
Databases (TDA357, DIT620)

Exercises 4 : CONSTRAINTS & TRIGGERS 21-Feb-2018

Exercise 1: Create the tables Employee & Department with the following constraints and
attributes respectively.

Employee

1. Id → Primary Key
2. Name → NOT NULL
3. DeptId → Foreign Key refering Dept(Dept_Id)
4. Salary→ Check Salary between 22000 to 50000
5. Insurance_opted→ Default value of Yes

 Department
1. Dept_Id→ Unique, NotNull
2. Name→ Unique

Exercise 2: Constraints and triggers are techniques that can be used to control properties
of databases. As a rule of thumb, constraints are the simplest solution, but not always
possible. In the following cases, use either constraints (added to a table) or triggers (on a
table), whichever you find to be the simplest solution.

1. Assume you want to create a table that should have at most one row. How can you
guarantee this? Write an example CREATE TABLE statement, together with a trigger
if you need one.

2. Assume you have a table Teachers(name,phoneNumber) that lists the teachers
currently in charge for some class. Assume the table already has some rows. How
can you guarantee that this table will never become empty i.e. never have 0 rows?
Show the exact CREATE TABLE statement and/or trigger.

3. Consider a table with the schema Distances(fromCity,toCity,distance) that stores
distances between cities. Since the distance from Y to X is always the same as the
distance from X to Y, it would be redundant to store them both. How can you
guarantee that the table never stores the distance from Y to X if it already has the d

Exercise 3: Consider an online bookshop which sometimes promotes books by displaying
them on the front page of their website. Create the table with the following constraints.

● Id → NOT NULL AND UNIQUE
● Category → Text
● Price → Float && Price >0
● Promoted → Default value of True

Their web application uses a database created in PostgreSQL using the following
statements:

INSERT INTO Books (id ,category, price) VALUES(1 , 'Dictionary' , 100) ;
INSERT INTO Books (id ,category, price) VALUES(2 , 'Dictionary' , 150) ;
INSERT INTO Books (id ,category, price) VALUES(3 , 'Science' , 120);

INSERT INTO Books (id ,category, price) VALUES(4 , 'Science' , 190);
INSERT INTO Books (id ,category, price) VALUES(5 , 'Science' , 320);

a. Create a new VIEW called “PromotionSummary” which outputs 3 columns
named “category”, “minprice” and “maxprice” containing the category name,
minimum price of all promoted books and maximum price of all promoted
books. A promoted book has its “promoted” attribute set to True.

b. Create a trigger so that, when a tuple from the “PromotionSummary” view is
deleted, all Books from the corresponding category have their “promoted”
attribute set to False. E.g. if the entry in “PromotionSummary” for category
“Novel” is deleted, all entries in “Books” with category “Novel” have their
“promoted” attribute set to False.

Exercise 4: In the year 2127, the first spaceship to colonize Mars carries 1337 colonists.
When they arrive on the planet, they will build a city and live there. Following democratic
principles, the spaceship captain, captain Picard, asks you to improve an SQL database to
help with the voting process. The existing SQL database was created with the following
statement:

CREATE TABLE Votes (cityname TEXT PRIMARY KEY, votecount INT) ;

To add a vote, you can use either INSERT or UPDATE, as shown below:
INSERT INTO Votes (cityname , votecount) VALUES('Mars City One' , 34) ;
INSERT INTO Votes (cityname , votecount) VALUES('New Gothenburg' , 11);
INSERT INTO Votes (cityname , votecount) VALUES('Picardia' , 1);

UPDATE Votes SET votecount = votecount+3 WHERE cityname='New Gothenburg' ;

A. Create a new VIEW called “VoteSummary” which outputs 2 columns named
“cityname” and “percentage” containing the cityname and percentage of votes cast
for that cityname. The output is sorted according to the votecount, highest votecount
first. After the example votes above, there would be 34 votes for “Mars City One” out
of a total of 49 votes, so the top row of the “VoteSummary” VIEW would be ('Mars
City One', 69.3878). There is no need to round of the percentage.

B. Create a trigger to update the “Votes” table, to keep track of how many colonists
have not voted yet. This count will appear next to the special cityname “”. In the
example above, 49 votes have been cast out of 1337 possible votes. This means the
trigger needs to create or update an entry with cityname “” and votecount 1288 (=
1337 - 49). Keep in mind that you need to create this entry if it does not exist yet.
There is no need for a trigger on DELETE.

Exercise 5: In this exercise, we are creating the following database for a restaurant:
Tables(_number_, seats)
Bookings(_name_, _time_, nbpeople, table)
 table → Tables.number

For the sake of simplicity, we assume that the database only needs to hold bookings for the
current day and that bookings are always done on the hour (i.e. time is an integer between 0
and 23).
Finally, tables are always booked for two hours. This means that if table 1 is booked at
19.00, it can’t be booked at 20.00 but it can be booked again at 21.00.
1. Write a view that lists the times at which tables are blocked by a booking. In the
example above, where table 1 is booked at 19.00, the view should contain the following
rows:

table time

1 18

1 19

1 20

2. Write a trigger on the table Bookings that automatically assign a table to new rows if
none is specified. The assigned table should respect the following rules:

● it should be free for the duration of the booking.
● it should be big enough for the number of people in the party
● it should be the smallest possible table to accommodate this number of people

