Surface Scattering

Surface Scattering

(not **sub**surface scattering)

Surface Scattering

- Ray tracing
- Materials
- BxDF Models
 - **Bi**-directional **x D**istribution Function
 - BRDF: Reflectance
 - BTDF: Transmission
 - BSDF: Scattering (= BRDF + BTDF)
 - BSSRDF Scattering-surface reflectance
 - Subsurface scattering

Ray Tracing

- Trace rays through plane
- Camera effects
- Sampling schemes
- Speed-up techniques

Ray Tracing

- Spheres
- Diffuse, specular, (glossy)
- Reflection, refraction
- (Textures)

Figure 6

Figure 8

Turner Whitted (1980) "An improved illumination model for shaded display"

Figure 5: Jim Blinn (1978) "Simulation of wrinkled surfaces" (Bump mapping)

Ray Tracing

- Diffuse (or "Lambertian")
 - Uniform sampling
- Specular
 - Perfect reflection
- (Glossy)
 - "glossiness" parameter

Figure 11: Microscale Geometry for Velvet

Figure 1: Applicability of Techniques

- Isotropic
 - Reflectance invariant of rotation about the surface normal
 - Paints, papers, plastics, (sandblasted) metals
- Anisotropic
 - Not isotropic
 - Roughness biased in some direction
 - \circ Materials with grains, fibers, grooves, crystalline structures
 - Wood, brushed metal, marble

- Metals
 - Conductors
- Dielectrics
 - Insulators
 - Glass, plastic...
- (Semiconductors)
 - Rare in practice, often ignored

Specular reflectance by angle of incidence. Perfectly smooth surfaces.

- Metals
 - Prevents subsurface scattering
 - Absorbs all energy within a fraction of one wavelength
- Dielectrics
 - Black dielectrics absorb all energy, but over a longer distance
 - Other dielectrics reflect significant energy by subsurface scattering
 - "All non-metallic materials are translucent to some degree" Henrik Wann Jensen

Wave property of light vs. Surface roughness

- X-rays (0.01-20 nm)
- Ultraviolet light (100-400 nm)
- Visible light (400-700 nm)
- Infrared (800-1000 nm)
- microwave (1-1000 mm)

Figure 2: The visible spectrum.

H Davies *The reflection of electromagnetic waves from a rough surface* (1954)

Materials: Smooth surfaces

- Surfaces with low roughness:
- **ρ**: specular reflectance
- **F ρ**: non-specular reflectance
- As the exponent approaches 0, all energy becomes specular reflectance

- Rough surfaces can look smooth
 - Effective roughness ≈ 0

 $\rho \approx F e^{-\left(4\pi \frac{\sigma}{\lambda} \cos \theta_i\right)^2}$

Materials: Rough surfaces

- Roughness much greater than wavelength
- Rough surfaces:
 - "A set of faces with different slopes" or "microfacets"
 - Detectable with visible light (millimeter scale)
- Rough surface models
 - Phong, 1975
 - Cook & Torrance, 1982
 - Ward, 1992
 - Oren-Nayar, 1994

Michael Oren, Shree K. Nayar Generalization of Lambert's Reflectance Model (1994)

Reflectance models

- Lambertian (*diffusely reflecting*): $L_r = \frac{\rho}{\pi} \cos(\theta_i) E_0$
- Oren-Nayar: $L_r = \frac{\rho}{\pi} \cos(\theta_i) S E_0$ $S = A + (Bmax[0, \cos(\phi_i - \phi_r)]\sin\alpha \tan\beta)$ $A = 1 - 0.5 \frac{\sigma^2}{\sigma^2 + 0.57}$ $B=0.45\frac{\sigma^2}{\sigma^2+0.09}$ $\alpha = max(\theta_i, \theta_r)$ $\beta = min(\theta_i, \theta_r)$

Real Image

Lambertian Model

Oren-Nayar Model

Models: BRDF

- BRDF (Bidirectional reflectance distribution function)
 - Assumes that light enters and leaves at the same point
 - Incoming direction **w**_i, outgoing direction **w**_o
 - BRDF: Ratio of reflected radiance exiting along \mathbf{w}_{o} to the irradiance incident to \mathbf{w}_{i}

ω

- Physically plausible if...
 - Always positive
 - \circ Reciprocal: w_i, w_o can be swapped for the same result
 - Energy-conserving: sum over the hemisphere is one or less.*
- Part of the rendering equation (...)

* Error in reading material: " Σ f \ge 1"

The Rendering Equation

- The radiance is...
 - Emitted radiance, plus
 - **Reflected** radiance, over all incoming directions w_i of the hemisphere Ω along w_0

$$L_o(\boldsymbol{x}, \boldsymbol{\omega}_o, \lambda) = L_e(\boldsymbol{x}, \boldsymbol{\omega}_o, \lambda) + \int_{\Omega} \underline{f(\boldsymbol{x}, \boldsymbol{\omega}_i, \boldsymbol{\omega}_o, \lambda)} L_i(\boldsymbol{x}, \boldsymbol{\omega}_i, \lambda) \cos \theta d\boldsymbol{\omega}_i$$

Models: BTDF, BSDF

- BTDF: Transmission
- BSDF: BRDF + BTDF

Models: BSSRDF

- BSSRDF (Bidirectional reflectance distribution function)
 - General case of BRDF
 - Entry and exit point do not have to be the same
 - Same laws (energy conservation, reciprocity)

Subsurface Scattering

- Not obvious to take into account
- Obvious when the effect is missing

Subsurface Scattering

- Translucent materials
 - Wax, milk, marble
- Different shapes and colors inside
 - \circ Leaves, skin
- Light enters, scatters within, and exits
- Some light may be absorbed

Subsurface Scattering

- Single scattering approximation
 - A single bounce
 - Estimate number of photons reflected toward camera

- Depth map approximation
- Texture space diffusion
 - "General blurring of the diffuse lighting"

Subsurface Scattering - Multiple Layers

- Light Diffusion in Multi-Layered Translucent Materials (2005)
 - The skin is composed of **three layers**: epidermis, dermis, and the bloody dermis.
 - Scattering parameters for the layers are from **measured data** in medical literature.
 - The multilayered model gives the skin a less waxy look compared to the standard BSSRDF
- Reflectance and transmittance over radial distance
- Unique functions per layer

Jade Jade + paint Figure 5: A buddha statuette sprayed with a thin layer of white paint. The first and third images are front-lit, the second and fourth back-lit.

Models: BRDF

- Many models
 - Difference in highlights
 - Size, fall-off
- Physically plausible
 - Cook-Torrance (1982)
 - GGX (2007)
 - Schlick (1994)
 - Oren-Nayar (non-simplified; 1994)

Chrome, GGX, Beckmann Source: *Physically-Based Shading at Disney* (2012)

Cook-Torrance

- Two components
 - \circ **f** = d**f**_{diff} + s**f**_{spec}
 - Weights: d + s = 1

• Diffuse

- "Body reflectance"
- Independent of viewing angle; constant term
- (Approximates subsurface scattering)
- Specular
 - "Surface reflectance"
 - Models microfacets
 - h = normalize(l + v)
 - Contributes if h = n

Paper: A Reflectance Graphics Model for Computer Graphics (1982)

Cook-Torrance: Microfacet phenomena

- Shadowing
 - Light-occlusion by microgeometry
 - "Self-shadowing"
- Masking
 - Visibility-occlusion by microgeometry
 - "Self-occlusion"
- Interreflections
 - When facets reflect onto other facets
 - Not taken into account

Figure 2: On the left, occlusion of light source by microgeometry (shadowing). On the right, visibility occlusion of microgeometry (masking). Source: [1]

Cook-Torrance:

$$f_{\text{spec}}(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o) = rac{F}{\pi} rac{GD}{(\boldsymbol{n} \cdot \boldsymbol{\omega}_i)(\boldsymbol{n} \cdot \boldsymbol{\omega}_o)}$$

- Reflectance: $\mathbf{f} = d\mathbf{f}_{diff} + s\mathbf{f}_{spec}$ $\circ d + s = 1$
 - **f**_{diff} is constant (e.g. Lambertian)
 - spec

- F: Fresnel term
- G: Geometric attenuation (shadowing, masking)
- D: Normal distribution of facets oriented along h

Cook-Torrance:

$$f_{\rm spec}(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o) = \frac{F}{\pi} \frac{GD}{(\boldsymbol{n} \cdot \boldsymbol{\omega}_i)(\boldsymbol{n} \cdot \boldsymbol{\omega}_o)}$$

Fresnel term F

$$F(\theta) = \frac{1}{2} \frac{(g-c)^2}{(g+c)^2} \left(1 + \frac{(c(g+c)-1)^2}{(c(g-c)+1)^2} \right) \qquad c = \cos\theta = \boldsymbol{v} \cdot \boldsymbol{h}$$
$$g = \sqrt{\eta^2 + c^2 - 1}$$

Geometric attenuation G

$$G(\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o}) = \min\left\{1, \frac{2(\boldsymbol{n}\cdot\boldsymbol{h})(\boldsymbol{n}\cdot\boldsymbol{\omega}_{o})}{(\boldsymbol{\omega}_{o}\cdot\boldsymbol{h})}, \frac{2(\boldsymbol{n}\cdot\boldsymbol{h})(\boldsymbol{n}\cdot\boldsymbol{\omega}_{i})}{(\boldsymbol{\omega}_{o}\cdot\boldsymbol{h})}\right\}$$

Normal distribution D - (fraction of facets with normal = h) : (Phong, Heidrich-Seidel, GGX...) Beckmann (rough surfaces): Gaussian:

$$D_{Beckmann} = \frac{1}{m^2 \cos^4 \alpha} e^{-[(\tan \alpha/m]^2} \qquad D_{Gaussian} = c e^{-(\frac{\alpha}{m^2})}$$

- Microfacet distribution model **D**
- Improvement over Beckmann distribution
 - Better fit to measured data (for some surfaces)
 - Derived from geometry term G
- B<mark>S</mark>DF
 - Handles transmittance

Paper: *Microfacet Models for Refraction through Rough Surfaces* (2007)

Cook-Torrance specular BRDF:

$$f_{\rm spec}(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o) = \frac{F}{\pi} \frac{GD}{(\boldsymbol{n} \cdot \boldsymbol{\omega}_i)(\boldsymbol{n} \cdot \boldsymbol{\omega}_o)}$$

GGX BRDF:

$$f(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o) = \frac{FGD}{4(\boldsymbol{n} \cdot \boldsymbol{\omega}_i)(\boldsymbol{n} \cdot \boldsymbol{\omega}_o)}$$

Beckmann D (used in Cook-Torrance):

$$D_{Beckmann} = \frac{1}{m^2 \cos^4 \alpha} e^{-[(\tan \alpha/m]^2]}$$

GGX D:

$$D = \frac{\alpha_g^2 \chi^+ (\boldsymbol{h} \cdot \boldsymbol{n})}{\pi \cos^4 \theta_h (\alpha_g^2 + \tan^2 \theta_h)^2}$$

Cook-Torrance G:

$$G(\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o}) = \min\left\{1, \frac{2(\boldsymbol{n}\cdot\boldsymbol{h})(\boldsymbol{n}\cdot\boldsymbol{\omega}_{o})}{(\boldsymbol{\omega}_{o}\cdot\boldsymbol{h})}, \frac{2(\boldsymbol{n}\cdot\boldsymbol{h})(\boldsymbol{n}\cdot\boldsymbol{\omega}_{i})}{(\boldsymbol{\omega}_{o}\cdot\boldsymbol{h})}\right\}$$

GGX G (Smith):

$$G(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o) \approx G_1(\boldsymbol{\omega}_i) G_1(\boldsymbol{\omega}_o)$$
$$G_1(\boldsymbol{v}) = \chi^+ \left(\frac{\boldsymbol{v} \cdot \boldsymbol{h}}{\boldsymbol{v} \cdot \boldsymbol{n}}\right) \frac{2}{1 + \sqrt{1 + \alpha_g^2 \tan^2 \theta_v}}$$

GGX: Result

- Bigger tail
- Closer to real surfaces

(Measured chrome), GGX, Beckmann

Schlick

Paper by Christophe Schlick: An Inexpensive BRDF Model for Physically-based Rendering (1994)

Problems with BRDF models:

- Linear combination of specular, diffuse
 - Constant weights (Cook-Torrance: $\mathbf{f} = d\mathbf{f}_{diff} + s\mathbf{f}_{spec}$)
 - Instead, **f** should be a function of incident angle
- **G** only models reflection toward light
 - **G**: the fraction of light **not obstructed** by microgeometry
 - Problem: the (unabsorbed) obstructed light (1 G) is reflected elsewhere in reality
 - Existing models do not account for this "re-emission" of light
- Physically plausible models are expensive
 - Schlick's approximation

Schlick: Approximations

Fresnel term F (Cook-Torrance):

$$F(\theta) = f_0 + (1 - f_0)(1 - \cos \theta)^5$$

Geometrical attenuation G (Smith):

$$G(v) = \frac{v}{v - kv + k}$$
 with $k = \sqrt{\frac{2m^2}{\pi}}$

$$\forall t \in [1-m, 1]$$
 $D(t) = \frac{m^3 x}{t (mx^2 - x^2 + m^2)^2}$ with $x = t + m - 1$

$$f_{0} = \left(\frac{\eta_{1} - \eta_{2}}{\eta_{1} + \eta_{2}}\right)^{2}$$

$$k = \frac{\eta_{1} - \eta_{2}}{\eta_{1} + \eta_{2}}$$

Schlick

- Approximations \rightarrow faster Cook-Torrance
- Two new BRDF models:
 - Homogeneous
 - metal, glass, paper, cotton
 - Heterogeneous (two layers)
 - opaque layer + translucent layer
 - varnished wood, lacquered glass
- Layer properties
 - All values in [0, 1]:
 - C_{λ} : Reflection factor at wavelength λ
 - r: Roughness factor (0: perfectly specular; 1: perfectly diffuse)
 - p: Isotropy factor (0: perfectly anisotropic; 1: perfectly isotropic)

Summary: Cook-Torrance, GGX, Schlick

- Physically plausible?
 - Reciprocal: All
 - Energy-conserving: **GGX**, **Schlick**
 - **Cook-Torrance**: not energy-conserving under all angles

Summary: Cook-Torrance, GGX, Schlick

Cook-Torrance

- **Suitable for**: plastics, metals.
- "Not as intuitive parameters. Experimentation required"
- **F**, **D**, **G** are independent and can be replaced.

• GGX

- Suitable for: developed for transmittance through rough surfaces (etched glass)
- In general, "improved Cook-Torrance"
- Many different versions of D, G

• Schlick

- **Suitable for**: heterogeneous materials (translucent + opaque)
- Continuums for isotropy, specular/diffuse
- "Intuitive parameters"

Overview

Models	Physical	Mausible	Fresnel Eq.	Anisotrotopic	Sampling	Rel.Cost (cycles)	Material Type
Ideal Specular	*	*	▼	▼	*	x	perfect specular
Ideal Diffuse	*	*	▼	V	*	x	perfect diffuse
Minnaert	•	• • •	▼	▼	▼	5.35x	Moon surf.
Torrance-Sparrow	*	V	*	*	V	•••	rough surf.
Beard-Maxwell	*	▼	*	V	V	397x	painted surf.
Blinn-Phong	V	V	V	V	*	9.18 <i>x</i>	rough surf.
Cook-Torrance	*	*	*	V	V	16.9 <i>x</i>	metal,plastic
Kajiya	*	V	*	*	V	•••	metal,plastic
Poulin-Fournier	*	V	V	*	V	67 <i>x</i>	clothes
Strauss		•••	*	V	V	14.88x	metal,plastic
He et al.	*	*	*	V	V	120x	metal
Ward		V	▼	*	*	7.9x	wood
Westin	*	•••	*	*	V	•••	metal
Lewis	V	*	V	V	*	10.73x	mats
Schlick	V	*	*	*	V	26.95 <i>x</i>	heterogeneous
Hanrahan	*	• • •	*	V	V	•••	human skin
Oren-Nayar	*	*	V	V	*	10.98x	matte, dirty.
Neumann	V	*	V	*	*	•••	metal,plastic
Lafortune	•	*	V	*	*	5.43x	rough surf.
Coupled	*	*	*	V	*	17.65x	polished surf.
Ashikhmin-Shirley	*	V	*	*	*	79.6 <i>x</i>	polished surf.
Granier-Heidrich	*	•••	*	V	V		old-dirty metal

Paper: An Overview of BRDF Models (2012) **Table 1:** Brief summary of the properties exhibited by the reviewed BRDFs. Legend: (\bigstar) if the BRDF has this property; (\triangledown) if the BRDF does not; (\cdots) unknown value.

Lambertian, Oren-Nayar

Roughness:

 $\textbf{0} \rightarrow \textbf{ 0.1} \rightarrow \textbf{ 0.5} \rightarrow \textbf{ 0.9}$

Lambertian, Oren-Nayar

Roughness:

 $0 \rightarrow 0.1 \rightarrow 0.5 \rightarrow 0.9$

Lambertian, Oren-Nayar

Roughness:

 $0 \ \rightarrow \ 0.1 \ \rightarrow \ 0.5 \ \rightarrow \ 0.9$

Lambertian, Oren-Nayar

Roughness:

 $0 \ \rightarrow \ 0.1 \ \rightarrow \ 0.5 \ \rightarrow \ 0.9$

Cook-Torrance (specular only)

ior = 1.5 (typical glass)

 $(\Rightarrow f_0 = 0.04)$

Roughness:

 $0.10 \ \rightarrow \ 0.25 \ \rightarrow \ 0.40 \ \rightarrow \ 0.55$

GGX (specular only)

ior = 1.5 (typical glass)

 $(\Rightarrow f_0 = 0.04)$

Roughness:

 $0.10 \ \rightarrow \ 0.25 \ \rightarrow \ 0.40 \ \rightarrow \ 0.55$

Cook-Torrance (specular only)

Random parameters:

f0 in [0.02, 0.05]

```
( \Rightarrow ior in ~[1.33, 1.58] )
```

α in [0, 1]

white specular color

GGX (specular only)

Random parameters:

f0 in [0.02, 0.05]

```
( \Rightarrow ior in ~[1.33, 1.58] )
```

α in [0, 1]

white specular color

The End

Microfacet distributions visualised

- Experimental Analysis of BRDF Models
 - <u>http://people.csail.mit.edu/addy/research/ngan05_brdf_eval.pdf</u>

Figure 11: Left: Brushed aluminium macro photograph. Right: deduced microfacet distribution (log plot).

Figure 12: Left: Purple satin macro photograph with sketched double cones. Right: deduced microfacet distribution (log plot).

Figure 8: Side and top-down view of the measured "PVC" BRDF, at 55° incidence. (Cubic root is applied to the BRDF for visualization.) Its specular lobe exhibits a similar asymmetry to the $H \cdot N$ lobe.

Figure 13: Left: Red velvet macro photograph. Right: deduced microfacet distribution (log plot).