 8500 was atechnological marvel, it was aflop in the market compared to the GeForce 3 & 4. Indeed, thisis arecurring theme of these
eras: the card with the more programmable hardware often tends to lose in itsfirst iteration.

347

History of PC Graphics Hardware

API Hell

This era is notable in what it did to graphics APIs. Consider the hardware differences between the 8500 and the GeForce 3/4 in terms
of fragment processing.

On the Direct3D front, things were not the best. Direct3D 8 promised a unified shader development pipeline. That is, you could write a
shader according to their specificationsand it would work on any D3D 8 hardware. And thiswas effectively true. For vertex shaders, at | east.

However, the D3D 8.0 pixel shader pipeline was nothing more than NVIDIA's register combiners and texture shaders. There was no real
abstraction of capabilities; the D3D 8.0 pixel shaders simply took NVIDIA's hardware and made a shader language out of it.

To provide support for the 8500's expanded fragment processing feature-set, there was D3D 8.1. This version atered the pixel shader
pipeline to match the capabilities of the Radeon 8500. Fortunately, the 8500 would accept 8.0 shaders just fine, since it was capable of
doing everything the GeForce 3 could do. But no one would mistake either shader specification for any kind of real abstraction.

Thingswere much worse onthe OpenGL front. At least in D3D, you used the samebasic C++ AP to provide shaders; the shadersthemselves
may have been different, but the base APl was the same. Not so in OpenGL land.

NVIDIA and ATI released entirely separate proprietary extensions for specifying fragment shaders. NVIDIA's extensions built on the
register combiner extension they released with the GeForce 256. They were completely incompatible. And worse, they were not even
string-based.

Imagine having to call a C++ function to write every opcode of ashader. Now imagine having to call three functionsto write each opcode.
That's what using those APIs was like.

Things were better on vertex shaders. NVIDIA initially released a vertex shader extension, as did ATIl. NVIDIA's was string-based, but
ATI's version was like their fragment shader. Fortunately, this state of affairs did not last long; the OpenGL ARB came aong with their
own vertex shader extension. Thiswas not GLSL, but an assembly like language based on NVIDIA's extension.

It would take much longer for the fragment shader disparity to be worked out.

Dependency

The Radeon 9700 was the 8500's successor. It improved on the 8500 somewhat. The vertex shader gained real conditional branching logic. Some
of the limits were also relaxed; the number of available outputs and uniforms increased. The fragment shader's architecture remained effectively
the same; the 9700 simply increased the limits. There were 8 textures available and 16 opcodes, and it could perform 4 passes over this set.

The GeForce FX, released in 2003, was a substantial improvement, both over the GeForce 3/4 and over the 9700 in terms of fragment processing.
NVIDIA took adifferent approach to their fragment shaders; their fragment processor worked not entirely unlike modern shader processors do.

It read an instruction, which could be a math operation, conditional branch (they had actual branches in fragment shading), or texture lookup
instruction. It then executed that instruction. The texture lookup could be from a set of 8 textures. And then it repeated this process on the next
instruction. It was doing math computations in away not entirely unlike atraditional CPU.

There was no real concept of a dependent texture access for the GeForce FX. The inputs to the fragment pipeline were simply the texture
coordinates and colorsfrom the vertex stage. If you used atexture coordinate to accessatexture, it wasfinewith that. If you did some computations
with them and then accessed atexture, it was just as fine with that. It was completely generic.

It also failed in the marketplace. This was due primarily to its lateness and its poor performance in high-precision computation operations. The
FX was optimized for doing 16-bit math computations in its fragment shader; while it could do 32-bit math, it was half as fast when doing this.
But Direct3D 9's shadersdid not allow the user to specify the precision of computations; the specification required at least 24-bits of precision. To
match this, NVIDIA had no choice but to force 32-bit math on all D3D 9 applications, making them run much slower than their ATI counterparts
(the 9700 always used 24-bit precision math).

Things were no better in OpenGL land. The two competing unified fragment processing APIs, GLSL and an assembly-like fragment shader, did
not have precision specifications either. Only NVIDIA's proprietary extension for fragment shaders provided that, and developerswere lesslikely
to useit. Especially with the head start that the 9700 gained in the market by the FX being released late.

348

History of PC Graphics Hardware

It performs so poorly in the market that NVIDIA dropped the FX name for the next hardware revision. The GeForce 6 improved its 32-hit
performance to the point where it was competitive with the ATI equivalents.

Thislevel of hardware saw the gaining of anumber of different features. SRGB textures and framebuffers appeared, as did floating-point textures.
Blending support for floating-point framebuffers was somewhat spotty; some hardware could do it only for 16-bit floating-point, some could not
doit at al. Therestrictions of power-of-two texture sizes was also lifted, to varying degrees. None of ATI's hardware of this erafully supported
this when used with mipmapping, but NVIDIA's hardware from the GeForce 6 and above did.

The ability to access textures from vertex shaders was also introduced in this series of hardware. Vertex texture accesses uses a separate list of
textures from those bound for fragment shaders. Only four textures could be accessed from a vertex shader, while 8 textures was normal for
fragment shaders.

Render to texture also became generally available at this time, though this was more of an APl issue (neither OpenGL nor Direct3D allowed
textures to be used as render targets before this point) than hardware functionality. That is not to say that hardware had no role to play. Textures
are often not stored as linear arrays of memory the way they are loaded with gl Tex| mage. They are usually stored in a swizzled format, where
2D or 3D blocks of texture data are stored sequentially. Thus, rendering to a texture required either the ability to render directly to swizzled
formats or the ability to read textures that are stored in unswizzled formats.

More than just render to texture was introduced. What was also introduced was the ability to render to multiple textures or buffers at one time.
The number of renderable buffers was generally limited to 4 across all hardware platforms.

Rise of the Compilers

Microsoft put their foot down after the fiasco with D3D 8'sfragment shaders. They wanted asingle standard that all hardware makerswould
support. Whilethislead to the FX's performancefailings, it al so meant that compilers were becoming very important to shader performance.

In order to have a real abstraction, you need compilers that are able to take the abstract language and map it to very different kinds of
hardware. With Direct3D and OpenGL providing standardsfor shading languages, compiler quality started to becomevital for performance.

OpenGL moved whole-heartedly, and perhaps incautiously, into the realm of compilers when the OpenGL ARB embraced GLSL, a C-
style language. They devel oped this language to the exclusion of all others.

In Direct3D land, Microsoft devel oped the High-Level Shading Language, HL SL. But the base shading languages used by Direct3D 9 were
till the assembly-like shading languages. HLSL was compiled by a Microsoft-developed compiler into the assembly languages, which
were fed to Direct3D.

With compilers and semi-real languages with actual logic constructs, a new field started to arise: General Programming GPU or GPGPU.
The idea was to use a GPU to do non-rendering tasks. It started around this era, but the applications were limited due to the nature of
hardware. Only fairly recently, with the advent of special languages and APIs (OpenCL, for example) that are designed for GPGPU tasks,
has GPGPU started to really move into its own. Indeed, in the most recent hardware era, hardware makers have added features to GPUs
that have somewhat... dubious uses in the field of graphics, but substantial uses in GPGPU tasks.

Modern Unification

Welcome to the modern era. All of the examples in this book are designed on and for this era of hardware, though some of them could run on
older ones with some alteration. The release of the Radeon HD 2000 and GeForce 8000 series cards in 2006 represented unification in more
ways than one.

With the prior generations, fragment hardware had certain platform-specific peculiarities. While the API kinks were mostly ironed out with the
development of proper shading languages, there were still differences in the behavior of hardware. While 4 dependent texture accesses were
sufficient for most applications, naive use of shading languages could get you in trouble on ATI hardware.

With this generation, neither side really offered any real functionality difference. There are still differences between the hardware lines, and
certainly in terms of performance. But the functionality differences have never been more blurred than they were with this revision.

Another form of unification was that both NVIDIA and ATl moved to a unified shader architecture. In al prior generations, fragment shaders
and vertex shaders were fundamentally different hardware. Even when they started doing the same kinds of things, such as accessing textures,
they were both using different physical hardware to do so. This led to some inefficiencies.

349

History of PC Graphics Hardware

Deferred rendering probably givesthe most explicit illustration of the problem. Thefirst pass, the creation of the g-buffers, isavery vertex-shader-
intensive activity. While the fragment shader can be somewhat complex, doing several texture fetches to compute various material parameters,
the vertex shader iswhere much of thereal work isdone. Lots of vertices come through the shader, and if there are any complex transformations,
they will happen here.

The second passisavery fragment shader intensive pass. Each light layer iscomprised of exactly 4 vertices. Verticesthat can be provided directly
in clip-space. From then on, the fragment shader is what is being worked. It performs all of the complex lighting cal culations necessary for the
various rendering techniques. Four vertices generate literally millions of fragments, depending on the rendering resolution.

In prior hardware generations, in the first pass, there would be fragment shaders going to waste, as they would process fragments faster than the
vertex shaders could deliver triangles. In the second pass, the reverse happens, only even moreso. Four vertex shader executions, and then all of
those vertex shaders would be completely useless. All of those parallel computational units would go to waste.

Both NVIDIA and ATI devised hardware such that the computational elements were separated from their particular kind of computations. All
shader hardware could be used for vertices, fragments, or geometry shaders (new in this generation). This would be changed on demand, based
on the resource load. This makes deferred rendering in particular much more efficient; the second pass is able to use aimost all of the available
shader resources for lighting operations.

This unified shader approach also means that every shader stage has essentially the same capabilities. The standard for the maximum texture
count is 16, which is plenty enough for doing just about anything. Thisis applied equally to all shader types, so vertex shaders have the same
number of textures available as fragment shaders.

This smoothed out a great many things. Shaders gained quite a few new features. Uniform buffers became available. Shaders could perform
computations directly on integer values. Unlike every generation before, all of these features were parceled out to all types of shaders equally.

Along with unified shaders came along list of various and sundry improvements to non-shader hardware. These include, but are not limited to:

* Floating-point blending was worked out fully. Hardware of this erasupports full 32-bit floating point blending, though for performance reasons
you're still advised to use the lowest precision you can get away with.

Arbitrary texture swizzling as a direct part of texture sampling parameters, rather than in the shader itself.
* Integer texture formats, to compliment the shader's ability to use integer values.
e Array textures.

Various other limitations were expanded as well.

350

History of PC Graphics Hardware

Post-Modern

This was not the end of hardware evolution; there has been hardware released in recent years The Radeon HD 5000 and GeForce GT 400
series and above have increased rendering features. They're just not as big of a difference compared to what came before.

One of the biggest new feature in this hardware is tessellation, the ability to take triangles output from a vertex shader and split them into
new triangles based on arbitrary (mostly) shader logic. This sounds like what geometry shaders can do, but it is different.

Tessellation is actually something that ATI toyed around with for years. The Radeon 9700 had tessellation support with something they
called PN triangles. This was very automated and not particularly useful. The entire Radeon HD 2000-4000 cards included tessellation
features as well. These were pre-vertex shader, while the current version comes post-vertex shader.

In the older form, the vertex shader would serve double duty. An incoming triangle would be broken down into many triangles. The vertex
shader would then have to compute the per-vertex attributes for each of the new triangles, based on the old attributes and which vertex in
the new series of verticesis being computed. Then it would do its normal transformation and other operations on those attributes.

The current form introduces two new shader stages. Thefirst, immediately after the vertex shader, controls how much tessellation happens
on a particular primitive. The tessellation happens, splitting the single primitive into multiple primitives. The next stage determines how
to compute the new positions, normals, etc of the primitive, based on the values of the primitive being tessellated. The geometry shader
still exists; it is executed after the final tessellation shader stage.

Another feature isthe ability to have a shader arbitrarily read and write to imagesin textures. Thisis not merely sampling from atexture; it
uses adifferent interface (no filtering), and it means very different things. This form of image data access breaks many of the rules around
OpenGL, and it is very easy to use the feature wrongly.

These are not covered in this book for afew reasons. First, thereis not as much hardware out there that supportsit (though thisisincreasing
daily). Sticking to OpenGL 3.3 meant casting awider net; requiring OpenGL 4.2 would have meant fewer people could run those tutorials.

Second, these features are quite complicated to use. Any discussion of tessellation would require discussing tessellation algorithms, which
are al quite complicated. Any discussion of image reading/writing would require talking about shader hardware at alevel of depth that is
well beyond the beginner level. These are useful features, to be sure, but they are also very complex features.

351

Appendix C. Getting Started with OpenGL

Now that you understand at least the beginnings of graphics programming, it would be useful to discuss how to get started using OpenGL in your
own projects. This discussion will assume that you know how to set up a build project in your build system of choice.

The easiest way isto just use the Unofficial OpenGL SDK [http://glsdk.sourceforge.net/docs/html/index.html]. It isawell-documented collection
of tools for writing simple OpenGL applications. It has functions for compiling shaders, the mouse-based controls we have used, image loading
tools, and various other utilities that are vital to making OpenGL applications. Details for how to use it are found on the SDK's website.

Manual Usage

If you choose not to use the SDK, then you will have to build a set of useful tools yourself.

In order to use OpenGL, you will need to do two things. Y ou must create a window and attach an OpenGL context to it, and you must load the
OpenGL functions for that context. There are a number of other tools you may want (vector math, model loading, image loading, etc), but these
tools are ones you need if you aren't going to do them manually.

Window and OpenGL Creation

Windows, displayable surfacesin GUI operating environments, are very platform-specific. Most Linux distributions rely on X11 for the lowest-
level of window creation, and X11 hashooks, called GL X functions, for attaching OpenGL to those windows. The Win32 API isused on Windows
to create windows. OpenGL can be attached to these windows using the WGL API.

Because window creation and OpenGL attachment are platform-specific, there are anumber of cross-platform tools that make it possible to write
platform-neutral OpenGL code. FreeGLUT is the tool that these tutorials use, and it is included as part of the SDK in the source distribution.
There are a number of other tools available. We will discuss many of the options here.

FreeGLUT. FreeGLUT is based on the original GLUT, the OpenGL Utility Toolkit. Y ou should never use GLUT; it is old and has not been
updated in a decade. But FreeGLUT is 100% backwards compatible with it; any application that used GLUT can use FreeGLUT with no source
code changes.

FreeGLUT creates and manages the window for the application. It provides callbacks so that the user can respond to various events. In these
tutorials, the framework hasinitialized FreeGLUT and registered several standard callbacks, which each tutorial implements. There is a callback
for when the display needs updating, when the user has resized the window, when the user has pressed a key, and when mouse input happens.

FreeGLUT can create windows or full-screen displays. It also has some limited support for menus. This does not allow you to create a menu bar,
but it does allow you to create aright-click context menu.

FreeGLUT is a good tool for rapidly prototyping an effect. However, building a real application in it is problematic, particularly if you have
specific timing needs. FreeGLUT ownsthe message processing loop; thislimitsyour optionsfor dealing with strict timing and so forth. FreeGLUT
isgood for demo programs and prototyping, but serious applications should avoid it.

FreeGLUT does have some text rendering functions, but these do not work when using shader-based rendering. If you are using a core OpenGL
context, these functionswill fail. They will also fail in compatibility contexts if you have a program object bound to the context.

FreeGLUT uses the X-Consortium license.

GLFW. GLFW isan dlternativeto FreeGLUT. Like FreeGLUT, GLFW isfairly bare-bones. It providesaway to create windows or full-screen
displays. It provides ways to get keyboard and mouse input.

The biggest difference between them is that, while FreeGLUT owns the message processing loop, GLFW does not. GLFW requires that the
user poll it to process messages. This allows the user to maintain reasonably strict timings for rendering. While this makes GLFW programs a
bit more complicated than FreeGLUT ones (which is why these tutorials use FreeGLUT), it does mean that GLFW would be more useful in
serious applications.

GLFW also provides more robust input support as well as

GLFW usesthe zLib license.

352

http://glsdk.sourceforge.net/docs/html/index.html
http://glsdk.sourceforge.net/docs/html/index.html

Getting Started with OpenGL

Multimedia Libraries. A multimedialibrary is alibrary that handles, in a cross-platform way, graphics, sound, input, and other things. The
impetusfor all of thesewas DirectX, aMicrosoft library that handles graphics, sound, input and afew other thingsfor the purpose of improving the
life of game developers. The purpose of DirectX was to be hardware-independent; code could be written against all graphics or sound hardware,
and DirectX would sort out the details.

Cross-platform multimedia libraries do this as well, but they take things cross-platform. They generally support the big 3 operating systems
(Windows, Linux, MacOSX), possibly also supporting BSD or various other shades of UNIX. Unlike DirectX, the multimedia libraries did not
create their own 3D rendering system; they instead simply provide a way to use OpenGL.

The two biggest multimedia libraries are SDL (Simple Directmedia Layer) [http://www.libsdl.org/] and SFML (Simple and Fast Multimedia
Library) [http://www.sfml-dev.org/]. SDL isthe older, but it is still receiving updates. ItisaC library, so if you are alergic to C-isms, you may
wish to avoid it. Work is being done on SDL 1.3, which will apparently have support for mobile platforms. SDL usesthe zLib license.

SFML isanewer library, which has a C++ API. While SDL is one big library (and requires dependencies like DirectX on Windows), SFML is
more of achoose-your-own package. The base package containsjust input and the ability to create awindow, while there are other packages that
build upon this. Also SFML makesit possible to integrate SFM L windows with other GUI toolkits (see below); this makes it easier to build non-
gaming applications that use actual GUI tools. SFML uses the zLib license.

Allegro [http://alleg.sourceforge.net/] is a game-centric multimedialibrary. Version 5 has native support for OpenGL in its graphics subsystem.
It uses a C interface. It also has a number of advanced 2D rendering functions. Allegro uses the “giftware license,” which israther like the MIT
license.

GUI Toolkits. There are anumber of cross-platform GUI librariesthat deal with detailed window management, provide controls, and generally
act like afull-fledged windowing system. Most of them have support for using OpenGL in one or more of their windows.

Which window creation tools you use are entirely up to you; the possible needs that you might have are well beyond the scope of this book.

Function Loading

Once an OpenGL context has been created, one must then load OpenGL's functions. In a normal library, this would not actualy be a step;
those functions would have a header that you include and a library of some sort that you link to, either statically or dynamically. Due to various
complexities around OpenGL, it cannot work that way on most platforms.

Therefore, the user must query the context itself for the functions to load. And OpenGL has many functions. So the common way to handle this
istousealibrary to do it for you.

GL Load. This comes with the Unofficial OpenGL SDK. And while most of the SDK is not intended for high-performance use, GL Load is
still perfectly serviceable in that capacity. After al, thisis generally aone-time initialization step, so performanceis ultimately irrelevant.

GL Load works with core and compatibility contexts equally well. GL Load usesthe MIT License.

GLEW. GLEW (the OpenGL Extension Wrangler) is perhaps the most widely used aternative. While it is technically intended for loading
extension functions, it works just as well on the OpenGL core functions.

The principle downside of GLEW isthat it does not work well with non-compatibility contexts. There is some experimental support to make this
work, but it is experimental. GLEW usesthe MIT license.

GL3W. GL3W isunique in that it is not technically alibrary. It is a Python script that downloads and parses a header file, which it uses to
create a library. This allows it to be as up-to-date as the source file that it downloads. The downside is that the format of this source file may
change, and if it does, it would break this tool.

GL3W isintended specifically for core contexts, and it does not work with compatibility or older OpenGL versions. Being a Python script, it
requires a Python 2.6 environment; it is unknown if it works with later Python versions. GL3W is public domain software.

Initialization

Once you have selected your tools of choice, the next step isto make them work. After downloading and compiling them, you will need to register
them with your C/C++ build tool of choice. On Linux-platforms, you typically have some global registry for these things, but on Windows, things
go where you put them.

353

http://www.libsdl.org/
http://www.libsdl.org/
http://www.sfml-dev.org/
http://www.sfml-dev.org/
http://www.sfml-dev.org/
http://alleg.sourceforge.net/
http://alleg.sourceforge.net/

Getting Started with OpenGL

How to use them depends on which tools you use. But the general idea for OpenGL context creation tools is that there will be some series of
commands to supply parameters to the underlying system for context creation. And then afunction is called to use those parameters to create the
context. Itisonly after this process has successfully completed that one should call whatever initialization function the OpenGL function loading

system uses. Y our tools' documentation should explain this.

After doing both of these, you should be able to make OpenGL calls. The specifics on how to swap framebuffers (which is not part of the OpenGL
API) isagain left up to the window management tool.

354

	Learning Modern 3D Graphics Programming
	Table of Contents
	About this Book
	Why Read This Book?
	What You Need
	Organization of This Book
	Conventions used in This Book

	Building the Tutorials
	Part I. The Basics
	Introduction
	Vector Math
	Graphics and Rendering
	Rasterization Overview
	Colors
	Shader

	What is OpenGL
	OpenGL as an API
	The Structure of OpenGL
	The OpenGL Specification

	Glossary

	Chapter 1. Hello, Triangle!
	Framework and FreeGLUT
	Dissecting Display
	Following the Data
	Vertex Transfer
	Vertex Processing and Shaders
	Rasterization
	Fragment Processing

	Making Shaders
	Cleanup
	In Review
	Further Study
	OpenGL Functions of Note

	Glossary

	Chapter 2. Playing with Colors
	Fragment Position Display
	Vertex Attributes
	Multiple Vertex Arrays and Attributes
	Drawing in Detail

	Vertex Shader
	Fragment Program
	Fragment Interpolation
	The Final Image

	In Review
	Further Study
	GLSL Functions of Note

	Glossary

	Part II. Positioning
	Chapter 3. OpenGL's Moving Triangle
	Moving the Vertices
	A Better Way
	More Power to the Shaders
	Multiple Shaders
	On Vertex Shader Performance
	In Review
	Further Study
	OpenGL Functions of Note
	GLSL Functions of Note

	Glossary

	Chapter 4. Objects at Rest
	The Unreal World
	Face Culling
	Lack of Perspective

	Perspective Projection
	Mathematical Perspective
	The Perspective Divide
	Camera Perspective
	Perspective in Depth
	Drawing in Perspective
	Vector Math

	The Matrix has You
	Aspect of the World
	In Review
	Further Study
	OpenGL Functions of Note

	Glossary

	Chapter 5. Objects in Depth
	Multiple Objects in OpenGL
	Vertex Array Objects
	Indexed Drawing
	Multiple Objects

	Optimization: Base Vertex
	Overlap and Depth Buffering
	Depth and the Viewport
	Rendering with Depth

	Boundaries and Clipping
	Depth Clamping
	In Review
	OpenGL Functions of Note

	Glossary

	Chapter 6. Objects in Motion
	Spaces
	Transformation
	Model Space

	Translation
	Scale
	Inversion and Winding Order

	Rotation
	Fun with Matrices
	Order of Transforms
	Hierarchical Models

	In Review
	Further Study

	Glossary

	Chapter 7. World in Motion
	World Space
	Defining the World
	Aerial View
	Multiple Programs
	Attributes and Programs
	Camera of the World
	World Rendering
	Non-World Rendering

	Primitive Drawing
	Shared Uniforms
	Uniform Blocks
	Uniform Block Indices
	Uniform Buffer Creation
	Uniform Buffer Binding
	The Viewpoint

	The Perils of World Space
	In Review
	Further Study
	OpenGL Functions of Note

	Glossary

	Chapter 8. Getting Oriented
	Gimbal Lock
	Rendering

	Quaternions
	Quaternion Math
	Composition Type
	Yaw Pitch Roll

	Camera-Relative Orientation
	Inversion
	Solution
	Transformation Spaces
	Final Orientation

	Interpolation
	The Long Path
	Interpolation Speed

	In Review
	Further Study
	Further Research

	Glossary

	Part III. Illumination
	Chapter 9. Lights On
	Modelling Lights
	Standard Diffuse Lighting
	Surface Orientation
	Gouraud Shading
	Directional Light Source
	Normals and Space
	Drawing with Lighting
	Vertex Lighting
	Vector Dot Product

	Normal Transformation
	Global Illumination
	Mesh Topology
	In Review
	Further Study
	Further Research
	GLSL Functions of Note

	Glossary

	Chapter 10. Plane Lights
	Vertex Point Lighting
	Interpolation
	Fragment Lighting
	Gradient Matters

	Distant Points of Light
	Reverse of the Transform
	Applied Attenuation
	New Uniform Types
	Functions in GLSL

	In Review
	Further Study
	GLSL Features of Note

	Glossary

	Chapter 11. Shinies
	Microfacets
	Phong Model
	Specular Absorption
	Drawing Phong
	Visual Specular

	Blinn-Phong Model
	Hard Specular Edge

	Gaussian
	What Gaussian Offers

	On Performance
	In Review
	Further Study
	Further Research
	GLSL Functions of Note

	Glossary

	Chapter 12. Dynamic Range
	Setting the Scene
	Materials and UBOs
	Lighting
	Many Lights Shader
	Lighting Problems

	High Dynamic Range
	Scene Lighting in HDR

	Linearity and Gamma
	Gamma Functions
	Gamma in Action
	Gamma Correct Lighting

	In Review
	Further Study
	Further Research
	OpenGL Functions of Note

	Glossary

	Chapter 13. Lies and Impostors
	Simple Sham
	Grifting Geometry
	Racketeering Rasterization

	Correct Chicanery
	Extorting and Expanding

	Deceit in Depth
	Purloined Primitives
	Impostor Interleaving
	Misnamed and Maligned

	In Review
	Further Study
	Further Research
	GLSL Features of Note

	Glossary

	Part IV. Texturing
	Chapter 14. Textures are not Pictures
	The First Texture
	Normalized Integers
	Texture Objects
	Textures in Shaders
	Texture Binding
	Sampler Objects
	Texture Resolution

	Interpolation Redux
	Texture Mapping
	Texture 2D
	Image From a File
	Shaders Textures in 2D
	Rendering with Shininess
	The Way of the Map
	Smudges on Glass

	In Review
	Further Study
	OpenGL Functions of Note
	GLSL Functions of Note

	Glossary

	Chapter 15. Many Images
	Playing Checkers
	Linear Filtering
	Needs More Pictures
	Special Texture Generation
	Filtering Between Mipmaps

	Anisotropy
	Sample Control
	A Matter of EXT

	How Mipmap Selection Works
	Performance
	In Review
	Further Study

	Glossary

	Chapter 16. Gamma and Textures
	The sRGB Colorspace
	Pixel Positioning
	Vertex Formats

	sRGB and Mipmaps
	sRGB and the Screen
	In Review
	OpenGL Functions of Note

	Glossary

	Chapter 17. Spotlight on Textures
	Post-Projection Space
	Scene Graphs
	Multiple Scenes
	Intermediate Projection

	Projective Texture
	Flashing the Light
	Spotlight Tricks

	Pointing Projections
	Cube Texture Loading
	Texture Compression
	Cube Texture Space

	In Review
	Further Study
	Further Research
	OpenGL Functions of Note
	GLSL Functions of Note

	Glossary

	Part V. Framebuffer
	Part VI. Advanced Lighting
	Appendix A. Further Study
	Topics of Interest

	Appendix B. History of PC Graphics Hardware
	Voodoo Magic
	Dynamite Combiners
	Vertices and Registers
	Programming at Last
	Dependency
	Modern Unification

	Appendix C. Getting Started with OpenGL
	Manual Usage
	Window and OpenGL Creation
	Function Loading
	Initialization

