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Note on the the current edition

These notes have been expanded from Aarne’s 2017 version by Jyrki, who has
also reorganized the chapters. Many more changes are coming during Spring
2018! This is in particular the case with exercises, which are currently separate
from the book but available through the course web page.

Tampere and Gothenburg, October 25, 2018

Jyrki Nummenmaa and Aarne Ranta

Preface

This book originates from the courses given by the authors. More specifi-
cally, the Databases course (TDA357/DIT620) at the IT Faculty of University
of Gothenburg and Chalmers, and the courses Introduction to Databases and
Database programming given at the University of Tampere. The text is intended
to support the reader’s intuition while at the same time giving sufficiently pre-
cise information so that the reader can apply the methods given in the book for
different applications. The book proceeds from experimentation and intuition
to more formal and precise treatment of the topics, thereby hopefully making
learning easier. In particular, Chapters 2, 3 and 4 are suitable as study material
for people who in practice have no background in computing studies.

A particular virtue of the book is its size. The book is not meant to be a
handbook or manual, as such information is better offered in the Internet, but
a concise, intuitive, and precise introduction to databases.

The real value from the book only comes with practice. To build a proper
understanding, you should build and use your own database on a computer. You
should also work on some theoretical problems by pencil and paper. To help
you with these exercises, we have developed a tool, Query Converter, which can
be used on-line to explore the theoretical concepts and link them with practical
database applications.

By far the best way to study the book is to participate in a course with
a teacher - this gives regularity to the study, as it is easy to try to consume
too much too quickly when self-studying. For self-study purposes each chapter
includes an estimate on how fast the student who has no initial knowledge
should progress. The human mind needs time to arrange the new materials and
therefore a reasonable steady pace is prefereable even though the student would
have time to study the book all day long.

We will use a running example that deals with geographical data: countries
and their capitals, neighbours, currencies, and so on. This is a bit different from
many other slides, books, and articles. In them, you can find examples such as
course descriptions, employer records, and movie databases. Such examples may
feel more difficult since they are not completely common knowledge. This means
that, when learning new mathematical and programming concepts, you have to
learn new content at the same time. We find it easier to study new technical
material if the contents are familiar. For instance, it is easier to test a query
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that is supposed to assign ”Paris” to ”the capital of France” than a query that
is supposed to assign ”60,000” to ”the salary of John Johnson” - even though
of course most people are familiar with work and salaries, but a particular sum
may seem strange, etc. There is simply one thing less to keep in mind. It also
eliminates the need to show example tables all the time, because we can simply
refer to ”the table containing all European countries and their capitals”, which
most readers will have clear enough in their minds. No geographical knowledge
is required, and it is not important at all if the reader can position the countries
and cities on the map.

Of course, we will have the occasion to show other kinds of databases as well.
The country database does not have all the characteristics that a database might
have, for instance, very rapid changes in the data. The exercises and suggested
programming assignments will include such material.

The book can be read in the given order of chapters. It is, however, possible
to deviate from this to some extent. The following diagram shows the relation-
ships between chapters and following the diagram it is perfectly doable to pick
another order or, depending on the readers interest, skip some parts of the book.

(Diagram TODO)

This book has drawn inspiration from various sources, even if it seems to
be quite an original compilation of content. A lot of inspiration obviously
comes from other database textbooks, such as Garcia-Molina, Ullman, and
Widom, Database systems: The Complete Book), and by earlier course ma-
terial at Chalmers by Niklas Broberg and Graham Kemp. We are grateful to
(list needs to be expanded) Grégoire Détrez on general advice and comments
on the contents, and to Simon Smith, Adam Ingmansson, and Viktor Blomqvist
for comments during the course. More comments, corrections, and suggestions
are therefore most welcome - your name will be added here if you don’t object!

Gothenburg, March 2016

Aarne Ranta
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1 Introduction*

This chapter is an overview of the field of databases and of this course. In
addition to the material printed here, the lecture will also talk about practical
questions such as assignments, exercises, and the exam. This information can
be found on the course web page. The goal of this chapter (and the whole first
lecture) is to give you a clear picture of what you are expected to do and learn
during the course.

1.1 Data vs. programs

Computers run programs that process data. Sometimes this data comes from
user interaction and is thrown away after the program is run. But often the
data must be stored for a longer time, so that it can be accessed again. Banks,
for instance, have to store the data about bank accounts so that no penny is
lost.

It is typical that data lives much longer than the programs that process
it: decades rather than just years. Programs, even programming languages,
may be changed every five years or so, while the data has permanent value for
the organizations. On the other hand, while data is maintained for decades,
it may also be changed very rapidly. For instance, a bank can have millions
of transactions daily, coming from ATM’s, internet purchases, etc. This means
that account balances must be continuously updated. At the same time, the
history of transactions may be kept for years, for e.g. legal reasons.

A database is any collection of data that can be accessed and processed by
computer programs. A database system consists of a database storage and
software through which the data in the database is accessed. The system must
support both updates (i.e. changes in the data) and queries (i.e. questions
about the data). The data must be structured so that these operations can be
performed efficiently and accurately. For instance, English texts describing the
data would be both too slow and too inaccurate. But the data structure must
also be generic enough so that it can be accessed in different ways. For instance,
the data structures of some advanced programming language may be too hard
to access from programs written in other languages. A further requirement is
that the database should support multiple concurrent users.

1.2 A short history of databases

When databases came to wide use, for instance in banks in the 1960’s, they were
not yet standardized. They could be vendor specific, domain specific, or even
machine specific. It was difficult to exchange data and maintain it when for
instance computers were replaced. As a response to this situation, relational
databases were invented in around 1970. They turned out to be both struc-
tured and generic enough for most purposes. They have a mathematical theory
that is both precise and simple. Thus they are easy enough to understand by
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users and easy enough to implement in different applications. As a result, re-
lational databases are often the most stable and reliable parts of information
systems. They can also be the most precious ones, since they contain the results
from decades of work by thousands of people.

Despite their success, relational databases have recently been challenged
by other approaches. Some of the challengers want to support more complex
data than relations. For instance, XML (Extended Markup Language) supports
hierarchical databases, which were popular in the 1960’s but were deemed too
complicated by the proponents of relational databases. On the other end, big
data applications have called for simpler models. In many applications, such
as social media, accuracy and reliability are not so important as for instance
in bank applications. Speed is much more important, and then the traditional
relational models can be too rich. Non-relational approaches are known as
NoSQL, by reference to the SQL language introduced in the next section.

1.3 SQL

Relational databases are also known as SQL databases. SQL is a computer
language designed in the early 1970’s, originally called Structured Query Lan-
guage. The full name is seldom used: one says rather ”sequel” or ”es queue el”.
SQL is a special purpose language. Its purpose is to process of relational
databases. This includes several operations:
• queries, asking questions, e.g. ”what are the neighbouring countries of

France”
• updates, changing entries, e.g. ”change the currency of Estonia from

Crown to Euro”
• inserts, adding entries, e.g. South Sudan with all the data attached to it
• removals, taking away entries, e.g. German Democratic Republic when

it ceased to exist
• definitions, creating space for new kinds of data, e.g. for the main domain

names in URL’s
These notes will cover all these operations and also some others. SQL is

designed to make it easy to perform them - easier than a general purpose
programming language, such as Java or C. The idea is that SQL should
be easier to learn as well, so that it is accessible for instance to bank employ-
ees without computer science training. However, as we will see, most users of
databases today don’t even need SQL. They use some end user programs, for
intance an ATM interface with menus, which are simpler and less powerful than
full SQL. These end user programs are written by programmers as combinations
of SQL and general purpose languages.

Now, since a general purpose language could perform all operations that
SQL can, isn’t SQL superfluous? No, since SQL is a useful intermediate layer
between user interaction and the data. One reason is the high level of abstraction
in SQL. Another reason is that SQL implementations are highly optimized and
reliable. A general purpose programmer would have a hard time matching the
performance of them. Losing or destroying data would also be a serious risk.
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1.4 DBMS

The implementations of SQL are called SQL database management systems
(DBMS). Here are some popular systems, in an alphabetical order:
• IBM DB2, proprietary
• Microsoft SQL Server, proprietary
• MySQL, open source, supported by Oracle
• MariaDB, open source, successor of MySQL,
• Oracle, proprietary
• PostgreSQL, open source
• SQLite, open source
• Teradata, designed for large amounts of data and database analytics.
Each DBMS has a slightly different dialect of SQL. There is also an official

standard, but no existing system implements all of it, or only it. In these notes,
we will most of the time try to keep to the parts of SQL that belong to the
standard and are implemented by at least most of the systems.

However, since we also have to do some practical work, we have to choose
a DBMS to work in. The choice for the course in 2016 is PostgreSQL. Earlier
courses have used Oracle, so this is in a way an experiment. The main reasons
to try PostgreSQL are the following advantages over Oracle:
• it follows the standard more closely
• it is free and open source, hence easier to get hold of

1.5 The book contents

Chapter 1: Introduction

This is the chapter you are reading now. The goal of this chapter is to make it
clear what you are expected to learn and to do to study this book.

Chapter 2: Tables and SQL

We start by getting our hands dirty with SQL, which is based on the simple
concept of a table. This will give us the intuition on how data is stored and
retrieved from SQL databases. We will explain the main language constructs
of SQL. We will define SQL tables. We will build a database by insertions. We
will query it by selections, projections, joins, renamings, unions, intersections,
and SQL groupings and aggregations. We will also take a look at low-level
manipulations of strings and at the different datatypes of SQL.

Chapter 3: Entity-Relationship diagrams

A popular device in modelling is E-R diagrams (Entity-Relationship dia-
grams). This chapter explains how different kinds of data are modelled by
E-R diagrams. We will also tell how E-R diagrams can be constructed from
descriptive texts. Finally, we will explain how they are, almost mechanically,
converted to relational schemes (and thereby eventually to SQL).
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Chapter 4: Data modelling with relations

This chapter is about the mathematical concepts that underlie relational databases.
Not all data is ”naturally” relational, so that some encoding is necessary. Many
things can go wrong in the encoding, and lead to redundancy or even to unin-
tended data loss. This lecture gives several examples of different kinds of data.
It introduces the notion of relational schemas, which are in SQL implemented
by table definitions. But the level here is a bit more abstract than SQL. This
chapter also explains the basics of the mathematics of relations, which are de-
rived from set theory.

Chapter 5: Dependencies and database design

This chapter builds on the relational model and explains a technique that helps
design consistent databases. Mathematically, a relation can relate an object
with many other objects. For instance, a country can have many neighbours.
A function, on the other hand, relates each object with just one object. For
instance, a country has just one number giving its area in square kilometres (at
a given time). In this perspective, relations are more general than functions.
However, it is important to acknowledge that some relations are functions. Oth-
erwise, there is a risk of redundancy, repetition of the information. Redun-
dancy can lead to inconsistency, if the information that should be the same
in different places is actually not the same. Inconsistency and redundancy are
examples of problems with database design. In this chapter, we study how to
use dependencies to design databases free of theses problems.

Lecture 6: Relational algebra and query compilation

The relational model is not only used when designing databases: it is also
the ”machine language” used when executing queries. Relational algebra is a
mathematical query language. It is much simpler than SQL, as it has only a few
operations, each denoted by Greek letters. Being so simple, relational algebra
is more difficult to use for complex queries than SQL. But for the very same
reason, it is easier to analyse and optimize. Relational algebra is therefore useful
as an intermediate language in a DBMS. SQL queries can be first translated to
relational algebra, which is optimized before it is executed. This chapter will
tell the basics about this translation and some query optimizations.

Chapter 7: SQL in software applications

End user programs are often built by combining SQL and a general purpose
programming language. This is called embedding, and the general purpose
language is called a host language. In this lecture, we will look at how SQL is
embedded in Java. We will also cover some pitfalls in embedding. For instance
SQL injection is a security hole where an end user can include SQL code in
the data that she is asked to give. In one famous example, the name of a student
includes a piece of SQL code that deletes all data from a student database.
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We also take a deeper look at inserts, updates, and deletions, in the presence
of constraints. The integrity constraints of the database may restrict these
actions or even prohibit them. An important problem is that when one piece of
data is changed, some others may need to be changed as well. For instance, when
value is deleted or updated, how should this affect other rows that reference it
as foreign key? Some of these things can be guaranteed by constraints in basic
SQL. But some things need more expressive power. For example, when making
a bank transfer, money should not only be taken from one account, but the same
amount must be added to the other account. For situations like this, DBMSs
support triggers, which are programs that do many SQL actions at once.

Chapter 8: Introduction to alternative data models

The relational data model has been dominating the database world for a long
time. But there are alternative models, some of which are gaining popularity.
XML is an old model, often seen as a language for documents rather than
data. In this perspective, it is a generalization of HTML. But it is a very
powerful generalization, which can be used for any structured data. XML data
objects need not be just tuples, but they can be arbitrary trees. XML also
has designated query languages, such as XPath and XQuery. This chapter
introduces XML and gives a summary of XPath. On the other end of the scale,
there are models simpler than SQL, known as ”NoSQL” models. These models
are popular in so-called big data applications, since they support the distribution
of data on many computers. NoSQL is implemented in systems like Cassandra,
originally developed by Facebook and now also used for instance by Spotify.

1.6 The big picture

TODO: update the chapter numbers (black ovals) in the picture.
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2 Tables and SQL

This chapter is about tables as a basic abstraction for present-day databases.
We will study them using a common database language, SQL, starting from the
basics and advancing little by little. The concepts are introduced using examples,
and no prior knowledge of databases is required. This chapter covers two lec-
tures. At first lecture, we will explain the main language constructs of SQL by
using just one table. We will learn to define database tables using SQL. We will
insert data to the tables using SQL. We will query it by selections, projections,
renamings, unions, intersections, groupings, and aggregations. We will also
take a look at low-level manipulations of strings and at the different datatypes of
SQL. The second lecture generalizes the treatment to many tables. This general-
ization involves just a few new SQL constructs (foreign keys, cartesian products,
joins). But it is an important step conceptually, since it raises the question of
how a database should be divided to separate tables. This question will be the
topic of the subsequent chapters on database design.

2.1 SQL database table

The table below shows data about various countries, where currency is repre-
sented with the standard 3-character code and continents area represented with
shorthand expressions for Africa, Europe, South America, North America, and
Asia.

name capital area population continent currency
Tanzania Dodoma 945087 41892895 AF TZS
Greece Athens 131940 11000000 EU EUR
Sweden Stockholm 449964 9555893 EU SEK
Peru Lima 1285220 29907003 SA PEN
Netherlands Amsterdam 41526 16645000 EU EUR
Finland Helsinki 337030 5244000 EU EUR
Cuba Havana 110860 11423000 CUP
China Beijing 9596960 1330044000 AS CNY
Chile Santiago 756950 16746491 SA CLP

The first row with text in bold is a title row, describing the data stored in
the subsequent rows. Each of those subsequent rows, in turn, contains data of
one country, as introduced in the title row: the country name, capital, area,
population, the continent where the country resides (if any), and the official
currency used.

The intuitive idea of a table is the basis of common database systems. The
typical interpretation is that each row of the table states a fact. For instance,
the first row after the title row states the fact that ”there exists a country
named Tanzania, whose capital is Dodoma, whose area is 945087 and population
41892895, which lies on the African continent, and uses a currency whose code
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is TZS”. Each row states a fact of this very form: ”there exists a country
named in the row, with the given capital, area and population, residing in the
given continent, and using the given official currency”. Those familiar with logic
should see a similarity between rows and logical propositions. The table is a
set of facts, which means that the order of the rows is seen unimportant, and
re-ordering the rows does not change the information content.

All the vertical columns in the table seem to have similar formats. Some
columns are strings (name, capital), some numbers (area, population). Some are
strings with a fixed length (currency length 3, continent length 2). Moreover,
each country seems intuitively have a unique name, but different countries might
have the same area or population, use the same currency, be situated on the
same continent, and even, at least theoretically, even have the same capital
name.

These conclusions are superficial, drawn from the outlook of the table. From
that table we cannot know if some currency has 4-character code or if we would
want to store areas as a non-integer decimal values. We don’t even know if
all values must exist: in the above table, Cuba has no continent, since it is an
island outside continents. However, when we use a table to store values in a
database, we will define such properties explicitly, and then the database system
will ensure that the values stored fulfill those properties.

In this chapter, we will learn to create and manipulate database tables using
the SQL language, commonly used in both commercial and open-source systems.
The first thing to learn is how to create a table and to populate it with values.
After that, we will learn how to write queries, that is, ask questions about the
tables.

2.2 SQL in a database management system

We will in the following assume that you have a working installation of Post-
greSQL and access to a command line shell. It can be a Unix shell, called
Terminal in Mac, or command line in Windows.

In your command line shell, you can start PostgreSQL with the command

psql Countries

if Countries is the name of the database that you are using. If you are ad-
ministrating your own PostgreSQL installation, you may use the Unix shell
command

createdb Countries

to create such a database; this you will only have to do once. After this, you
can start PostgreSQL with the command psql Countries. 1

1If you use the school’s PostgreSQL installation, you already have a database created, and
you should work under that.
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2.3 Creating an SQL table

Here a statement in the SQL language to create a table for data on countries.
It follows partly, but not completely, our superficial observations above.

CREATE TABLE Countries (

name TEXT PRIMARY KEY,

capital TEXT NOT NULL,

area FLOAT,

population INT,

continent CHAR(2),

currency CHAR(3) NOT NULL

) ;

In that SQL statement we give a name to a table we create (Countries), and
introduce the columns of the table, also called attributes of the table.

The first line of this CREATE TABLE statement just gives the keywords to
create a table plus a name for the table. The name is supposed to be different
from any already existing table in our database. In this particular case we have
not defined any tables before, but if we the same CREATE TABLE statement
twice, the second one should lead to an error.

Each attribute is given a name and a data type. While INT goes for integer
values and FLOAT for floating-point representation of decimal values, there are
different datatype definitions for textual data: TEXT is the most general, it allows
for any textual data, but CHAR(2) and CHAR(3) introduce the length of the text.

Generally, SQL has several types for strings: CHAR(n), VARCHAR(n), and
TEXT. If the length is variable or not known, then it is safest to choose TEXT.
In earlier times, and in other DBMSs, these types may have performance errors.
However, the PostgreSQL manual says as follows: ”There are no performance
differences between these types... In most situations text or character varying (=
varchar) should be used.” Following this advice, we will in the following mostly
use TEXT as the string type. However, if it is necessary that all strings have
exactly a specific length, like for instance currency codes, then the database
system will check this property, if we use CHAR(n).

The PRIMARY KEY after name TEXT says that name is a primary key for the
table. This means that each row in the table must have a name, and no name
can appear on more than one row - in other words, that the name must be
unique in the table. The NOT NULL constraints say that there must be a value
for the capital and currency in all rows.

PRIMARY KEY implies NOT NULL, but the other columns (area, population,
continent) need not have values. When a value is missing, we sometimes say
that it is NULL. Such NULL values can mean two things: that we don’t know the
value, or that the value does not exist.

Names of tables must be unique in a SQL database. Therefore, giving a sub-
sequent CREATE TABLE commands with the same table name leads to an error.
We should also notice that SQL is case-insensitive: Countries, countries,
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and COUNTRIES are all interpreted as the same name. But a good practice that
is often followed is to use
• capital initials for tables: Countries
• small initials for attributes: name
• all capitals for SQL keywords: CREATE
If you want to get rid of the table you created, you can remove it with the

following command, and then create it with different properties.

DROP TABLE Countries

This must obviously be used with caution, since all the data in the table gets
lost!

2.4 Grammar rules for SQL

There are different variations or dialects of the SQL language, and our aim is
not to cover them all nor compare them, but to introduce a subset suitable for
our course and giving a reasonable overview of the language.

While different database language feature come up, we will introduce their
grammatical description, which makes it possible to understand ”what all” one
can do with the statements. Without raising the abstraction with a grammar
of our grammars, we rather introduce the grammar structures as they are used.

To represent the grammars, we use BNF (Backus Naur form, and you may
continue reading even if you do not know what it means) with the following
conventions:

• CAPITAL words are SQL keywords, to take literally

• small character words are names of syntactic categories, defined each in
their own rules

• | separates alternatives

• + means one or more, separated by commas

• * means zero or more, separated by commas

• ? means zero or one

• in the beginning of a line, + * ? operate on the whole line; elsewhere,
they operate on the word just before

• ## start comments, which explain unexpected notation or behaviour

• text in double quotes means literal code, e.g. "*" means the operator *

• other symbols, e.g. parentheses, also mean literal code (quotes are used
only in some cases, to separate code from grammar notation)
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• parentheses can be added to disambiguate the scopes of operators Another
important aspect of SQL syntax is case insensitivity:

• keywords are usually written with capitals, but can be written by any
combinations of capital and small letters

• the same concerns identifiers, i.e. names of tables, attributes, constraints

• however, string literals in single quotes are case sensitive

As the first example, the grammar of CREATE TABLE statements is as fol-
lows:

statement ::=

CREATE TABLE tablename (

* attribute type inlineconstraint*

* [CONSTRAINT name]? constraint

);

2.5 A further analysis of CREATE TABLE statements

In the grammar for CREATE TABLE statements, the first line just gives the key-
words to create a table plus a name for the table. The second line introduces
zero or more attributes. Their names are supposed to be unique for the table.
The type, instead, is a syntactic category defined below, and so are the inline
constraints, that is, the constraints given on the same line with the constrained
attribute.

type ::=

CHAR ( integer ) | VARCHAR ( integer ) | TEXT | INT | FLOAT | BOOLEAN

inlineconstraint ::=

PRIMARY KEY | UNIQUE | NOT NULL | DEFAULT value

| REFERENCES tablename ( attribute )

An example of an inline constraint is PRIMARY KEY after name TEXT, it says
that name is a primary key for the table. Another example that appeared in
the previous section is the NOT NULL inline constraints.

The other inline constraints given now are UNIQUE which means there must
be a unique value for that attribute in each row, and DEFAULT value which
allows us to define a default value for data insertion. REFERENCES is used when
the attribute refers to some other table; Section 2.13 will explain this.

Some constraints are not for a single attribute value. The primary key may
be a composite key, that is, composed from several attributes, which is useful
when a combination of attribute values is unique even if none of the attributes
alone is unique. Since such constraints refer to several attibutes, they must be
separately from the introduction of the respective attributes, in the constraint
part of the CREATE TABLE statement. Their grammar is:
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constraint ::=

PRIMARY KEY ( attribute+ )

| UNIQUE ( attribute+ )

| NOT NULL ( attribute )

| FOREIGN KEY tablename ( attribute+ )

As an example of composite keys, let us suppose, for the moment, that coun-
try names are only unique within a continent and we have to use the country,

continent pair as a primary key. Then we would have a constraint

PRIMARY KEY (continent, name)

If countries were identified, instead, by a number, we could still state the unique-
ness of continent,name pairs by stating the following constraint, to which we
now give a name.

CONSTRAINT continent-name-pair-is-unique UNIQUE continent, name

And what might the name be used for? Well, some database management
systems use the name when they report situations where the constraint would
be violated. What, then, is the difference of PRIMARY KEY and UNIQUE in
SQL? The difference, if any, is that some systems are more reluctant to change
or remove from existing tables their key definitions than their unique definitions.

There are also further constraints, not relevant to us now.

2.6 Inserting rows to a table

A new table, when created, is empty. To insert table rows, we use the INSERT

statement. The statements below create the contents that we saw before, just
the order is different. However, we assume that the interpretation of data con-
tent is ”per row” and, thus, the order of the rows carries no meaning. Equally
well, you may give the statements in any order. The most convenient way is to
prepare a file that contains the statements and then read in the statements in
a SQL interface.

INSERT INTO Countries VALUES (’Sweden’,’Stockholm’,449964,9555893,’EU’,’SEK’) ;

INSERT INTO Countries VALUES (’Finland’,’Helsinki’,337030,5244000,’EU’,’EUR’) ;

INSERT INTO Countries VALUES (’Tanzania’,’Dodoma’,945087,41892895,’AF’,’TZS’) ;

INSERT INTO Countries VALUES (’Peru’,’Lima’,1285220,29907003,’SA’,’PEN’) ;

INSERT INTO Countries VALUES (’Chile’,’Santiago’,756950,16746491,’SA’,’CLP’) ;

INSERT INTO Countries VALUES (’China’,’Beijing’,9596960,1330044000,’AS’,’CNY’) ;

INSERT INTO Countries VALUES (’Slovenia’,’Ljubljana’,20273,2007000,’EU’,’EUR’) ;

INSERT INTO Countries VALUES (’Greece’,’Athens’,131940,11000000,’EU’,’EUR’) ;

INSERT INTO Countries VALUES (’Cuba’,’Havana’,110860,11423000,NULL,’CUP’) ;

Some database systems allow to combine several rows into the same state-
ment:
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INSERT INTO Countries VALUES

(’Sweden’,’Stockholm’,449964,9555893,’EU’,’SEK’),

(’Finland’,’Helsinki’,337030,5244000,’EU’,’EUR’),

(’Tanzania’,’Dodoma’,945087,41892895,’AF’,’TZS’),

(’Peru’,’Lima’,1285220,29907003,’SA’,’PEN’),

(’Chile’,’Santiago’,756950,16746491,’SA’,’CLP’),

(’China’,’Beijing’,9596960,1330044000,’AS’,’CNY’),

(’Slovenia’,’Ljubljana’,20273,2007000,’EU’,’EUR’),

(’Greece’,’Athens’,131940,11000000,’EU’,’EUR’),

(’Cuba’,’Havana’,110860,11423000,NULL,’CUP’) ;

Even though the order of rows is unimportant, here the order of values
within each row is highly important, and it is assumed to follow the order of
the attributes as given when the table has been created.

The grammar for basic insert statement is given below.

INSERT INTO tablename tableplaces? value+ ;

tablespaces = ( attribute+ )

value ::=

integer | float | ’string’

| value operation value

| NULL

operation ::= "+" | "-" | "*" | "/" | "%" | "||"

The operations listed stand for arithmetic addition (+), subtraction (-),
multiplication (*), division (/), remainder of integer division (%), and string
concatenation (||), and the tablespaces definition lets us specify the attributes
for which values are given, as well as their default order. This means that we
can, e.g. try the following additions.

INSERT INTO countries VALUES (’Cuba1’,’Ha’ || ’vana’,

110000 + 860,11423000,NULL,’CUP’) ;

INSERT INTO countries (capital, name) VALUES (’Havana’,’Cuba2’) ;

INSERT INTO countries VALUES (’Cuba3’,’Havana’,110860,11423000,,’CUP’) ;

In addition to experimenting with the arithmetics and string concatenation,
we also used three different ways to introduce NULL values. In the first, we
write NULL explicitly in the place of a value. In the second, we only give values
for the country name and capital, and the rest of the values will be NULL. The
third option is to leave a value out between commas, in which case a NULL will
be stored.

In the above cases the NULL value was used indicating that Cuba is not on
any continent. Below, you see an example where NULL is used for a value that
exists but we consider not known.

INSERT INTO Countries Values

(’India’, ’New Delhi’, 3287590, NULL, ’AS’, ’INR’);
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Even though we had different ways to define strings, in SQL the values for
all those types are string literals in single quotes (e.g. ’foo bar’). Spaces are
preserved.

What can go wrong, if we write a grammatically correct insert statement?
Many things, of course. The data types of the values may be incorrect, there
may be NULL values where they are not allowed, the primary key constraint
may be violated (more than one row with the same primary key value), and
uniqueness constraint may be violated. You are urged to try out these, to see
what happens.

In PostgreSQL, there is a quick way to insert values from tab-separated files:

COPY tablename FROM filepath

Notice that a complete filepath is required. The data in the file must of course
match your database schema. To give an example, if you have a table

Countries (name,capital,area,population,continent,currencycode,currencyname)

you can read data from a file that looks like this:

Andorra Andorra la Vella 468 84000 EU EUR Euro

United Arab Emirates Abu Dhabi 82880 4975593 AS AED Dirham

Afghanistan Kabul 647500 29121286 AS AFN Afghani

The file

http://www.cse.chalmers.se/edu/year/2018/course/TDA357/VT2018/notes/countries.tsv

can be used for this purpose. It is extracted from the Geonames database,
http://www.geonames.org/

An alternative method is to generate lots of INSERT commands into a file.
Such a file can also include other SQL commands - you can, for instance, save
all your work in it. Then you can build your database, or parts of it, with the
PostgreSQL command

\i file.sql

2.7 Deleting and updating

To get rid of all of your rows you have inserted, you may either remove the table
completely with the DROP TABLE command or use the following form of DELETE
FROM command:

DELETE FROM Countries

This will delete all rows from the table but keep the empty table. To select just
a part of the rows for deletion, a WHERE clause can be used:
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DELETE FROM Countries

WHERE continent = ’EU’

will delete only the European countries. The condition in the WHERE part can
be any SQL condition, which will be explained in more detail below.

Using a sequence of DELETE and INSERT statements we can modify the con-
tents of the table row by row. It is, however, also practical to be able to change
the a part of the contents of rows without having to delete and insert whose
rows. For this purpose, the UPDATE statement is to be used:

UPDATE Countries

SET currency = ’EUR’

WHERE name = ’Sweden’

is the command to issue the day when Sweden joins the Euro zone. The com-
mand can also refer to the old values. For instance, when a new person is born
in Finland, we can celebrate this by updating the population as follows:

UPDATE Countries

SET population = population + 1

WHERE country = ’Finland’

2.8 Querying: selecting columns and rows from a table

The motivation for storing the data is to seach necessary information from it.
This is done with the SELECT FROM WHERE statements. in SQL. We study that
statement little by little. First, the statement

SELECT * FROM countries

will output the whole countries table. Now, * implies that all attributes are
selected for the result.

SELECT currency, continent FROM countries ;

will query also the currency, continent pairs, as follows.

|| currency | continent |

| CUP | NULL |

| EUR | EU |

| EUR | EU |

| CNY | AS |

| CLP | SA |

| PEN | SA |

| TZS | AF |

| EUR | EU |

| SEK | EU |
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SQL database systems typically require that all tables have a primary key.
This means that there cannot be duplicate rows. However, duplicates may
appear in tables produced as answers to SQL queries, as we can see above.
Using the DISTINCT keyword we can eliminate duplicates and get a set of rows
in the answer.

SELECT DISTINCT currency, continent FROM countries ;

gives the following answer:

|| currency | continent |

| CUP | NULL |

| EUR | EU |

| CNY | AS |

| CLP | SA |

| PEN | SA |

| TZS | AF |

| SEK | EU |

It is possible to restrict both the columns by name and rows by condition,
e.g. to query the names and capitals of South American countries.

SELECT name, capital FROM countries WHERE continent == ’SA’

giving the answer

| name | capital |

| ’Chile’ | ’Santiago’|

| ’Peru’ | ’Lima’|

If the WHERE condition evaluates to true on a row, then that row will be
included in the result set, and otherwise it will not. The WHERE conditions allow
comparing values from different attributes, such as

SELECT name, capital FROM countries WHERE name == capital

which gives no results with our data as no country has a capital with the same
name as the country itself.

Notice that only the SELECT part is compulsory; you can use it on an
expression that doesn’t refer to any table:

SELECT 2+2

Also, you may create new columns and new values. For instance, the following
selects big countries with size just marked big:

SELECT name, ’big’ AS size

FROM Countries

WHERE population > 50000000
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or

SELECT capital, ’South American Capital’ AS sa_capital

FROM countries

WHERE continent = ’SA’ ;

In this section we will only consider conditions that apply to individual rows
and do not compare several rows. The grammar for these simple SELECT queries
is given below:

statement ::= SELECT DISTINCT? attribute+ FROM table+ WHERE condition

condition ::=

expression comparison expression

| expression NOT? BETWEEN expression AND expression

| condition boolean condition

| expression NOT? LIKE ’pattern*’

| expression NOT? IN values

| NOT? EXISTS ( query )

| expression IS NOT? NULL

| NOT ( condition )

comparison ::=

= | < | > | <> | <= | >=

expression ::=

attribute

| value

| expression operation expression

pattern ::= % | _ | character ## match any string/char

| [ character* ] | [^ character* ]

The condition s LIKE p compares the string s with the pattern p. The pattern
can use wildcards (for any character) and % (for any substring). Thus

WHERE name LIKE ’%en’

is satisfied by all countries whose name ends with ”en”, e.g. Sweden. So, we
can write conditions such as

name = capital AND NOT (population > area + 100000)

capital LIKE ’__vana’

1 == 3

1 < 3 OR 1==3
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You are encouraged to try them out. In complicated expressions combining
AND, OR, and NOT without parentheses, NOT has highest priority and is
evaluated first, AND after that, and finally OR.

The NULL value is quite special in comparisons. It fails every comparison
apart from is NULL. So, only the answer to the last one of the following queries
contains a row, the others will evaluate to an empty set of rows.

SELECT * FROM countries WHERE name = ’Cuba’ AND continent = ’XY’

SELECT * FROM countries WHERE name = ’Cuba’ AND continent <> ’XY’

SELECT * FROM countries WHERE name = ’Cuba’ AND (continent = ’XY’ OR

continent <> ’XY’)

SELECT * FROM countries WHERE name = ’Cuba’ AND continent is not NULL

SELECT * FROM countries WHERE name = ’Cuba’ AND continent is NULL

In case the column names do not seem appropriate in the result of the query,
it is possible to give them new names as follows.

SELECT name AS country, capital, area AS terrain_size from countries ;

2.9 Sets in SQL queries

As we noticed, the SQL tables with primary keys have sets of rows in them.
However, the resulting rows of SQL queries may not always be a set. Using the
DISTINCT keyword, duplicates were removed, thus guaranteeing a set of rows.
SQL includes set operations, which allow for set union UNION, set difference
EXCEPT, and set intersection INTERSECT. If set operations are used, then the
results are automatically interpreted as sets, and duplicates are removed. Set
operations can be applied to queries, even on the top level.

UNION, INTERSECT, EXCEPT correspond to mathematical set operations
∪,∩,−, however the intuition is simple and just trying these expressions out
should clarify the basic idea. Thus they can only be applied to tables ”of the
same type”, i.e. tuples with the same number of elements of the compatible
types. The attribute names, however, need not match: it is meaningful to write

SELECT capital FROM Countries

UNION

SELECT name FROM Countries

The following query finds all currencies used either in North America or in
Asia.

SELECT currency FROM countries WHERE continent = "NA"

UNION

SELECT currency FROM countries WHERE continent = "AS"

To get currencies used in both North America and Asia, UNION needs to be
replaced by INTERSECT, and, finally, currencies used in North America but not
in Asia, UNION needs to be replaced by EXCEPT.
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It is also possible to use the ALL keyword for set operations without using
sets! This means, that the duplicates are preserved when otherwise appropriate.
The following query keeps all duplicates.

SELECT currency FROM countries WHERE continent = "NA"

UNION ALL

SELECT currency FROM countries WHERE continent = "AS"

For set operations, the values need to have the same datatype, e.g. we cannot
make a set of integers and strings. The names for the columns are taken from
the first set, and they do no tneed to be the same. But the number of columns
must be the same (a conceivable alternative would be to pad the shorter tuples
with NULL values, but this is not what happens).

A WHERE condition can test membership in a set of values, which can be
given explicitly:

SELECT name

FROM countries

WHERE currency IN (’EUR’,’USD’) ;

We can also use other comparison operators instead of IN. However, comparisons
such as equality work between values, not between sets, and particularly not
between sets and values. A comparison between a single value and a set will
work in this context, though, if the set has only one value. Sometimes this can
be known.

SELECT name

FROM countries

WHERE continent =

(SELECT continent FROM countries WHERE name = ’Finland’) ;

In this case, we could as well use the query

SELECT name

FROM countries

WHERE continent IN

(SELECT continent FROM countries WHERE name = ’Finland’) ;

We can, however, use a comparison that targets all the values in a set, like
selecting the country names for countries that have a population greater than
all the population values in South America, as follows

SELECT name

FROM countries

WHERE population >

ALL (SELECT population FROM countries WHERE continent = ’SA’;

Here is a useful idiom using set operations: the query
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SELECT name, ’big’ AS size

FROM countries WHERE population >= 50000000

UNION

SELECT name, ’small’ AS size

FROM countries WHERE population < 50000000

shows the populations of countries as ’big’ or ’small’, suppressing the exact
numeric population.

2.10 Sorting the results

Sorting (ORDER BY) lists a set of attributes considered in lexicographical
order. The direction of sorting can be specified for each attribute as DESC
(descending) or ASC (ascending), where ASC is the default. Thus the following
query sorts countries primarily by the currency in ascending order, secondarily
by size in descending order:

SELECT currency, name, population

FROM Countries

ORDER BY currency, population DESC

ORDER BY is usually presented as a last field of a SELECT group. But it can
also be appended to a query formed by a set-theoretic operation:

(SELECT name, ’big’ AS size

FROM countries WHERE population >= 50000000

UNION

SELECT name, ’small’ AS size

FROM countries WHERE population >= 50000000

)

ORDER BY size, name

shows first all big countries in alphabetical order, then all small ones. Without
parentheses around the union query, ORDER BY would be applied only to the
latter query.

2.11 Aggregation and grouping

Aggregation functions mean functions that are used to aggregate values from
several rows into single values, such as sums and averages. The usual aggrega-
tion functions are COUNT (of rows), SUM (of values), MIN (smallest value), MAX
(biggest value), and AVG (average). This way, we can for instance get the mini-
mum, maximum, and average population for countries in South America, and,
additionally, the information on how many such countries are in our table.

SELECT

MIN(population), MAX(population), AVG(population), COUNT(population)

FROM countries

WHERE continent = ’SA’ ;
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We can also group the rows by continent and then calculate the values for
all continents, using the GROUP BY construction, as follows

SELECT

MIN(population), MAX(population), AVG(population), COUNT(population)

FROM countries

GROUP BY continent ;

WHERE is used to write conditions on which rows are selected to the result.
We can also restrict the result set using values obtained in aggregation, using
the HAVING construct, e.g. to calculate the statistics only when there are rows
from at least 2 countries of a continent:

SELECT

MIN(population), MAX(population), AVG(population)

FROM countries

GROUP BY continent

HAVING COUNT (population) > 1;

Removing duplicates by the DISTINCT keyword also works inside aggrega-
tions:

SELECT DISTINCT currency

SELECT COUNT(DISTINCT currency)

Applying GROUP BY a to a table R forms a new table, where a is the key.
For instance, GROUP BY currency forms a table of currencies. But what are the
other attributes? The original attributes of R won’t do, because each of them
may appear many times. For instance, there are many EUR countries. So what
is the use of this construction?

The full truth about GROUP BY can be seen only by looking at the SELECT
line above it. On this line, only the following attributes of R may appear:
• the grouping attribute a itself
• aggregation functions on the other attributes

In other words, the new relation has these aggregation functions as its non-key
attributes. Here is an example:

SELECT currency, COUNT(name)

FROM Countries

GROUP BY currency

currency | count

----------+-------

XCD | 8

ETB | 1

HUF | 1

...
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Now, most rows in this table will have count 1. We may be interested in only
those currencies that are used by more than one country. The standard way of
doing this is by a subquery:

SELECT *

FROM (

SELECT currency, COUNT(name) AS number

FROM Countries

GROUP BY currency) AS C

WHERE number > 1

This shows clearly that GROUP BY really forms a table. But SQL also provides
a shorthand way of expressing conditions on the groups (i.e. the rows of the
relation formed by GROUP BY): HAVING:

SELECT currency, COUNT(name)

FROM Countries

GROUP BY currency

HAVING COUNT(name) > 1

If you want to order this from the biggest to the smallest count, just add the
line

ORDER BY COUNT(name) DESC

currency | count

----------+-------

EUR | 35

USD | 17

XOF | 8

...

The other aggregation functions (SUM, AVG, MAX, MIN) work in the same
way. The grouped table can have more than one of them:

SELECT currency, COUNT(name), AVG(population)

FROM countries

GROUP BY currency

As a final subtlety: the relation formed by GROUP BY also contains the ag-
gregations used in the HAVING clause or the ORDER BY clause:

SELECT currency, AVG(population)

FROM Countries

GROUP BY currency

HAVING COUNT(name) > 1

SELECT currency, AVG(population)
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FROM Countries

GROUP BY currency

ORDER BY COUNT(name) DESC

From the semantic point of view, GROUP BY is thus a very complex operator,
because one has to look at many different places to see exactly what relation it
forms. We will get more clear about this when looking at relational algebra and
query compilation in Chapter 6

2.12 Using data from several tables

Let’s now add to our table the currency values in US dollars.

country capital area population continent currency usd value
Tanzania Dodoma 945087 41892895 AF TZS 1.25
Greece Athens 131940 11000000 EU EUR 1.176
Sweden Stockholm 449964 9555893 EU SEK 0.123
Peru Lima 1285220 29907003 SA PEN 0.309
Netherlands Amsterdam 41526 16645000 EU EUR 1.176
Finland Helsinki 337030 5244000 EU EUR 1.176
Cuba Havana 110860 11423000 NA CUP 0.038
China Beijing 9596960 1330044000 AS CNY 0.150
Chile Santiago 756950 16746491 SA CLP 0.001

This data needs to be updated daily, as the currency rates are constantly chang-
ing. When many countries use the same currency (e.g.\ EUR), the same update
has to be performed on several rows, which causes a problem: what about if
we forget to update the value on all of those rows? We will then have an in-
consistency in the value, caused by the redundancy in repeating the same
information many times.

To avoid this inconsistency, we will, instead of one table, store the data in
two separate tables and learn how to combine data from different tables in SQL.
The chapters on database design (Chapters 3,5) will talk more about how to
divide data into separate tables; the basic intuition that we follow is avoidance
of redundancy that may lead to inconsistencies.

So, instead of adding a new attribute to the table on countries, we create a
new table which contains just the information on the values of currencies. This
table may also contain other information on currencies, such as their full names:

currency name usd value
TZS Schilling 1.25
EUR Euro 1.176
SEK Crown 0.123
PEN Sol 0.309
CUP Peso 0.038
CNY Yuan 0.150
CLP Peso 0.001
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The SQL statement to create the table is

CREATE TABLE currencies (

code TEXT PRIMARY KEY,

name TEXT,

usd_value FLOAT )

Now that we have split the information about countries to two separate
tables, we need a way to combine that information. The general term for this
is joining the tables. We will below introduce a set of JOIN operations in SQL.
But a more elementary method is to use the WHERE part of SELECT FROM WHERE

statements - to give a list of tables that are used, instead of just one table.
Let us star with a table that shows, for each country, its capital and its

currency code:

SELECT capital, code

FROM Countries, Currencies

WHERE currency = code

This query compares the currency attribute of Countries with the code at-
tribute of Currencies to select the matching rows.

But what about if we want to show the names of the countries and the
currencies? Following the model of the previous query, we would have

SELECT name, name

FROM Countries, Currencies

WHERE currency = code

This query is not understandable to a human, neither is it to a database system.
This is because now both Countries and Currencies contain a column named
name, and it is not clear which one is referred to in the query. The solution is
to use qualified names where the attribute is prefixed by the table name:

SELECT Countries.name, Currencies.name

FROM Countries, Currencies

WHERE currency = code

We can also introduce shorthand names to the tables with the AS construct, and
use these names elsewhere in the table (recalling that the FROM part, where the
names are introduced, is executed first in SQL):

SELECT co.name, cu.name

FROM Countries AS co, Currencies AS cu

WHERE co.currency = cu.code

The first step in evaluating a query is to form the table in accordance with
the FROM part. When it has two tables like here, their cartesian product is
formed first: a table where each row of Countries is paired with each row of
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Currencies. This is of course a large table: it has 9 × 7 = 63 rows, because
Countries has 9 rows and Currencies has 7. But the WHERE clause shrinks its
size to 9, because the currency is the same code on only 9 of the rows. 2

The condition is in the WHERE part is called a join condition, as it controls
how rows from tables are joined together. We can state also other conditions in
the WHERE part, e.g. WHERE co.currency = cu.currency AND co.continent

= ’EU’ would only include European countries. Leaving out a join condition
will produce all pairs of rows - the whole cartesian project - in the result. The
reader is urged to try out e.g.

SELECT name.capital, currencies.name

FROM countries, currencies

and see the big table that results. (Hint: you can use COUNT(*) on the SELECT

line to see the number of rows created.)

2.13 Foreign keys and references

The natural way to join data from two table is to compare the keys of the tables.
For instance, currency values in Countries are intended to match code values
in Currencies. If we want to require this to always be the case, we can use
a FOREIGN KEY clause within the CREATE TABLE statement for Countries. We
can either do this next to the column declaration,

currency REFERENCES Currencies(code)

or add a constraint to the end of the statement,

FOREIGN KEY currency REFERENCES Currencies(code)

If the foreign key is composite, only the latter method works, just as with
primary keys.

The FOREIGN KEY clause in the CREATE TABLE statement for Countries adds
a requirement that every value in the column for currencies must be found
uniquely found in the code column of the currencies table. It is the job of
a database management system to check this requirement, prohibiting all dele-
tions from Currencies or inserts so Countries that would violate the foreign
key requirement. In this way, the database management system maintains the
integrity of the database.

Any conditions in the WHERE part can be used for joining data from tables.
However, there are some particularly interesting cases, like joining a table with
itself. Consider the following query listing the names of pairs of countries that
have the same currency:

2In practice, SQL systems are smart enough not to build the large cartesian products if it
is possible to optimize the query and shrink the table in advance. Chapter 6 will show some
ways in which this is done.
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SELECT co1.name, co2.name

FROM Countries AS co1, Countries AS co2

WHERE co1.currency = co2.currency AND co1.name < co2.name

It is of course possible to join more than two tables, basically an unlimited
number. Adding the currency table to the query above we can add the currency
value to the table:

SELECT co1.name, co2.name usd_value

FROM Countries AS co1, Countries AS co2, Currencies

WHERE

co1.currency = co2.currency

AND co1.name < co2.name

AND co1.currency = currencies.name

Thanks to our foreign key requirement, we know that each currency in the
Countries table is found in the Currencies table. What we do not know is
if there is a currency that is not used in any country. In that case, there will
be data not participating in the join. In the next section, we will have a look
at particular SQL statements to join data, which also deal with the problem of
rows not joining with any rows in the other table.

2.14 Join operations (JOIN)

Combining data from several tables has the complication that there may be
rows that are not selected as they do not combine with any row from the other
table(s). Sometimes we want to see those rows, too, in the result. In such a
case, a natural choice is to create a new row which has some NULL values in
the place of values from other table(s). Such an operation is called outer join,
whereas only selecting tuples that combine successfully is called an inner join.
A natural join just matches tuples by equality on attributes with the same
name. Examples below will clarify this.

The syntax of join operations is rich, as there are 24 different join operations:

table ::= -- 24 = 8+8+8

tablename

| table jointype JOIN table ON condition -- 8

| table jointype JOIN table USING (attribute+) -- 8

| table NATURAL jointype JOIN table -- 8

jointype ::= -- 8 = 6+2

LEFT|RIGHT|FULL OUTER? -- 6 = 3*2

| INNER? -- 2

In addition, cartesian product itself is a kind of a join. It is also called CROSS

JOIN, but we will use the ordinary notation with commas instead.
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Luckily, the JOINs have a compositional meaning. INNER is the simplest
join type, and the keyword can be omitted without change of meaning. This
JOIN with an ON condition gives the purest form of join, similar to cartesian
product with a WHERE clause:

FROM table1 JOIN table2 ON condition

is equivalent to

FROM table1, table2

WHERE condition

The condition is typically looking for attributes with equal values in the two
tables. With good luck (or design) such attributes have the same name, and
one can write

L JOIN R USING (a,b)

as a shorthand for

L JOIN R ON L.a = R.a AND L.b = R.b

well... almost, since when JOIN is used with ON, it repeats the values of a an b
from both tables, like the cartesian product does. JOIN with USING eliminates
the duplicates of the attributes in USING.

An important special case is NATURAL JOIN, where no conditions are needed.
It is equivalent to

L JOIN R USING (a,b,c,...)

which lists all common attributes of L and R.
Cross join, inner joins, and natural join only include tuples where the join

attribute exists in both tables. Outer joins can fill up from either side. Thus
left outer join includes all tuples from L, right outer join from R, and full
outer join from both L and R.

Here are some examples of inner and outer joins. Assume a table Nordics

that shows the five Nordic countries with their capitals, and another table,
Natos, which shows the NATO countries with their currencies. Choosing just
suitable parts of the tables is enough to illustrate the effects of different joins:

Nordics Natos

country | capital country | currency

--------+-------- ---------+--------

Sweden | Stockholm Norway | NOK

Norway | Oslo Germany | EUR
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Nordics CROSS JOIN Natos

country | capital | country | currency

-------- +-----------+----------+----

Sweden | Stockholm | Norway | NOK

Sweden | Stockholm | Germany | EUR

Norway | Oslo | Norway | NOK

Norway | Oslo | Germany | EUR

Nordics INNER JOIN Natos ON Nordics.country = Natos.country

country | capital | country | currency

-------- +-----------+----------+----

Norway | Oslo | Norway | NOK

Nordics NATURAL JOIN Natos,

Nordics INNER JOIN Natos USING(country)

country | capital | currency

-------- +-----------+----------

Norway | Oslo | NOK

Nordics FULL OUTER JOIN Natos USING(country)

country | capital | country | currency

-------- +-----------+----------+----

Sweden | Stockholm |

Norway | Oslo | NOK

Germany | | EUR

Nordics LEFT OUTER JOIN Natos USING(country)

country | capital | country | currency

-------- +-----------+----------+----

Sweden | Stockholm |

Norway | Oslo | NOK

Nordics RIGHT OUTER JOIN Natos USING(country)

country | capital | country | currency

-------- +-----------+----------+----

Norway | Oslo | NOK

Germany | | EUR

2.15 Local definitions and views

Local definitions (WITH clauses) are a simple shorthand mechanism for
queries. Thus
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WITH

EuroCountries AS (

SELECT *

FROM countries

WHERE currency = ’EuroCountries’

)

SELECT *

FROM EuroCountries A, EuroCountries B

WHERE ...

is a way to avoid the duplication of the query selecting the countries using the
Euro as their currency.

A view is like a constant defined in a WITH clause, but its definition is
global. Views are used for ”frequently asked queries”. They can also simplify
queries considerably by splitting them into smaller units. They are evaluated
each time from the underlying tables. A view is created with the CREATE
VIEW statement

CREATE VIEW viewname AS sql_query

where sql query can be any SQL query considered this far.

2.16 SQL pitfalls

Here we list some things that do not feel quite logical in SQL query design, or
whose semantics may feel surprising.

Tables vs. queries

Semantically, a query is always an expression for a table (i.e. relation). In
SQL, however, there are subtle syntax differences between queries and table
expressions (such as table names):
• A bare table expression is not a valid query. A bare FROM part is

not a valid query either. The shortest way to list all tuples of a table is
SELECT * FROM table

• Set operations can only combine queries, not table expression.
• Join operations can only combine table expresions, not queries.
• A cartesian product in a FROM clause can mix queries and table expres-

sions, but...
• When a query is used in a FROM clause, it must be given an AS name.
• A WITH clause can only define constants for queries, not for table expres-

sions.

Renaming syntax

Renaming is made with the AS operator, which however has slightly different
uses:
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• In WITH clauses, the name is before the definition: name AS (query).
• In SELECT parts, the name is after the definition: expression AS name.
• In FROM parts, the name is after the definition but AS may be omitted:
table AS? name.

Cartesian products

The bare cartesian product from a FROM clause can be a huge table, since
the sizes are multiplied. With the same logic, if the product contains an empty
table, its size is always 0. Then it does not matter that the empty table might
be ”irrelevant”:

SELECT A.a FROM A, Empty

results in an empty table. This is actually easy to understand, if you keep in
mind that the FROM part is executed before the SELECT part.

NULL values and three-valued logic

Because of NULL values, SQL follows a three-valued logic: TRUE, FALSE,
UNKNOWN. The truth tables as such are natural. But the way they are used
in e.g WHERE clauses is good to keep in mind. Recalling that a comparison
with NULL results in UNKNOWN, and that WHERE clauses only select TRUE
instances, the query

SELECT ...

FROM ...

WHERE v = v

gives no results for tuples where v is NULL. The same concerns

SELECT ...

FROM ...

WHERE v < 10 OR v >= 10

Hence if v is NULL, SQL does not even be assume that it has the same value
in all occurrences.

Another example, given in

https://www.simple-talk.com/sql/t-sql-programming/ten-common-sql-
programming-mistakes/

as the first one among the ”Ten common SQL mistakes”, involves NOT IN:
since

u NOT IN (1,2,v)

means
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NOT (u = 1 OR u = 2 OR u = v)

this evaluates to UNKNOWN if v is NULL. In that case, NOT IN is useless as a
test.

More precisely, conditions have a three-valued logic, because of the presence
of NULL. Comparisons with NULL always result in UNKNOWN. Logical oper-
ators have the following meanings (T = TRUE, F = FALSE, U = UNKNOWN)

p q NOT p p AND q p OR q
T T F T T
T F ” F T
T U ” U T
F T T F T
F F ” F F
F U ” F U
U T U U T
U F ” F U
U U ” U U

A tuple satisfies a WHERE clause only if it returns T, not one with U. Keep in
mind, in particular, that NOT U = U!

Set operations are set operations

Being a set means that duplicates don’t count. This is what holds in the mathe-
matical theory of relations (Chapter˜\ref{relations}). But SQL is usually about
multisets, so that duplicates do count. However, the set operations UNION,
INTERSECT, EXCEPT do remove duplicates! Hence

SELECT * FROM table

UNION

SELECT * FROM table

has the same effect as

SELECT DISTINCT * FROM table

2.17 SQL in the Query Converter*

Notice: The query converter is an experimental program that you might want
to try. It is in no way a compulsory part of these lectures.

You can find the query converter (command qconv) in

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-
converter/

which contains its source code. There is also an emerging web interface in

http://www.grammaticalframework.org/qconv/
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The Query Converter has an SQL parser and interpreter, which works much the
same way as the PostgreSQL shell. 3 Thus you can give SQL commands in the
qconv shell, and the database is queried and updated accordingly.

The query converter will give access to various concepts of this book, not
just the SQL: relational algebra, E-R diagrams, functional dependencies, SQL.
This is the main reason sometimes to use qconv as an SQL interpreter instead
of PostgreSQL.

Only a part of SQL is currently recognized by qconv. The interpreter may
moreover be buggy. The database is only built in memory, not stored on a disk.
Thus you should store your work in an SQL source file. Such files can be read
with the i (”import”) command, for instance,

> i countries.sql

which uses the file

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-
converter/countries.sql

3As for , the SQL interpreter is not yet available in the web interface.
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3 Entity-Relationship diagrams

A popular device in modelling is E-R diagrams (Entity-Relationship diagrams).
This chapter explains how different kinds of data are modelled by E-R diagrams.
We will also tell how E-R diagrams can almost mechanically be derived from de-
scriptive texts. Finally, we will explain how they are, even more mechanically,
converted to relational schemes (and thereby eventually to SQL).

A relational database consists of a set of tables, which are linked to each
other by referential constraints. This is a simple model to implement and flexible
to use. But designing a database directly as tables can be hard, because only
some things are ”naturally” tables; some other things are more like relationships
between tables, and might seem to require a more complicated model.

E-R modelling is a richer structure than just tables, but it can be converted
to tables. Thus it helps design a database with right dependencies. When the
E-R model is ready, it can be automatically converted to relational database
schemas.

This chapter gives just the bare bones of E-R models. Their correct use is
a skill that has to be practised. This practice is particularly suited for work in
pairs: you should discuss the model with your lab partner. You should debate,
challenge and disagree. Sometimes there are many models that are equally
good. But often a good-looking model is not so good if you take everything into
account. Four eyes see more than two.

The course book contains valuable examples and discussions. You can find
some more good examples in the old course slides. And of course, we will discuss
and give examples during the lecture!

Figure 2 shows an example of an E-R diagram. We will hopefully add some
other examples in later versions of these notes.

3.1 E-R syntax

Standard E-R models have six kind of elements, each drawn with different
shapes:

entity rectangle a set of independent objects
relationship diamond between 2 ore more entities
attribute oval belongs to entity or relationship
ISA relationship triangle between 2 entities, no attributes
weak entity double-border rectangle depends on other entities
supporting relationship double-border diamond between weak entity and its supporting entity

Between elements, there are connecting lines:
• a relationship is connected to the entities that it relates
• an attribute is connected to the entity or relationship to which it belongs
• an ISA relationship is connected to the entities that it relates
• a supporting relationship is connected to a weak entity and another (pos-

sibly weak) entity
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Notice thus that there are no connecting lines directly between entities, or be-
tween relationships, or from an attribute to more than one element. The ISA
relationship has no attributes. It is just a way to indicate that one entity is a
subentity of another one.

The connecting lines from a relationship to entities can have arrowheads:
• sharp arrowhead: the relationship is to/from at most one object
• round arrowhead: the relationship is to/from exactly one object
• no arrowhead: the relationship is to/from many objects
The attributes can be underlined or, equivalently, prefixed by . This means,

precisely as in relation schemas, that the attribute is a part of a key. The keys
of E-R elements end up as keys and referential constraints of schemas.

Here is a simple grammar for defining E-R diagrams. It is in the ”Extended
BNF” format, where + means 1 or more repetitions, * means 0 or more, and ?

means 0 or 1.

Diagram ::= Element+

Element ::=

"ENTITY" Name Attributes

| "WEAK" "ENTITY" Name Support+ Attributes

| "ISA" Name SuperEntity Attributes

| "RELATIONSHIP" Name RelatedEntity+ Attributes

Attributes ::=

":" Attribute* # attributes start after colon

| # no attributes at all, no colon needed

RelatedEntity ::= Arrow Entity ("(" Role ")")? # optional role in parentheses

Support ::= Entity WeakRelationship

Arrow ::= "--" | "->" | "-)"

Attribute ::= Ident | "_"Ident

Entity, SuperEntity, Relationship, WeakRelationship, Role ::= Ident

This grammar is used in the Query Converter (Section 3.5). It is also useful in
other ways:
• it defines exactly what combinations of elements are possible, so that you

can avoid ”syntax errors” (i.e. drawing impossible E-R diagrams)
• it can be used as input to programs that do many things: not only draw

the diagrams but also convert the model to other formats, such as database
schemas and even natural language descriptions (the Query Converter is
just one example of such a program).

Notice that there is no grammar rule for an Element that is a supporting re-
lationship. This is because supporting relationships can only be introduced in
the Support part of weak entities.
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3.2 From description to E-R

The starting point of an E-R diagram is often a text describing the domain. You
may have to add your own understanding to the text. The expressions used in
the text may give clues to what kinds of elements to use. Here are some typical
examples:

entity CN (common noun) ”country”
attribute of entity the CN of X ”the population of X”
attribute of relationship adverbial ”in 1995”
relationship TV (transitive verb) ”X exports Y”
relationship (more generally) sentence with holes ”X lies between Y and Z”
subentity (ISA) modified CN ”EU country”
weak entity CN of CN ”city of X”

It is not always the case that just these grammatical forms are used. You should
rather try if they are usable as alternative ways to describe the domain. For
example, when deciding if something is an attribute of an entity, you should try
if it really is the something of the entity, i.e. if it is unique. In this way, you
can decide that the population is an attribute of a country, but export product
is not.

You can also reason in terms of the informal semantics of the elements:
• An entity is an independent class of objects, which can have properties

(attributes) as well as relationships to other entities.
• An attribute is a simple (atomic) property, such as name, size, colour,

date. It belongs to only one entity.
• A relationship states a fact between two or more entities. These can also

be entities of the same kind (e.g. ”country X is a neighbour of country
Y”).

• A subentity is a special case of a more general entity. It typically has
attributes that the general entity does not have. For instance, an EU
country has the attribute ”joining year”.

• A weak entity is typically a part of some other entity. Its identity (i.e.
key) needs this other entity to be complete. For instance, a city needs a
country, since ”Paris, France” is different from ”Paris, Texas”. The other
entity is called supporting entity, and the relationships are supporting
relationships. If the weak entity has its own key attributes, they are
called discriminators (e.g. the name of the city).

3.3 Converting E-R diagrams to database schemas

The standard conversions are shown in Figure 1. The conversions are unique
for ordinary entities, attributes, and many-to-many relationships.
• An entity becomes a relation with its attributes and keys just as in E-R.
• A relationship becomes a relation that has the key attributes of all related

entities, as well as its own attributes.
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Figure 1: Translating E-R diagrams to database schemas. Picture by Jonas
Almström-Dureg̊ard 2015.
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Other kinds of elements have different possibilities:
• In exactly-one relationships, one can leave out the relationship and use

the key of the related entity as attribute directly.
• In weak entities, one likewise leaves out the relationship, as it is always

exactly-one to the strong entity.
• An at-most-one relationship can be treated in two ways:

– the NULL approach: the same way as exactly-one, allowing NULL
values

– the (pure) E-R approach: the same way as to-many, preserving the
relationship. No NULLs needed. However, the key of the related
entity is not needed.

• An ISA relationship has three alternatives.
– the NULL approach: just one table, with all attributes of all suben-

tities. NULLs are needed.
– the OO (Object-Oriented) approach: separate tables for each suben-

tity and also for the superentity. No references between tables.
– the E-R approach: separate tables for super-and subentity, subentity

refers to the superentity.
As the name might suggest, the E-R approach is always recommended. It is the
most flexible one, even though it requires more tables to be created.

One more thing: the naming of the tables of attributes.
• Entity names could be turned from singular to plural nouns.
• Attribute names must be made unique. (E.g. in a relationship from and

to the same entity).
The course book actually uses plural nouns for entites, so that the conversion
is easier. However, we have found it more intuitive to use singular nouns for
entities, plural nouns for tables. The reason is that an entity is more like a kind
(type), whereas a table is more like a list. The book uses the term entity set
for entities, which is the set of entities of the given kind.

3.4 A word on keys

When designing an E-R model, we are making choices that effect what kind
of keys are being used in the tables. There is nothing that requires that all
relations must have singleton keys. It may be that the only natural key of a
relation includes all attributes in a composite key.

Since many keys are in practice used as foreign keys in other relations, it is
highly desirable that their values do not change. The key values used as foreign
keys are also stored many times and included in search data structures. For
these reasons, it is often more simple and straightforward in practice to create
artificial keys that are usually just integers.

For instance, Sweden has introduced a system of ”person numbers” to uniquely
identify every resident of the country. Artificial keys may also be automatically
generated by the system internally and never shown to the user. Then they are
known as surrogate keys. The surrogate keys are guaranteed not to change,
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Figure 2: An E-R diagram generated from the Query Converter qconv.

whereas natural values, no matter how stable they seem, might do that. An-
other related issue is that keys are used to compose indices for the data, used
in joins, and one may not like to grow these structures unnecessarily.

3.5 E-R diagrams in the Query Converter*

In the Query Converter (Section 2.17), you can specify an E-R model using the
syntax described above. For example:

ENTITY Country : _name population

WEAK ENTITY City Country IsCityOf : _name population

ISA EUCountry Country : joiningDate

ENTITY Currency : _code name

RELATIONSHIP UsesAsCurrency -- Country -- Currency

The result is the diagram shown in Figure 2. You will also get a database
schema:

Country(_name,population)

City(_name,population,_name)

name => Country.name
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Currencies(_code,name)

Ratings(_currencyCodeOf,_currencyCodeIn,_date,amount)

currencyCodeOf => Currencies.code

currencyCodeIn => Currencies.code

Figure 3: An E-R diagram for currency ratings, with two supporting relations,
and the resulting schema.

EUCountry(_name,joiningDate)

name => Country.name

Currency(_code,name)

UsesAsCurrency(_countryName,_currencyCode)

countryName => Country.name

currencyCode => Currency.code

As an experimental feature, you will also get a text:

A country has a name and a population.

A city of a country has a name and a population.

An eucountry is a country that has a joining date.

A currency has a code and a name.

A country can use as currency a currency.

Figure 3 shows another example, where the weak entity Rating has two
supporting relations with Currency. This design was the result of a discussion
at a lecture in 2016. It may look unusually complicated because of the weak
entity with two supporting relationships. But the generated schema is entirely
natural, and we leave it as a challenge to obtain it from any other E-R design.
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4 Data modelling with relations

Until now, we have used tables intuitively via the SQL language. However,
there is a theoretical model behind the tables, and that theoretical model is called
the relational model. This chapter is about the representation of tables in the
relational model. The main problem is that not all data is ”naturally” relational,
which means some encoding is necessary. Many things can go wrong in the
encoding, and lead to redundancy, inconsistencies or even to unintended data
loss. This chapter gives several examples of different kinds of data. It introduces
the notion of relational schemas, which are in SQL implemented by CREATE

TABLE statements. But the level here is a bit more abstract than SQL. The
concepts in this chapter are expressed in a mathematical notation, which is
derived from set theory.

4.1 Relations and tables

The mathematical model of relational databases is, not surprisingly, relations.
Mathematically, a relation is a subset of a cartesian product of sets:

R ⊆ T1 × . . .× Tn

The elements of a relation are tuples, which we write in angle brackets:

〈t1, . . . , tn〉 ∈ T1 × . . .× Tn if t1 ∈ T1, . . . , tn ∈ Tn

In these definitions, each Ti is a set. The elements ti are the components of the
tuple. The cartesian product of which the relation is a subset is its signature.
The sets Ti are the types of the components.

The most familiar example of a cartesian product in mathematics is the two-
dimensional space of real numbers, R × R. Its elements have the form (x, y),
and the components are usually called the x -coordinate and the y-coordinate.
A relation with the signature R×R is any subset of this two-dimensional space,
such as the graph of a function, or a geometric figure such as a circle or a
triangle. Such relations are typically, but not necessarily, infinite sets of tuples.

In the database world, a relation is usually called a table. Tuples are called
rows. Here is an example of a table and its mathematical representation:

country capital currency
Sweden Stockholm SEK
Finland Helsinki EUR
Estonia Tallinn EUR

{〈Sweden,Stockholm,SEK〉, 〈Finland,Helsinki,EUR〉, 〈Estonia,Tallinn,EUR〉}

When seeing the relation as a table, it is also natural to talk about its
columns. Mathematically, a column is the set of components from a given
place i :

{ti | 〈. . . , ti, . . .〉 ∈ R}
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It is a special case of a projection from the relation. (The general case, as we
will see later, is the projection of many components at the same time. The idea
is the same as projecting a 3-dimensional object with xyz coordinates to a plane
with just xy coordinates.)

What is the signature of the above table as a relation? What are the types
of its components? For the time being, it is enough to think that every type is
String. Then the signature is

String× String× String

However, database design can also impose more accurate types, such as 3-
character strings for the currency. This is an important way to guarantee the
quality of the data.

Now, what are ”country”, ”capital”, and ”currency” in the table, mathe-
matically? In databases, they are called attributes. In programming language
terminology, they would be called labels, and the tuples would be records.
Hence yet another representation of the table is a list of records,

[

{country = Sweden, capital = Stockholm, currency = SEK},

{country = Finland, capital = Helsinki, currency = EUR},

{country = Estonia, capital = Tallinn, currency = EUR}

]

Mathematically, the labels can be understood as indexes, that is, indicators of
the positions in tuples. (Coordinates, as in the xyz example, is also a possible
name.) Given a cartesian product (i.e. a relation signature)

T1 × . . .× Tn

we can fix a set of n labels (which are strings),

L = {a1, . . . , an} ⊂ String

and an indexing function

i : L→ {1, . . . , n}

which should moreover be a bijection (i.e. a one-to-one correspondance). Then
we can refer to each component of a tuple by using the label instead of the
index:

t.a = ti(a)

One advantage of labels is that we don’t need to keep the tuples ordered. For
instance, inserting a new row in a table in SQL by just listing the values without
labels is possible, but risky, since we may have forgotten the order; the notation
making the labels explicit is more reliable.

A relation schema consists of the name of the relation, the attributes, and
the types of the attributes:
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Countries(country : String, capital : String, currency : String)

The relation (table) itself is called an instance of the schema. The types are
often omitted, so that we write

Countries(country, capital, currency)

But mathematically (and in SQL), the types are there.
One thing that follows from the definition of relations as sets is that the

order and repetitions are ignored. Hence for instance

country capital currency
Finland Helsinki EUR
Finland Helsinki EUR
Estonia Tallinn EUR
Sweden Stockholm SEK

is the same relation as the one above. SQL, however, makes a distinction,
marked by the DISTINCT and ORDER keywords. This means that, strictly speak-
ing, SQL tables are lists of tuples. If the order does not matter but the repeti-
tions do, the tables are multisets.

In set theory, you should think of a relation as a collection of facts. The first
fact is that Finland is a country whose capital is Helsinki and whose currency is
EUR. Repeating this fact does not add anything to the collection of facts. The
order of facts does not mean anything either, since the facts don’t refer to each
other.

4.2 Functional dependencies

We will most of the time speak of relations just as their sets of attributes. In
particular, functional dependency algorithms can be formulated by referring
only to the attributes. But their definitions must in the end refer to tuples.
By tuples, we will from now on mean labelled tuples (records) rather than set-
theoretic ordered tuples. But we will be able to ignore the types of the columns.
Definition (tuple, attribute, value). A tuple has the form

{A1 = v1, . . . , An = vn}

where A1, . . . , An are attributes and v1, . . . , vn are their values.
Definition (signature, relation). The signature of a tuple, S, is the set of
all its attributes, {A1, . . . , An}. A relation R of signature S is a set of tuples
with signature S. But we will sometimes also say ”relation” when we mean the
signature itself.
Definition (projection). If t is a tuple of a relation with signature S, the
projection t.Ai computes to the value vi.
Definition (simultaneous projection). If X is a set of attributes {B1, . . . , Bm} ⊆
S and t is a tuple of a relation with signature S, we can form a simultaneous
projection,

t.X = {B1 = t.B1, . . . , Bm = t.Bm}
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Definition (functional dependency, FD). Assume X is a set of attributes and A
an attribute, all belonging to a signature S. Then A is functionally dependent
on X in the relation R, written X → A, if
• for all tuples t,u in R, if t.X = u.X then t.A = u.A.

If Y is a set of attributes, we write X → Y to mean that X → A for every A
in Y.

4.3 Definitions of closures, keys, and superkeys

As a starting point of modelling the constraints for a relation, the relation is
charaterized by its signature S, and its functional dependencies FDs.
Assume thus a signature (i.e. set of attributes) S and a set FD of functional
dependencies.
Definition. An attribute A follows from (or is determined by) a set of at-
tributes Y, if there is an FD X → A such that X ⊆ Y .

Normally, the person who builds a database model gives a set of FDs which
is not exhaustive in the sense that there are FDs that can be inferred from that
set while not explicitly belonging to the set. So, when an attribute A follows
from a set of attributes Y it means that such an FD can be inferred and not
necessarily explicitly given.
Definition (closure of a set of attributes under FDs). The closure of a set of
attributes X ⊆ S under a set FD of functional dependencies, denoted X+, is
the set of those attributes that follow from X.

X+ = {A | A ∈ S, Y → A, Y ⊆ X}

Definition (trivial functional dependencies). An FD X → A is trivial, if
A ∈ X.
Algorithm (closure of attributes). If X ⊆ S, then the closure X+, can be
computed in the following way:

1. Start with X+ = X
2. Set New = {A | A ∈ S,A /∈ X+, A follows from X+}
3. If New = ∅, return X+, else set X+ = X + ∪New and go to 1

Definition (closure of a set of FDs). The closure of a set FD of functional
dependencies, denoted by FD+, is defined as follows:

FD+ = {X → A | X ⊆ S,A ∈ X+, A /∈ X}

The last condition excludes trivial functional dependencies.
Definition (superkey, key). A set of attributes X ⊆ S is a superkey of S, if
S ⊆ X+.
A set of attributes X ⊆ S is a key of S if
• X is a superkey of S
• no proper subset of X is a superkey of S
To give an example of the above concepts, let us start with a table of coun-

tries, currencies, and values of currencies (in USD, on a certain day).

48



country currency value
Sweden SEK 0.12
Finland EUR 1.10
Estonia EUR 1.10

We assume that each country has exactly one currency, and each currency
has exactly one value. This gives us two functional dependencies:

country -> currency

currency -> value

The dependencies are much like implications in the logical sense. Thus they are
transitive, which means that we can also infer the FD

country -> value

The set of attributes that can be inferred from a set of attributes X is the
closure of X. Thus, since value can be inferred from country, if belongs to its
closure. In fact,

country+ = {country, currency, value}

noticing that A → A is always a valid FD, called trivial functional depen-
dency.

Now, a possible key of a relation is a set of attributes whose closure is the
whole signature. Thus country alone is a possible key. However, it is not the
only set that determines all attributes. All of

country

country currency

country value

country currency value

do this. However, all of these sets but the first are just irrelevant extensions of
the first. They are not keys but superkeys, i.e. supersets of keys. We conclude
that country is the only possible key of the relation.

4.4 Modelling SQL key and uniqueness constraints

In SQL, we define one key and additionally we may defina a number of unique
constraints. On the logical level, key and unique constraints are the same. So,
both can be modelled the same way using functional dependencies.

However, to create a mapping between a SQL database definition and the
relational model, we need a way to identify the primary key. We do this by
marking the primary key attributes either by underlining or (in code ASCII
text) with an underscore prefix.
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JustCountries(_name,capital,currency)

currency -> Currencies.code

Currencies(_code,valueInUSD)

In this example, name and code work naturally as keys.
In JustCountries, capital could also work as a key, assuming that no two

countries have the same capital. To match the SQL uniqueness constraint, we
add to our model a similar statement:

JustCountries(_name,capital,currency)

currency -> Currencies.code

unique capital

In the actual database, the key and uniqueness constraints prevent us from
inserting a new country with the same name or capital.

In JustCountries, currency would not work as a key, because many coun-
tries can have the same currency.

In Currencies, valueInUSD could work as a key, if it is unlikely that two
currencies have exactly the same value. This would not be very natural of
course. But the strongest reason of not using valueInUSD as a key is that we
know that some day two currencies might well get the same value.

The keys above contain only one attribute, and as such, they are called sin-
gleton keys. A key can also be composite. This means that many attributes
together form the key. For example, in

PostalCodes(_city,_street,code)

the city and the street together determine the postal code, but the city alone is
not enough. Nor is the street, because many cities may have the same street-
name. For very long streets, we may have to look at the house number as well.
The postal code determines the city but not the street. The code and the street
together would be another possible composite key, but perhaps not as natural.

4.5 Referential constraints

The schemas of the two relations above are

JustCountries(country,capital,currency)

Currencies(code,valueInUSD)

For the integrity of the data, we want to require that all currencies in JustCountries

exist in Currencies. We add to the schema a referential constraint,

JustCountries(country,capital,currency)

JustCountries.currency => Currencies.code
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In the actual database, the referential constraint prevents us from inserting a
currency in JustCountries that does not exist in Currencies. 4

With all information given above, the representations of SQL schemas with
relations is now straightforward.

Example:

Countries (_name,capital,population,currency)

capital => Cities.name

currency => Currencies.code

represents

CREATE TABLE Countries (

name TEXT,

capital TEXT,

population INT,

currency TEXT,

PRIMARY KEY (name),

FOREIGN KEY (capital) REFERENCES Cities (name),

FOREIGN KEY (currency) REFERENCES Currencies (code)

)

4.6 Operations on relations

Set theory provides some standard operations that are also used in databases:

Union: R ∪ S = {t|t ∈ R or t ∈ S}
Intersection: R ∩ S = {t|t ∈ R and t ∈ S}
Difference: R− S = {t|t ∈ R and t /∈ S}
Cartesian product: R× S = {〈t, s〉|t ∈ R and s ∈ S}

However, the database versions are a bit different from set theory:
• Union, intersection, and difference are only valid for relations that have

the same schema.
• Cartesian products are flattened: 〈〈a, b, c〉, 〈d, e〉〉 becomes 〈a, b, c, d, e〉

These standard operations are a part of relational algebra. They are also a
part of SQL (with different notations). But in addition, some other operations
are important - in fact, even more frequently used:

Projection: πa,b,cR = {〈t.a, t.b, t.c〉 | t ∈ R}
Selection: σCR = {t | t ∈ R and C}
Theta join: R ./C S = {〈t, s〉 | t ∈ R and s ∈ S and C}

4It is common to use the arrow (->) as symbol for referential constraints. However, we
chose to use the double arrow => in order not to confuse with functional dependencies.
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In selection and theta join, C is a condition that may refer to the tuples
and their components. In SQL, they correspond to WHERE clauses. The use of
attributes makes them handy. For instance.

σcurrency=EURCountries

selects those rows where the currency is EUR, i.e. the rows for Finland and
Estonia.

A moment’s reflection shows that theta join can be defined as the combina-
tion of selection and cartesian product:

R ./C S = σC(R× S)

The ./ symbol without a condition denotes natural join, which joins tuples
that have the same values of the common attributes. It used to be the basic form
of join, but it is less common nowadays. Actually, maybe it should be avoided
because it relies on the names of attributes without making them explicit. But
here is the definition if you want to see it:

R ./S= {t+ 〈u.c1, . . . , u.ck〉|t ∈ R, u ∈ S, (∀a ∈ A ∩B)(t.a = u.a)}

where A is the attribute set of R, B is the attribute set of S, and B − A =
{c1, . . . , ck}. The + notation means putting together two tuples into one flat-
tened tuple.

An alternative definition expresses natural join in terms of theta join (exer-
cise!). Thus we can conclude: natural join is a special case of theta join, which
itself is a special cases of the cartesian product. Projection is needed on top of
theta join to remove duplicated columns in the way that natural join does.

4.7 Multiple tables and joins

The joining operator supports dividing data to multiple tables. Consider the
following table:
Countries:

name capital currency valueInUSD
Sweden Stockholm SEK 0.12
Finland Helsinki EUR 1.09
Estonia Tallinn EUR 1.09

This table has a redundancy, as the USD value of EUR is repeated twice.
As we will see later, redundancy is usually avoided. For instance, someone
might update the USD value of the currency of Finland but forget Estonia,
which would lead to inconsistency. You can also think of the database as a
story that states some facts about the countries. Normally you would only
state once the fact that EUR is 1.09 USD.

Redundancy can be avoided by splitting the table into two:
JustCountries:
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name capital currency
Sweden Stockholm SEK
Finland Helsinki EUR
Estonia Tallinn EUR

Currencies:

code valueInUSD
SEK 0.12
EUR 1.09

Searching for the USD value of the currency of Sweden now involves a join of
the two tables:

πvalueInUSD(JustCountries ./name=Sweden AND currency=code Currencies)

In SQL, as we have seen in Chapter 2, this is expressed

SELECT valueInUSD

FROM JustCountries, Currencies

WHERE name = ’Sweden’ AND currency = code

Several things can be noted about this translation:
• The SQL operator SELECT corresponds to projection in relation algebra,

not selection!
• In SQL, WHERE corresponds to selection in relational algebra.
• The FROM statement, listing any number of tables, actually forms their

cartesian product.
Now, the SELECT-FROM-WHERE format is actually the most common idiom
of SQL queries. As the FROM forms the cartesian product of potentially many
tables, there is a risk that huge tables get constructed; keep in mind that the
size of a cartesian producs is the product of the sizes of its operand sets. The
query compiler of the DBMS, however, can usually prevent this from happening
by query optimization. In this optimization, it performs a reduction of the SQL
code to something much simpler, typically equivalent to relational algebra code.
We will return to relational algebra and its optimizations in Chapter 6.

4.8 Transitive closure*

The initial relational model was based on the idea of relational algebra as a
measuring stick for the kinds of queries the user can pose. A language equally
expressive as relational algebra was called relationally complete. However, using
relational algebra it is not possible to query for transitive closure, discussed in
this section. See following table, which we can call, say requires.

course requires course
programming computing principles
programming languages programming
compilers programming languages
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This relation is transitive in the sense that if course B is required for course
A, and course C is required for course B, then course C is also required for
course A.

Now, how can we compute all courses required for compilers? We can
directly see, just by selection, that programming languages is required. Joining
requires with itself, and taking a projection and a union, we get a tuple saying
that also programming is required. A further join with projection and union to
the previous results gives us tuples for all the required courses.

If we know exactly how many times we need to join a relation with itself, we
can answer this question. If not, then it is not doable with relational algebra.

For transitive closure computation, let us consider a transitive relation R

that has only two attributes, the first being called A and the second B. Thus, it
only contains one transitive relation and no additional attributes. The following
relation composition for two-attribute relations may be used in search of new
transitive relationships:

R ·R = {〈t.A, s.B〉|t ∈ R, s ∈ R, t.B = s.A}

We can compute the transitive closure, denoted by R+, by repeatedly replac-
ing R by R ∪ (R ·R) as long as the replacement adds new tuples.

If our relational algebra contains attribute renaming, then we can implement
relation composition using join, projection, and attribute renaming.

To implement a practical transitive closure, the following things need to be
considered:
• There may be more than one transitive relationship in a relation as well

as more attributes, and the attributes to be used need to be specified.
• Some transitive relationship may not be just from A to B but also at the

same time from B to A. As an example consider a table where each tuple
contains two countries sharing a border and the order is unimportant.

• There may be some other values we want in the result apart from just
the transitive relationship attributes, and their computation needs to be
specified.

• In some cases that transitive relation may be split into different relations.
It should, however, be possible to join them first into a single table to
avoid this situation.

SQL did not initially contain a transitive closure operation. This lead to the sit-
uation that different SQL implementations may contain different ways to specify
transitive closure. The reader is urged to check from online documentation how
this is done in different language implementations such as PostgreSQL.

4.9 Multiple values

The guiding principle of relational databases is that all types of the components
are atomic. This means that they may not themselves be tuples. This is what
is guaranteed by the flattening of tuples of tuples in the relational version of
the cartesian product. Another thing that is prohibited is list of values. Think
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about, for instance, of a table listing the neighbours of each country. You might
be tempted to write something like

country neighbours
Sweden Finland, Norway
Finland Sweden, Norway, Russia

But this is not possible, since the attributes cannot have list types. One has to
write a new line for each neighbourhood relationship:

country neighbour
Sweden Finland
Sweden Norway
Finland Sweden
Finland Norway
Finland Russia

The elimination of complex values (such as tuples and lists) is known as
the first normal form, 1NF. It is nowadays built in in relational database
systems, where it is impossible to define attributes with complex values. The
database researchers have studied alternative models, the so called Non-First-
Normal-Form (NFNF) models, where relations are allowed to contain relations
as attributes.

4.10 Null values

Set theory does not have a clear meaning for NULL values, and relational
database theory researchers have studied different types of represenations for
missing values. On this basis, we do not have a formal modeling concept for
them. However, this omission does not have any severe implications.
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5 Dependencies and database design

The use of E-R diagrams implies a design that can automatically be produced
from the E-R design. But is it a good design? To approach that question, we
want to have in independent and more formal definition. This is what functional
dependencies are for. They give us a way to formalize some of the properties
of good design. They also give methods and algorithms to carry out the design.
Functional dependencies are independent of E-R diagrams, but they also add
expressive power: they allow us to define relationships between attributes that
E-R diagrams cannot express. In this chapter, we will define the different kinds
of dependencies, study their use, and see how they combine with E-R diagrams.

5.1 Relations vs. functions

Mathematically, a relation can relate an object with many other objects. For
instance, a country can have many neighbours. A function, on the other hand,
relates each object with just one object. For instance, a country has just one
number giving its area in square kilometres (at a given time). In this perspective,
relations are more general than functions.

However, it is important to acknowledge that some relations are functions.
Otherwise, there is a risk of redundancy, repetition of the same information
(in particular, of the same argument-value pair). Redundancy can lead to in-
consistency, if the information that should be the same in different places is
actually not the same. This can happen for instance as a result of updates,
which is known as an update anomaly. To avoid such inconsistency in a
badly designed database, it may be necessary to execute an extensive amount
of database updates as a knock-on effect of a single update. This could be auto-
mated by using triggers (Section 7.13). But it is better to design the database
in a way that avoids the problem altogether.

Intuitively, we can require the following properties from a database design.

1. We can store our data in the database and retrieve it from there as we
stored it.

2. Processing queries and updates should be simple and efficient.

3. Unnecessary data redundancy should be avoided.

4. It should be possible to ensure that the semantic constraints are fulfilled.

These properties are informal, and functional dependencies are an attempt
to formalize them. To get started with the formalization, we need to define a
number of new concepts and notations. Some of the basic concepts have already
been defined in Section 4.2 and 4.3 above: functional dependency (FD), closure,
key, superkey. We will start with a notion of normal forms based on these
concepts, and continue with a more theoretical discussion of the properties of
the normal forms.
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5.2 Dependency-based design workflow

Functional dependency analysis is a mathematical tool for database design. It
is quite different from E-R diagrams and should ideally be used independently
of it. One way to do this (common in textbook examples), is the following
procedure:
1. Collect all attributes into one and the same relation. At this point, it is
enough to consider the relation as a set of attributes,

S = {A1, . . . , An}

2.Specify the functional dependencies and among the attributes. Informally,
• a functional dependency (FD) A→ B means that, if you set the value

of A, there is only one possible value of B. This generalizes to sets of
attributes on both sides of the arrow.

3. From the functional dependencies, calculate the possible keys of the relation.
Informally,
• a key is a combination X of attributes such that X → S, i.e. all attributes

of the relation are determined by the attributes in X.
4. From the FDs and keys together, calculate the violations of normal forms:
• the third normal form (3NF)
• the Boyce-Codd normal form (BCNF)

5. From the normal form violations, compute a decomposition of the relation
to a set of smaller relations. These smaller relations each have their own FDs
and keys. But it is always possible to reach a state with no violations by iterating
the decomposition. The result is a set of tables, each with their own keys, which
have no violations.
6. Decide what decomposition you want. All normal forms have their pros and
cons. At this point, you may want to compare the dependency-based design
with the E-R design.

Dependency-based design is, in a way, more mechanical than E-R design.
In E-R design, you have to decide many things: the ontological status of each
concept (whether it is an entity, attribute, relationship, etc). You also have to
decide the keys of the entities. In dependency analysis, you only have to decide
the basic dependencies. Lots of other dependencies are derived from these by
mechanical rules. Also the possible keys - candidate keys - are mechanically
derived. The decomposition to normal forms is mechanical as well. You just
have to decide what normal form (if any) you want to achieve. In addition, you
have to decide which of the candidate keys to declare as the primary key of
each table.

5.3 Examples of dependencies and normal forms

5.3.1 Functional dependencies, keys, and superkeys

Let us start with a table of countries, currencies, and values of currencies (in
USD, on a certain day).
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country currency value
Sweden SEK 0.12
Finland EUR 1.10
Estonia EUR 1.10

We assume that each country has a unique currency, and each currency has
a unique value. This gives us two functional dependencies:

country -> currency

currency -> value

The dependencies are much like implications in the logical sense. Thus they are
transitive, which means that we can also infer the FD

country -> value

The set of attributes that can be inferred from a set of attributes X is the
closure of X. Thus, since value can be inferred from country, if belongs to its
closure. In fact,

country+ = {country, currency, value}

noticing that A → A is always a valid FD, called trivial functional depen-
dency.

Now, a possible key of a relation is a set of attributes whose closure is the
whole signature. Thus country alone is a possible key. However, it is not the
only set that determines all attributes. All of

country

country currency

country value

country currency value

do this. However, all of these sets but the first are just irrelevant extensions of
the first. They are not keys but superkeys, i.e. supersets of keys. We conclude
that country is the only possible key of the relation.

5.3.2 BCNF

What to do with the other functional dependency, currency -> value? We
could call it a non-key FD, which is not standard terminology, but a handy
term. Looking at the table, we see that it creates a redundancy: the value
is repeated every time a currency occurs. Non-key FD’s are called BCNF
violations. They can be removed by BCNF decomposition: we build a
separate table for each such FD. Here is the result:

country currency
Sweden SEK
Finland EUR
Estonia EUR
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currency value
SEK 0.12
EUR 1.10

These tables have no BCNF violations, and no redundancies either. Each of
them has their own functional dependencies and keys:

Countries (_country, currency)

FD: country -> currency

reference: currency -> Currencies.currency

Currencies (_currency, value)

FD: currency -> value

They also enjoy lossless join: we can reconstruct the original table by a natural
join Countries ./ Currencies.

5.3.3 3NF

Now, let us consider an example where BCNF is not quite so beneficial. Here
is a table with cities, streets, and postal codes.

city street code
Gothenburg Framnäsgatan 41264
Gothenburg Rännvägen 41296
Gothenburg Hörsalsvägen 41296
Stockholm Barnhusgatan 11123

Here is the signature with functional dependencies:

city street code

city street -> code

code -> city

The keys are the composite keys city street and code street. But notice
that the non-key FD code -> city refers back to a key. If we now perform
BCNF decomposition, we obtain the schemas

Cities(_code, city)

FD: code -> city

Streets(_street, _code)

The problem with this decomposition is that we miss one FD, city street ->
code. And in fact, the decomposition does not help remove redundancies. The
original relation is fine as it is. It is already in the third normal form (3NF).
3NF is like BCNF, except that a non-key FD X → A is allowed if A is a part
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of some key. Here, city is a part of a key, so it is fine. (An attribute that is a
part of a key is called prime.)

Since the 3NF requirement is weaker than BCNF, it does not guarantee the
removal of all FD redundancies. But in many cases, the result is actually the
same: the country-currency-value table is an example.

5.3.4 Multivalued dependencies and the fourth normal form

Multivalued dependencies (MVD) are another kind of dependencies. An
MVD X →→ Y says that X determines Y independently of all other attributes.
(The precise definition is a bit complicated, and is given in Section 5.5.1.)

Here is an example: a table of countries, their export products, and their
neighbours:

country product neighbour
Sweden cars Norway
Sweden paper Finland
Sweden cars Finland
Sweden paper Norway

In this table, Sweden exports both cars and paper, and it has both Finland
and Norway as neighbours. Intuitively, export products and neighbours are two
independent facts about Sweden: they have nothing to do with each other. Thus
we can say that the products of a country are independent of its neighbours.
This can be expressed as a multivalued dependency,

country ->> product

Why ”multivalued”? Because the country can have several products, and not
just one, as in a functional dependency. Another term suggested for multivalued
dependency is independency: the products of a country are independent of
its neighbours.

Because of the MVD, the above table has a redundancy: both cars and paper
and Norway and Finland are mentioned repeatedly. The formal expression for
this an 4NF violation: an MVD where the LHS is not a superkey. The 4NF
decomposition splits the table in accordance to the violating MVD:

country product
Sweden cars
Sweden paper

country neighbour
Sweden Norway
Sweden Finland

These tables are free from violations. Hence they are in 4NF. Their natural join
losslessly returns the original table.
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In the previous example, we could actually prove the MVD by looking at the
tuples (see definition of MVD below). Finding a provable MVD in an instance of
a database can be difficult, because so many combinations must be present. An
MVD might of course be assumed to hold as a part of the domain description.
This can lead to a better structure and smaller tables. However, the natural
join from those tables can produce combinations not existing in the reality.

5.4 A bigger example

Let us collect everything about a domain into one big table:

country capital popCountry popCapital currency value product neighbour

We identify some functional dependencies and multivalued dependencies:

country -> capital popCountry currency

capital -> country popCapital

currency -> value

country ->> product

country ->> neighbour

One possible BCNF decomposition gives the following tables:

_country capital popCountry popCapital currency

_currency value

_country _product _neighbour

This looks like a good structure, except for the last table. Applying 4NF de-
composition to this gives the final result

_country capital popCountry popCapital currency

_currency value

_country _product

_country _neighbour

A word of warning: mechanical decomposition can randomly choose some other
dependencies to split on, and lead to less natural results. For instance, it can
use capital rather than country as the key of the first table.

In the next section, we will show the precise algorithms that are involved,
and which you should learn to execute by hand. The definitions might look
more scary than they actually are. Most of the concepts are intuitively simple,
but their precise definitions can require some details that one usually doesn’t
think about. The notion of MVD is usually the most difficult one.

In the sections that follow, we will go a bit deeper in analysing what makes
the normal forms beneficial and what design questions they raise. In the last
section of this chapter, we will look at the support given by the Query Converter
(qconv) for dependency analysis and normal form decomposition.
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5.5 Mathematical definitions for dependencies and nor-
mal forms

5.5.1 Relationas, tuples, and depencencies

Before introducing new concepts, we will repeat some of the definitions about
tuples from Chapter 4. We will most of the time speak of relations just as their
sets of attributes. Also the dependency algorithms refer only to the attributes.
But the definitions in the end do refer to tuples. By tuples, we will now mean
labelled tuples (records) rather than set-theoretic ordered tuples as in Chapter 4.
Definition (tuple, attribute, value). A tuple has the form

{A1 = v1, . . . , An = vn}

where A1, . . . , An are attributes and v1, . . . , vn are their values.
Definition (signature, relation). The signature of a tuple, S, is the set of
all its attributes, {A1, . . . , An}. A relation R of signature S is a set of tuples
with signature S. But we will sometimes also say ”relation” when we mean the
signature itself.
Definition (projection). If t is a tuple of a relation with signature S, the
projection t.Ai computes to the value vi.
Definition (simultaneous projection). If X is a set of attributes {B1, . . . , Bm} ⊆
S and t is a tuple of a relation with signature S, we can form a simultaneous
projection,

t.X = {B1 = t.B1, . . . , Bm = t.Bm}

Definition (functional dependency, FD). Assume X is a set of attributes and A
an attribute, all belonging to a signature S. Then A is functionally dependent
on X in the relation R, written X → A, if
• for all tuples t,u in R, if t.X = u.X then t.A = u.A.

If Y is a set of attributes, we write X → Y to mean that X → A for every A
in Y.
Definition (multivalued dependency, MVD). Let X,Y,Z be disjoint subsets of a
signature S such that S = X∪Y ∪Z. Then Y has a multivalued dependency
on X in R, written X →→ Y , if
• for all tuples t,u in R, if t.X = u.X then there is a tuple v in R such that

– v.X = t.X
– v.Y = t.Y
– v.Z = u.Z

An alternative notation is X →→ Y | Z, emphasizing that Y is independent
of Z.

To see the power of these definitions, we can now easily prove a slightly
surprising result saying that every FD is an MVD:
Theorem. If X → Y then X →→ Y
Proof. Assume that t,u are tuples in R such that t.X = u.X. We select v = u.
This is a good choice, because

1 u.X = t.X by assumption
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2 u.Y = t.Y by the functional dependency X → Y
3 u.Z = u.Z by reflexivity of identity.

Note. MVDs are symmetric on their right hand side: if X →→ Y , which means
X →→ Y | Z where Z = S −X − Y , then also X →→ Z. Thus in the example in
Section 5.3.4, we could have written, equivalently,

country ->> exportedTo

5.5.2 Closures, keys, and superkeys

As a starting point of dependency analysis, a relation is charaterized by its
signature S, its functional dependencies FD, and its multivalued dependencies
MVD. We start with things where we don’t need MVD.
Assume thus a signature (i.e. set of attributes) S and a set FD of functional
dependencies.
Definition. An attribute A follows from a set of attributes Y, if there is an
FD X → A such that X ⊆ Y .
Definition (closure of a set of attributes under FDs). The closure of a set of
attributes X ⊆ S under a set FD of functional dependencies, denoted X+, is
the set of those attributes that follow from X.
Algorithm (closure of attributes). If X ⊆ S, then the closure X+, can be
computed in the following way:

1. Start with X+ = X
2. Set New = {A | A ∈ S,A /∈ X+, A follows from X+}
3. If New = ∅, return X+, else set X+ = X + ∪New and go to 1

Definition (closure of a set of FDs). The closure of a set FD of functional
dependencies, denoted by FD+, is defined as follows:

FD+ = {X → A | X ⊆ S,A ∈ X+, A /∈ X}

The last condition excludes trivial functional dependencies.
Definition (trivial functional dependencies). An FD X → A is trivial, if
A ∈ X.
Definition (superkey, key). A set of attributes X ⊆ S is a superkey of S, if
S ⊆ X+.
A set of attributes X ⊆ S is a key of S if
• X is a superkey of S
• no proper subset of X is a superkey of S

5.5.3 Decomposition algorithms

Definition (Boyce-Codd Normal Form, BCNF violation). A functional depen-
dency X → A violates BCNF if
• X is not a superkey
• the dependency is not trivial
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A relation is in Boyce-Codd Normal Form (BCNF) if it has no BCNF
violations.
Note. Any trivial dependency A→ A always holds even if A is not a superkey.
Definition (prime). An attribute A is prime if it belongs to some key.
Definition (Third Normal Form, 3NF violation). A functional dependency
X → A violates 3NF if
• X is not a superkey
• the dependency is not trivial
• A is not prime

Note. 3NF is a weaker normal form than BCNF: Any violation X → A of 3NF
is also a violation of BCNF, because it says that X is not a superkey. Hence,
any relation that is in BCNF is also in 3NF.
Definition (trivial multivalued dependency). A multivalued dependencyX →→ A
is trivial if Y ⊆ X or X ∪ Y = S.
Definition (Fourth Normal Form, 4NF violation). A multivalued dependency
X →→ A violates 4NF if
• X is not a superkey
• the MVD is not trivial.

Note. 4NF is a stronger normal form than BCNF: If X → A violates BCNF,
then it also violates 4NF, because
• it is an MVD by the theorem above
• it is not trivial, because

– if {A} ⊆ X, then X → A is a trivial FD and cannot violate BCNF
– if X ∪ {A} = S, then X is a superkey and X → A cannot violate

BCNF
Algorithm (BCNF decomposition). Consider a relation R with signature S
and a set F of functional dependencies. R can be brought to BCNF by the
following steps:

1. If R has no BCNF violations, return R
2. If R has a violating functional dependency X → A, decompose R to two

relations

• R1 with signature X ∪ {A}
• R2 with signature S − {A}

3. Apply the above steps to R1 and R2 with functional dependencies pro-
jected to the attributes contained in each of them.

One can combine several violations with the same left-hand-side X to produce
fewer tables. Then the violation X → Y decomposes R to R1(X,Y ) and R2(S−
Y ).
Note. Step 3 of the BCNF decomposition algorithm involves the projection
of functional dependencies. This can in general be a complex procedure.
However, for most cases handled during this course, it is enough just to filter
out those dependencies that do not appear in the new relations.
Algorithm (4NF decomposition). Consider a relation R with signature S and
a set M of multivalued dependencies. R can be brought to 4NF by the following
steps:
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1. If R has no 4NF violations, return R
2. If R has a violating multivalued dependency X →→ Y , decompose R to

two relations

• R1 with signature X ∪ {Y }
• R2 with signature S − Y

3. Apply the above steps to R1 and R2
Note. This algorithm has the same structure as the BCNF decomposition.
For 3NF decomposition, a very different algorithm is used, seemingly with no
iteration. But an iteration can be needed to compute the minimal basis of the
FD set.
Concept (minimal basis of a set of functional dependencies; not a rigorous
definition). A minimal basis of a set F of functional dependencies is a set F-
that implies all dependencies in F. It is obtained by first weakening the left hand
sides and then dropping out dependencies that follow by transitivity. Weakening
an LHS in X → A means finding a minimal subset of X such that A can still
be derived from F-.
Algorithm (3NF decomposition). Consider a relation R with a set F of func-
tional dependencies.

1. If R has no 3NF violations, return R.
2. If R has 3NF violations,

• compute a minimal basis of F- of F
• group F- by the left hand side, i.e. so that all depenencies X → A

are grouped together
• for each of the groups, return the schema XA1 . . . An with the com-

mon LHS and all the RHSs
• if one of the schemas contains a key of R, these groups are enough;

otherwise, add a schema containing just some key
Example (minimal basis). Consider the schema

country currency value

country -> currency

country -> value

currency -> value

It has one 3NF violation: currency -> value. Moreover, the FD set is not a
minimal basis: the second FD can be dropped because it follows from the first
and the third ones by transitivity. Hence we have a minimal basis

country -> currency

currency -> value

Applying 3NF decomposition to this gives us two schemas:

country currency

currency value

i.e. exactly the same ones as we would obtain by BCNF decomposition. These
relations are hence not only 3NF but also BCNF.
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5.6 More definitions for functional dependencies*

Let f = X → Y be a functional dependency. We call X the left hand side
of f and Y the right hand side of f . We assume that all left hand sides are
non-empty.

We say that a functional dependency X → Y is embedded in a relation
schema R if X ∪ Y ⊆ R. For a set of dependencies F , we denote the set of left
hand sides of F by LHS(F ).

Usually, functional dependencies are given as semantic constraints, and only
those database states where all dependencies hold in all respective relations are
considered legal; the constraints can be used in the design process as well as later
when the database is being used. As an input to database design, the depen-
dencies are normally given before the relation schemas are being decided upon.
With this purpose in mind, we may say that a set F of functional dependencies
is given over a universe U .

Some dependencies may get embedded in some relation schema in the database
schema while some may not. If all dependencies in a given set of dependencies
F are embedded in some relation schema of a database schema R, we say that
F is embedded in R.

The idea of a relation satisfying a functional dependency is fairly simple. It
is not quite as clear what it should mean for a database to satisfy a functional
dependency.

A containing instance i of a database r over a database scheme R is such a
relation over the underlying universe U that each relation r ∈ r, where r is a
relation over R ∈ R, is a subset of πR(i).

Let U be a universe, R a database schema over U , R ∈ R, and let X ⊆ U ,
Y ⊆ U . We say that a database r over R satisfies the functional dependency
X → Y if there is a containing instance i for r such that i satisfies X → Y .
If there is such a containing instance i that i satisfies all the given functional
dependencies, then i is called a weak instance for the database r. Further, if i
is a subset of all other weak instances for r, then i is a representative instance
for r.

Whether a database satisfies a set of functional dependencies can be checked
with a relatively simple method called the chase. The chase proceeds by ma-
nipulating a tableau, which is like a relation except that in addition to values
from domains of attributes, it may also contain variables as elements.

We apply the notations and terminology for relations to tableau without
giving them explicitly. This should not raise any ambiguities. We construct the
initial tableau as input for the chase using the following definition.
Definition (Database tableau)
Let R be a database schema over a universe U and let r be a database over
R. Let n be the total number of tuples in the relations of r, and assume that
the tuples are numbered from 1 to n. Assume also that the attributes in U are
numbered from 1 to k, and we will denote the attribute with number j by Aj .
Let i be the number of a tuple t in a relation r over a relation schema R. We
define ti[Aj ], 1 ≤ j ≤ k, to be t[Aj ], if Aj ∈ R, and v(i,j), a nondistinguished
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variable, otherwise. We assume that v(i,j) 6= v(i′,j′), if i 6= i′ or j 6= j′. In this
way, we get a tuple ti over U for each tuple in the relations of r. The initial
tableau for r is a tableau over U consisting of the tuples ti, 1 ≤ i ≤ n.

The chase is defined as follows.
Algorithm (Chase)

• Input: An initial tableau for a database r and a set of functional depen-
dencies F

• Outout: A modified tableau, denoted by chase(r, F )

1. Apply the following rule as long as possible: If there is a functional depen-
dency X→ Y in F and tuples t and t′ in the tableau such that t[X] = t′[X]
and t′[A] is a nondistinguished variable, replace t′[A] by t[A] everywhere
in the tableau.

Now, a database r satisfies F if and only if chase(r, F ) satisfies F . If
chase(r, F ) satisfies F , then a representative instance (possibly containing null
values) for r can be obtained from chase(r, F ) simply by replacing all nondis-
tinguished variables by null values.

Consider an application with professors, students and books. Each professor,
student, and book has a unique name (attributes Professor, Student, and Book).

We use a relation over relation schema Instructs on(Professor, Book) to record
which professor gives instruction on which book. A relation over relation schema
Studies(Student, Book) tells which student studies which book and the relation
schema Supervises(Professor, Student) is for a relation that contains information
on which professor supervises which student.

We now assume that each student only takes instruction from one professor
(Student → Professor) and only one professor gives supervision on any book
(Book → Professor). We also assume that these are the only given functional
dependencies.

In our example, we will use j students with names s0, ..., sj , two professors
with names p0 and pj , and j books with names b0, ..., bj , where j is a positive
integer. In our database we have three relations. A relation r1 over Instructs on
is empty, and the relation r2 over Studies and r3 over Supervises are shown below.

r2 =

Student Book
s0 b0
s1 b0
s1 b1
s2 b1
s2 b2
· ·
· ·
· ·
sn bj
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r3 =
Professor Student
p0 s0

The initial tableau is given below.

Professor Student Book
p0 s0 v(1,3)
v(2,1) s0 b0
v(3,1) s1 b0
v(4,1) s1 b1
v(5,1) s2 b1
v(6,1) s2 b2
· · ·
· · ·
· · ·
v(j+1,1) sj bj

The chasing could now, for instance, proceed as follows. Since we have Stu-
dent → Professor, we can replace v(2,1) by p0. Using the functional dependency
Book → Professor, we can replace v(3,1) by p0. By repeating applications of
the dependencies Student → Professor and Book → Professor, each v(i,1),
2 ≤ i ≤ j + 1 will be replaced by p0, and, thus, the result of the chase will be
as shown below.

Professor Student Book
p0 s0 v(1,3)
p0 s0 b0
p0 s1 b0
p0 s1 b1
p0 s2 b1
p0 s2 b2
· · ·
· · ·
· · ·
p0 sj bj

It is easy to see that the result satisfies all the given functional dependencies,
and, thus, if we take v(1,3) to be a null value, it is also the representative in-
stance for our database. As a consequence, our database also satisfies the given
functional dependencies.

Assume now that the relation r2 over Supervises would also contain a tuple
(pj , sj). Now, the tableau produced by the chase would have all the tuples as in
the earlier case and a tuple (pj , sj , v(j+2,3)). As this tableau does not satisfy the
functional dependency Student → Professor, it can be seen that this modified
database does not satisfy the given functional dependencies.
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5.7 Design intuition*

To improve our intuition, let us first illustrate some examples of potentially
problematic designs. Consider, again, the table below on professor who teach
students and on which course. Is this design problematic? This depends on the
semantic constraints, ie. the functional dependencies. Suppose, first, that

professor course student
Ranta Compiler construction Anders
Ranta Compiler construction Lena
Kemp Data Science Anders
Nummenmaa Database systems Lena

Consider, first, splitting this table into two as follows. The first table tells
who is teaching which student and the second tells who is studying which course.

professor student
Ranta Anders
Ranta Lena
Kemp Anders
Nummenmaa Lena

course student
Compiler construction Anders
Compiler construction Lena
Data Science Anders
Database systems Lena

If we join these table on students, we get the following table.

professor course student
Ranta Compiler construction Anders
Ranta Compiler construction Lena
Ranta Data Science Anders
Ranta Database systems Lena
Kemp Data Science Anders
Kemp Compiler construction Anders
Nummenmaa Compile construction Lena
Nummenmaa Database systems Lena

This is obviously not what we want. The table includes rows that were
not in our original table. We say that the way to join the data is ”lossy” -
however lossy does not mean losing data, which indeed did not happen, but
losing information on which pieces of data belonged together.

Our second attempt is to store the data with two tables, where the first table
tells who is teaching which course and the second tells who is studying which
course.

69



professor course
Ranta Compiler construction
Kemp Data Science
Nummenmaa Database systems

course student
Compiler construction Anders
Compiler construction Lena
Data Science Anders
Database systems Lena

If we join the tables on book, we get the original table back. In this case our
join is ”lossless” - no information was lost. In this case, though, the losslessness
is based on the fact that no course is being taught by two professors. If e.g.
Nummenmaa starts to teach Data Science to Kati, then the situation with
losslessness changes. If, however, we know that each professor always only
teaches one course, then we will be safe with joining on course and we always
get a lossless join. In this case our database design would have the lossless join
property.

Our initial design with just one table had - trivially - no problems with loss-
lessness. Why would we not just stick with it? If we know that each professor
only teaches one course, then using just one table usually introduces redundant
information that is repeated in different rows. Let’s assume, again, that each
course is only taught by one professor. If all data is stored in just one table
and the professors Ranta and Nummenmaa swap courses so that Nummenmaa
will teach compile construction and Ranta will teach Database systesm, then we
would need to update a whole lot of rows in the tables (well, in our initial exam-
ple just 3, but potentially). If the data is split into two tables with the lossless
design, then only the two rows in (professor,course) table need to updated, no
matter how many students study these courses. So, the solution where the table
is split seems beneficial.

It seems, right enough, that the key structure plays a central role in solving
these problems. But as a modeling construct, it is not enough. Suppose, now,
that each student studies each course with one particular professor, and let us
suppose the following table, with (student, course) as the key.

professor course student
Ranta Compiler construction Anders
Ranta Compiler construction Lena
Kemp Data Science Anders
Nummenmaa Database systems Lena
Nummenmaa Distributed systems Anders

This would mean that it is impossible to add a row where Anders studies
Compile construction under the instruction from Nummenmaa.

Let us make a further assumption that each course is only taught by at most
one professor. There is no way we can model this information with keys, since
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course is and cannot be a key - e.g. Ranta would be a duplicate key value.
\footnote{This is example is better known as the (City, Street, Zip) example,
where there is a unique Zip for each (City,Street) pair and a unique City for
each Zip. } Also, in our table we have redundant information on who is teaching
which course, since the course is always repeated with the professor.

We may try to get rid of the redundancy by splitting the table into two, as
follows.

professor course
Ranta Compiler construction
Kemp Data Science
Nummenmaa Database systems

professor student
Ranta Anders
Ranta Lena
Kemp Anders
Nummenmaa Lena

We got rid of the redundant data, but other problems appeared. Joining the
tables on professor we get e.g. a row (Kemp, Anders, Data Science)

Let us now consider a design where we have three tables

professor course
Ranta Compiler construction
Kemp Data Science
Nummenmaa Database systems

professor student
Ranta Anders
Ranta Lena
Kemp Anders
Nummenmaa Lena

course student
Compiler construction Anders
Compiler construction Lena
Data Science Anders
Database systems Lena

This effectively eliminates redundant data. Let us suppose now that the
only key-like constraint is that each student studies each course with exactly
one professor. Then, when updates take place, we can only check this constraint
by joining the tables. Besides, as the reader is urged to check, the joins are not
lossless. Lossy joins follow from the fact that there are no foreign keys.
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If no functional dependencies exist, then the three-table desing is lossless and
there is no constraint checking problem. However, then intuitive querying be-
comes more problematic as there are multiple relationships between attributes.
E.g. there is a relationship between course and student directly stored, but an-
other one exists and it can be realized by joining the two other tables. Further,
in some high-level query systems, as e.g. using natural language, the user may
want to just ask for professors and students. With two existing interpretations,
there is some ambiguity.

5.8 More definitions and algorithms for database design*

Definition (dependency preservation). We call the database D dependency
preserving with respect to a set of functional dependencies FD, if D embeds a
cover of FD, that is, we can infer any given functional dependency in FD from
the dependencies in the relations of D.

Definition (lossless join property). Let D= {R 1, R 2, . . . , R n} be a database
schema over U . We say that D has the lossless join property if every relation
r U over U decomposes losslessly onto R 1, ..., R n. If D has the lossless join
property, we also say that D is lossless. Otherwise, we say that D is lossy.

These two concepts are related: it is known that a dependency preserving
database D (i.e. set of relations) is lossless if and only if it contains a relation
R such that closure of R contains all attributes in D.

Now, consider redundancy in the context of a single relation. We have seen
above that potential problems with redundancy appeared when there were other
functional dependencies than those describing a key. An example remedy was
BCNF decomposition, eliminating functional dependencies where the LHS is not
a superkey. It can be shown that when we consider a single update (inserting or
deleting a tuple) in a single-relation database, then we cannot have an arbitrary
number of required ”knock-on” updates if and only if that relation is in BCNF.
This makes BCNF a strong required property.

The BCNF decomposition algorithm always produces databases in BCNF.
There is a problem, though, that this may violate dependency preservation. Let
us review, again, the City-Stree-Zip example, with dependencies City,Street ->
Zip, Zip->City, and a relation (City,Street,Zip). If we decompose with Zip-City,
then the database is no longer dependency preserving. If we do not decompose,
then the database is not in BCNF. In such a case, we can achieve a weaker
property, the third normal form (3NF).

Since the 3NF requirement is weaker than BCNF, it does not guarantee
the removal of all FD redundancies. But in many cases, the result is actually
the same: the country-currency-value table is an example. The bad news with
3NF is that potential knock-on updates happen on the key values, and as keys
may be used in foreign keys and indexes on data, this may be computationally
expensive.
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5.9 Acyclicity*

We found BCNF to be a strong property in tackling the knock-on effects of
updates. However, in the case of multiple relations BCNF is not enough alone
to guarantee a constant amount of knock-on updates. Consider the following
example.

professor course
p0 s0

professor student

student course
s0 c0
s1 c0
s1 c1
s2 c1
s2 c2
...
sn cn

Let us assume that the functional dependencies are student -> professor,
course -> professor. and we add the tuple (pn,cn) to (professor,course) rela-
tion. We can check the functional dependency using the Chase. The start-up
configuration is

student course professor
s0 p0
s0 c0
s1 c0
s1 c1
s2 c1
s2 c2
...
sn cn
sn pn

Using the Chase we find that each empty value for professor has to be p0,
but then we have a row with values (sn,p0) and (sn,pn), which violates the
functional dependency student -> professor.

What a disappointment! Boyce-Codd normal form, dependency preservation
and lossless join are not enough to guarantee a trouble-free database design. But
what is the formal property associated with this? This is obviously related to
different ways in which the same attributes are connected.

A hypergraph consist of a set of nodes N and a set of hyperedges E. The
hyperedges are nonempty subsets of N. This means that we can identify the
attributes of a universe with nodes of a hypergraph and the relation schemas
with hyperedges of a hypergraph.
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A suphypergraph of a hypergraph (N,E) is a pair (N,E’), where each hyper-
edge in E’ is a subset of E.

There are different definitions of acyclicity of hypergraphs, but we are only
interested in so called γ-acyclicity, which we call simply acyclicity.

A γ-cycle in a hypergraph is a sequence R1, A1, ..., Rk, Ak, Rk+1 of alternat-
ing edges and nodes such that

(i) A1, ..., Ak are distinct nodes,

(ii) R1, ..., Rk are distinct edges, and R1 = Rk+1,

(iii) k ≥ 3,

(iv) for each Ai, 1 ≤ i ≤ k, we have Ai ∈ Ri, Ai ∈ Ri+1, and,

(v) for each Ai, 1 ≤ i < k, we have Ai 6∈ Rj , if j 6= i, j 6= i+ 1.

Intuitively, one can ”walk” a round in the numbered order from the first
relation schema by connecting nodes. Apart from Ak the connecting nodes are
not supposed to appear in other relation schemas apart from the two they are
specifically connecting.

A hypergraph (database) is γ-acyclic, if it contains no γ-cycles, otherwise it
is γ-cyclic.

As an exercise, the reader is urged to check that (professor, student), (stu-
dent,course),(course, professor) is γ-cyclic, whereas (professor,student,course),
(course,book), (professor,course) is not.

Lossless dependency-preserving γ-acyclic BCNF databases have very strong
properties. First of all, there will only be a constant amount of knock-on updates
for any insert or delete operation. Query processing is also known to be simple
and efficient. Further, it is known that for any pair of attributes in such an
acyclic database, there is a unique minimal connection (simple semantics), which
can be used e.g. in natural language query processing. When given a set of
attributes X, we can join the necessary relations and project them onto X with
simple relational algebra operations.

5.10 Optimal database design*

However, when and how are these nice properties achievable? The theory is
complicated, but we will just some motivating examples and the results. The
problematic sets of functional depdencies have two characteristic sets of prob-
lems. The City, Street, Zip problem was caused because one functional depen-
dency determined a proper subset of another functional dependency. This is
called splitting. Another problematic situation is where the right hand sides
of functional dependencies have non-empty intersections, and, finally, the third
problematic situation may be where the left hand sides have non-empty inter-
sections.

To cut a relatively long story very short, we just conclude that in practice
when possible, that is, when the problematic situations do not exist or can be
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solved, the following algorithm will compute a database schema that is lossless,
dependency preserving, acyclic, and in BNFC.

For shortness, we use the following notations in the algorithm. If X → Y
but there is no X ′ ⊂ Y such that X ′ → Y , then we say that X → Y is full and
we write X 7→ Y . Further, we write X+

f = {A | X 7→ A}, X→ = X+ \X and

X 7→ = X+
f \X.

Algorithm (A variant of Lien’s decomposition)

• Input: A universe U , a set of functional dependencies F over U , and a
p-ordering X1, X2, ..., Xn of LHS(F )

• Output: A lossless database schema over U

1. Order LHS(F ) so that for any Xi, Xj ∈ LHS(F ) it holds:

(a) If Xi ⊂ Xj , then i ≤ j.
(b) If Xj → Xi and Xi 6→ Xj , then i < j.

2. C← {U}.

3. For each i from 1 to n do

for each Y ∈ C such that Xi ⊂ Y and Xi splits Y , assign
C← (C \ {Y }) ∪ {X+

i ∩ Y } ∪ {Y \X→
i }.

4. Output C.

Example(Lien’s Algorithm) Let U = ABCDEGH, and F = {ABC →
G,BC → D, AE → H}. A possible ordering of the left hand sides isAE,BC,ABC.
With this ordering, Lien’s decomposition produces the database schema
{ABCE,ABCG,BCD,AEH}.

These properties are complicated but the good news is that they are (or will
be) implemented in the query converter FD design studio. We urge the reader
to try this out.

The dependency theory contains other types of dependencies. We will discuss
shortly the inclusion dependencies and the multivalued dependencies.

5.11 Inclusion dependencies*

The inclusion dependencies model the referential constraints. The normal no-
tatation for inclusion dependencies is R(X) ⊂ S(Y ) which which means nearly
the same as adding each Ai− > S.Bi in the definition of R, where X = Ai . . . Ak

and Y = Bi . . . Bk.
The difference in notation is that the inclusion dependency can be written

outside of a relation definition, and it can pack up several attributes into a single
statement. Further, there is no requirement that X is a key of X or Y is a key
for S.

Thinking about database design starting from a set of attributes, initially
there are no inclusion dependendenies, whereas the E-R design does produce
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them. However, decompositions produce them. Whenever we decompose a
relation schema R with an FD X → Y where X ⊂ R, Y ⊂ R, producing
relation schemas S = X ∪ Y and R′ = R \ Y , then obviously X is a superkey
of S and the idea of the decomposition is to recover the decomposed data by
joining on X, and, consequently, an inclusion depdendency S.X ′ ⊆ R′.X would
be in order.

If there is no further FD to decompose R′, then X is a key and the inclusion
dependecy can be used to create referential constraints. If there are further FDs
to decompose R′, then the inclusion depdencies must be adapted accordingly.
The details are left as an exercise to the interested reader. 5

5.12 Combining practice and theory in database design

Until now, we have introduced a basic method to produce database designs from
ER diagrams and on the other hand we have characterized good designs and we
have given design algorithms based on the use of dependencies.

Dependency-based design is, in a way, more mechanical than E-R design.
In E-R design, you have to decide many things: the ontological status of each
concept (whether it is an entity, attribute, relationship, etc). You also have to
decide the keys of the entities. In dependency analysis, you only have to decide
the basic dependencies. Lots of other dependencies are derived from these by
mechanical rules. Also the possible keys - candidate keys - are mechanically
derived. The decomposition to normal forms is mechanical as well. You just
have to decide what normal form (if any) you want to achieve. In addition, you
have to decide which of the candidate keys to declare as the primary key of
each table.

Obviously, we need to consider how we can combine ER design and depen-
dencies. First of all, some FDs can be directly derived from an ER diagram. In
fact, we can use ER diagrams to produce all FDs, if we allow separate diagrams
or parts of them to give additional information on dependencies, and the at-
tributes naming is considered global. Thereby, we can separately construct an
entity with City, Street, and Zip, and (City,Street) as key, and another entity
with the attributes Zip and City, with Zip as the key. Another alternative is
just to input additional FDs in a separate text file or similar.

A practical option, not based on the specific design theory above, is to
produce the relations from the ER diagram and then further decompose them
using the FDs. This solution is practical in the sense that designs produced
from ER diagrams are most likely to avoid nontrivial MVDs and therefore only
FD decomposition or similar is needed for the parts of the design where there
are additional FDs emerging from the additional ER diagram fragments.

You need to decide what decomposition you want. All normal forms have
their pros and cons. At this point, you may want to compare the dependency-
based design with the E-R design. This also depends on the application. If
query performance is crucial and one wants to avoid joins, and updates seldom

5Should we extend the details or give a reference to the book by Mannila and Räihä?
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happen or are otherwise known to be feasible on pre-joined data, then you may
decompose less or store joins directly.

5.13 Relation analysis in the Query Converter*

The qconv command f reads a relation from a file and prints out relation info:
• the closure of functional dependencies
• superkeys
• keys
• normal form violations

The command n reads a relation from the same file format and prints out de-
compositions in 3NF, BCNF, and 4NF.

The format of these files is as in the following example:

country capital popCountry popCapital currency value product exportTo

country -> capital popCountry currency

capital -> popCapital

currency -> value

country ->> product

The Haskell code in

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-
converter/Fundep.hs

is a direct rendering of the mathematical definitions. There is a lot of room for
optimizations, but as long as the number of attributes is within the usual limits
of textbook exercises, the naive algorithms work perfectly well.

5.14 Further reading on normal forms and functional de-
pendencies*

The following is a practical guide going through all the normal forms from 1NF
to 5NF:

William Kent, ”A Simple Guide to Five Normal Forms in Relational
Database Theory”, Communications of the ACM 26(2), Feb. 1983,
120-125. http://www.bkent.net/Doc/simple5.htm
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6 Relational algebra and query compilation

Relational algebra is a mathematical query language. It is much simpler than
SQL, as it has only a few operations, each denoted by Greek letters or mathe-
matical symbols. Being so simple, relational algebra is more difficult to use for
complex queries than SQL. But for the same reason, it is easier to analyse and
optimize. Relational algebra is therefore useful as an intermediate language in a
database management system. SQL queries can be first translated to relational
algebra, which is optimized before it is executed. This chapter will tell the basics
about this translation and some query optimizations.

6.1 The compiler pipeline

When you write an SQL query in PostgreSQL or some other DBMS, the follow-
ing things happen:

1. Lexing: the query string is analysed into a sequence of words.
2. Parsing: the sequence of words is analysed into a syntax tree.
3. Type checking: the syntax tree is checked for semantic well-formedness,

for instance that you are not trying to multiply strings but only numbers,
and that the names of tables and attributes actually exist in the database.

4. Logical query plan generation: the SQL syntax tree is converted to
a logical query plan, which is a relational algebra expression (actually,
its syntax tree).

5. Optimization: the relational algebra expression is converted to another
relational algebra expression, which is more efficient to execute.

6. Physical query plan generation: the optimized relational algebra ex-
pression is converted to a physical query plan, which is a sequence of
algorithm calls.

7. Query execution: the physical query plan is executed to produce the
result of the query.

We will in this chapter focus on the logical query plan generation. We will
also say a few words about optimization, which is perhaps the clearest practical
reason for the use of relational algebra.

6.2 Relational algebra

Relational algebra is in principle at least as powerful as SQL as a query language,
because basic SQL queries can be translated to it. Yet the language is much
smaller. In practice the comparision is a bit more complicated, because there
are different variants of both SQL and relational algebra.

The grammar of the relational algebra used in this book is shown in Figure 4.

Since this is the ”official” relational algebra (from the textbook), a cou-
ple of SQL constructs cannot however be treated: sorting in DESC order and
aggregation of DISTINCT values. Both of them would be easy to add. More
imporatantly, this language extends the algebra of Chapter 4 in several ways.
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relation ::=

relname name of relation (can be used alone)

| σcondition relation selection (sigma) WHERE

| πprojection+ relation projection (pi) SELECT

| ρrelname (attribute+)? relation renaming (rho) AS

| γattribute*,aggregationexp+ relation

grouping (gamma) GROUP BY, HAVING

| τexpression+ relation sorting (tau) ORDER BY

| δ relation removing duplicates (delta) DISTINCT

| relation × relation cartesian product FROM, CROSS JOIN

| relation ∪ relation union UNION

| relation ∩ relation intersection INTERSECT

| relation − relation difference EXCEPT

| relation ./ relation NATURAL JOIN

| relation ./condition relation theta join JOIN ON

| relation ./attribute+ relation INNER JOIN

| relation ./oattribute+ relation FULL OUTER JOIN

| relation ./oLattribute+ relation LEFT OUTER JOIN

| relation ./oRattribute+ relation RIGHT OUTER JOIN

projection ::=

expression expression, can be just an attribute

| expression → attribute rename projected expression AS

aggregationexp ::=

aggregation( *|attribute ) without renaming

| aggregation( *|attribute ) → attribute with renaming AS

expression, condition, aggregation, attribute as in SQL, Figure 9,
but excluding subqueries

Figure 4: A grammar of relational algebra. Operator names and other explana-
tions in boldface. Corresponding SQL keywords in CAPITAL TYPEWRITER.
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The most important extension is that it operates on multisets (turned to sets
by δ,∪,∩) and recognizes order (controlled by τ).

6.3 Variants of algebraic notation

The standard notation used in textbooks and these notes is Greek letter +
subscript attributes/conditions + relation. This could be made more readable
by using a tree diagram. For example,

πA.name,B.capitalσA.name=B.capital(ρACountries× ρBCountries)

6.4 From SQL to relational algebra

The translation from SQL to relational algebra is usually straightforward. It is
mostly compositional in the sense that each SQL construct has a determinate
algebra construct that it translates to. For expressions, conditions, aggregations,
and attributes, it is trivial, since they need not be changed at all. Figure 4 shows
the correspondences as a kind of a dictionary, without exactly specifying how
the syntax is translated.

The most problematic cases to deal with are
• grouping expressions
• subqueries in certain positions, e.g. conditions

We will skip subqueries and say more about the grouping expressions. But let
us start with the straightforward cases.

6.4.1 Basic queries

The most common SQL query form

SELECT projections

FROM table,...,table

WHERE condition

corresponds to the relational algebra expression

πprojectionsσcondition(table× . . .× table)
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But notice, first of all, that names of relations can themselves be used as alge-
braic queries. Thus we translate

SELECT * FROM Countries

=⇒ Countries

SELECT * FROM Countries WHERE name=’UK’

=⇒ σname=′UK′Countries

In general, SELECT * does not add anything to the algebra translation. However,
there is a subtle exception with grouping queries, to be discussed later.

If the SELECT field contains attributes or expressions, these are copied into
the same expressions under the π operator. When the field is given another
name by AS, the arrow symbol is used in algebra:

SELECT capital, area/1000 FROM Countries WHERE name=’UK’

=⇒ πcapital,area/1000σname=′UK′Countries

SELECT name AS country, population/area AS density FROM Countries

=⇒ πname→country,population/area→densityCountries

The renaming of attributes could also be done with the ρ operator:

ρC(country,density)πname,population/areaCountries

is a more complicated and, in particular, less compositional solution, because
the SELECT field is used in two different algebra operations. Moreover, it must
invent C as a dummy name for the renamed table. However, ρ is the way to go
when names are given to tables in the FROM field. This happens in particular
when a cartesian product is made with two copies of the same table:

SELECT A.name, B.capital

FROM Countries AS A, Countries AS B

WHERE A.name = B.capital

=⇒
πA.name,B.capitalσA.name=B.capital(ρACountries× ρBCountries)

No renaming of attributes takes place in this case.
Set-theoretical operations and joins work in the same way as in SQL. No-

tice once again that the SQL distinction between ”queries” and ”tables” is not
present in algebra, but everything is relations. This means that all operations
work with all kinds of relation arguments, unlike in SQL (see Section 2.16).

6.4.2 Grouping and aggregation

As we saw in Section 2.11, GROUP BY a (or any sequence of attributes) to a
table R forms a new table, where a is the key. The other attributes can be found
in two places: the SELECT line above and the HAVING and ORDER BY lines
below. All of these attributes must be aggregation function applications.

In relational algebra, the γ operator is an explicit name for this relation,
collecting all information in one place. Thus
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SELECT currency, COUNT(name)

FROM Countries

GROUP BY currency

=⇒ γcurrency,COUNT (name)Countries

SELECT currency, AVG(population)

FROM Countries

GROUP BY currency

HAVING COUNT(name) > 1

=⇒
πcurrency,AV G(population)σCOUNT (name)>1

γcurrency,AV G(population),COUNT (name)Countries

Thus the HAVING clause itself becomes an ordinary σ. Notice that, since
SELECT does not show the COUNT(name) attribute, a projection must be
applied on top.

Here is an example with ORDER BY, which is translated to τ :

SELECT currency, AVG(population)

FROM Countries

GROUP BY currency

ORDER BY COUNT(name)

=⇒
πcurrency,AV G(population)τCOUNT (name)

γcurrency,AV G(population),COUNT (name)Countries

The ”official” version of relational algebra (as in the book) performs the
renaming of attributes under SELECT γ itself:

SELECT currency, COUNT(name) AS users

FROM Countries

GROUP BY currency

=⇒ γcurrency,COUNT (name)→usersCountries

However, a more compositional (and to our mind more intuitive) way is do this
in a separate π corresponding to the SELECT:

πcurrency,COUNT (name)→usersγcurrency,COUNT (name)Countries

The official notation actually always involves a renaming, even if it is to the
aggregation expression to itself:

γcurrency,COUNT (name)→COUNT (name)Countries
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This is of course semantically justified because COUNT(name) on the right
of the arrow is not an expression but an attribute (a string without syntactic
structure). However, the official notation is not consistent in this, since it does
not require corresponding renaming in the π operator.

In addition to GROUP BY, γ must be used whenever an aggregation appears
in the SELECT part. This can be understood as grouping by 0 attributes, which
means that there is only one group. Thus we translate

SELECT COUNT(name) FROM Countries

=⇒ γCOUNT (name)Countries

We conclude the grouping section with a surprising example:

SELECT *

FROM Countries

GROUP BY name

HAVING count(name) > 0

Surprisingly, the result is the whole Countries table (because the HAVING con-
dition is always true), without a column for count(name). This may be a bug in
PostgreSQL. Otherwise it is a counterexample to the rule that SELECT * does
not change the relation in any way.

6.4.3 Sorting and duplicate removal

We have already seen a sorting with groupings. Here is a simpler example:

SELECT name, capital FROM Countries ORDER BY name

=⇒ τnameπname,capitalCountries

And here is an example of duplicate removal:

SELECT DISTINCT currency FROM Countries

=⇒ δ(πcurrencyCountries)

(The parentheses are optional.)

6.5 Query optimization

6.5.1 Algebraic laws

Set-theoretic operations obey a large number of laws: associativity, commuta-
tivity, idempotence, etc. Many, but not all, of these laws also work for multisets.
The laws generate a potentially infinite number of equivalent expressions for a
query. Query optimization tries to find the best of those.
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6.5.2 Example: pushing conditions in cartesian products

Cartesian products generate huge tables, but only fractions of them usually show
up in the final result. How can we avoid building these tables in intermediate
stages? One of the most powerful techniques is pushing conditions into products,
in accordance with the following equivalence:

σC(R× S) = σCrs(σCrR× σCsS)

where C is a conjunction (AND) of conditions and
• Cr is that part of C where all attributes can be found in R
• Cs is that part of C where all attributes can be found in S
• Crs is the rest of the attributes in C

Here is an example:

SELECT * FROM countries, currencies

WHERE code = ’EUR’ AND continent = ’EU’ AND code = currency

Direct translation:

σcode=”EUR”ANDcontinent=”EU”ANDcode=currency(countries×currencies)
Optimized translation:

σcode=currency(σcontinent=”EU”countries× σcode=”EUR”currencies)

6.6 Relational algebra in the Query Converter*

As shown in Section 2.17, qconv works as an SQL interpreter. The interpretation
is performed via translation to relational algebra close to the textbook style. The
notation is actually LaTeX code, and the code shown in these notes is generated
with qconv (possibly with some post-editing).

The SQL interpreter of qconv shows relational algebra expressions in addi-
tion to the results. But one can also convert expressions without interpreting
them, by the a command:

> a SELECT * FROM countries WHERE continent = ’EU’

The source files are available in

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-
converter/

The files of interest are:
• MinSQL.bnf, the grammar of SQL, from which the lexer, parser, and

printer are generated,
• RelAlgebra.bnf, the grammar of relational algebra, from which the lexer,

parser, and printer are generated,
• SQLCompiler.hs, the translator from SQL to relational algebra,
• Algebra.hs, the conversion of logical to algorithmic (”physical”) query

plans,
• Relation.hs, the code for executing the physical query plans,
• OptimizeAlgebra.hs, some optimizations of relational algebra.
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6.7 Indexes

Indexes are another example of query optimization. An index is an efficient
lookup table, making it fast to fetch information. A DBMS automatically cre-
ates an index for the primary key of each table. One can manually create and
drop keys for other attributes by using the following SQL syntax:

statement ::=

CREATE INDEX indexname ON tablename (attribute+)?

| DROP INDEX indexname

Creating an index is a mixed blessing, since it
• speeds up queries
• makes modifications slower

An index obviously also takes extra space. To decide whether to create an index
on some attributes, one should estimate the cost of typical operations. The cost
is traditionally calculated by the following cost model:
• The disk is divided to blocks.
• Each tuple is in a block, which may contain many tuples.
• A block access is the smallest unit of time.
• Read 1 tuple = 1 block access.
• Modify 1 tuple = 2 block accesses (read + write).
• Every table is stored in some number n blocks. Hence,

– Reading all tuples of a table = n block accesses.
– In particular, lookup all tuples matching an attibute without index

= n.
– Similarly, modification without index = 2n
– Insert new value without index = 2 (read one block and write it back)

• An index is stored in 1 block (idealizing assumption). Hence, for indexed
attributes,

– Reading the whole index = 1 block access.
– Lookup 1 tuple (i.e. to find where it is stored) = 1 block access
– Fetch all tuples = 1 + k block accesses (where k << n is the number

of tuples per attribute)
– In particular, fetching a tuple if the index is a key = 2 (1 + k with

k=1)
– Modify (or insert) 1 tuple with index = 4 block accesses (read and

write both the tuple and the index)
With this model, the decision goes as follows:

1. Generate some candidates for indexes: I1, . . . , Ik
2. Identify the a set of typical SQL statements (for instance, the queries and

updates performed via the end user interface): S1, . . . , Sn

3. For each candidate index configuration, compute the costs of the typical
statements: C(Ii, Sj)

4. Estimate the probabilities of each typical statement, e.g. as its relative
frequency: P (Sj)
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5. Select the best index configuration, i.e. the one with the lowest expected

cost: argmini

n∑
j=1

P (Sj)C(Ii)

Example. Consider a phone book, with the schema

PhoneNumbers(name,number)

Neither the name nor the number can be assumed to be a key, since one person
can have many numbers, and many persons can share a number. Assume that

• the table is stored in 100 blocks: n=100

• each name has on the average 2 numbers (k=2), whereas each number has
1 person (k=1 ; actually, 1.01, but we round this down to 1)

• the following statement types occur with the following frequencies:

SELECT number FROM PhoneNumbers WHERE name=X -- 0.8

SELECT name FROM PhoneNumbers WHERE number=Y -- 0.05

INSERT INTO PhoneNumbers VALUES (X,Y) -- 0.15

Here are the costs with each indexing configuration, with ”index both” as
the winner:

no index index name index number index both
SELECT number 100 3 100 3
SELECT name 100 100 2 2
INSERT 2 4 4 6
total cost 85.3 8.0 80.25 3.0
why 80+5+0.3 2.4+5+0.6 80+0.05+0.2 2.4+0.1+0.9
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7 SQL in software applications

SQL was designed to be a high-level query language, for direct query and ma-
nipulation. However, direct access to SQL (e.g. via the PostgreSQL shell) can
be both too demanding and too powerful. Most database access by end users
hence takes place via more high-level interfaces such as web forms. Most web
services such as bank transfers and booking train tickets access a database.

End user programs are often built by combining SQL and a general purpose
programming language. This is called embedding, and the general purpose
language is called a host language.

The host language in which SQL is embedded provides GUIs and other
means that makes data access easier and safer. Databases are also accessed by
programs that analyse them, for instance to collect statistics. Then the host
language provides computation methods that are more powerful than those
available in SQL.

Our main objective is to embed SQL in Java programs. The supplementary
materials of the book are intended to cover the same examples for more lan-
guages, both object-oriented and not object-oriented. We will also cover some
pitfalls in embedding.

First of all, there is a mismatch between the primitive data types of SQL and
practically all languages to which SQL is embedded. One has to be careful with
string lengths, integer sizes, etc. As a further problem, programming languages
typically do not implement NULL values similarly as SQL, and the possibility
of NULL values needs to be taken into account in application programming.

Secondly, there is a mismatch between object-oriented and relational higher
level data types, that is, objects and tables. Object-oriented model uses pointers
or references from one object to another for navigation. Relational databases
are based on values and queries for combining data. This gives flexibility and
even though there are databases to store objects directly as they are, the flexible
declarative query facilities have maintained the success of relational databases.

Thirdly, there are security issues. For instance SQL injection is a security
hole where an end user can include SQL code in the data that she is asked to
give. In one famous example, the name of a student includes a piece of code
that deletes all data from a student database. To round off, we will look at the
highest level of database access from the human point of view: natural language
queries.

7.1 A minimal JDBC program*

Java is a verbose language, and accessing a database is just one of the cases
that requires a lot of wrapper code. Figure 5 is the smallest complete program
we could figure out that does something meaningful. The user writes a country
name and the program returns the capital. After this, a new prompt for a query
is displayed. For example:

> Sweden
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Stockholm

>

The progam is very rough in the sense that it does not even recover from errors
or terminate gracefully. Thus the only way to terminate it is by ”control-C”.
A more decent program is shown in the course material (Assignment 5) - a
template from which Figure 5 is a stripped-down version.

The SQL-specific lines are marked *.
• The first one loads the java.sql JDBC functionalities.
• The second one, in the main method, loads a PostgreSQL driver class.
• The next three ones define the database url, username, and password.
• Then the connection is opened by these parameters. The rest of the main

method is setting the user inaction loop as a ”console”.
• The method getCapital that sends a query and displays the results can
throw an exception (a better method would catch it). This exception
happens for instance when the SQL query has a syntax error.

• The actual work takes place in the body of getCapital:
– The first thing is to create a Statement object, which has a method

for executing a query.
– Executing the query returns a ResultSet, which is an iterator for all

the results.
– We iterate through the rows with a while loop on rs.next(), which

returns False when all rows have been scanned.
– For each row, we print column 2, which holds the capital.
– The ResultSet object rs enables us to getString for the column.
– At the end, we close the result set rs and the statement st nicely to

get ready for the next query.
The rest of the code is ordinary Java. For the database-specific parts, excel-

lent Javadoc documentation can be found for googling for the APIs with class
and method names. The only tricky thing is perhaps the concepts Connection,
Statement, and ResultSet:
• A connection is opened just in the beginning, with URL, username, and

password. This is much like starting the psql program in a Unix shell.
• A statement is opened once for any SQL statement to be executed, be

it a query or an update, and insert, or a delete.
• A result set is obtained when a query is executed. Other statements

don’t return result sets, but just modify the database.
It is important to know that the result set is overwritten by each query, so you
cannot collect many of them without ”saving” them e.g. with for loops.

7.2 Building queries and updates from input data

When building a query, it is obviously important to get the spaces and quotes in
right positions! A safer way to build a query is to use a prepared statement.
It has question marks for the arguments to be inserted, so we don’t need to care
about spaces and quotes. But we do need to select the type of each argument,
with setString(Arg,Val), setInt(Arg,Val), etc.
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import java.sql.*; // JDBC functionalities *

import java.io.*; // Reading user input

public class Capital

{

public static void main(String[] args) throws Exception

{

Class.forName("org.postgresql.Driver") ; // load the driver class *

String url = "jdbc:postgresql://ate.ita.chalmers.se/" ; // database url *

String username = "tda357_XXX" ; // your username *

String password = "XXXXXX" ; // your password *

Connection conn = DriverManager.getConnection(url, username, password);//connect to db *

Console console = System.console(); // create console for interaction

while(true) { // loop forever

String country = console.readLine("> ") ; // print > as prompt and read query

getCapital(conn, country) ; // execute the query

}

}

static void getCapital(Connection conn, String country) throws SQLException // *

{

Statement st = conn.createStatement(); // start new statement *

ResultSet rs = // get the query results *

st.executeQuery("SELECT capital FROM Countries WHERE name = ’" + country + "’") ; *

while (rs.next()) // loop through all results *

System.out.println(rs.getString(2)) ; // print column 2 with newline *

rs.close(); // get ready for new query *

st.close(); // get ready for new statement *

}

}

Figure 5: A minimal JDBC program, answering questions ”what is the capital
of this country”. It prints a prompt > , reads a country name, prints its capital,
and waits for the next query. It does not yet quit nicely or catch exceptions
properly. The SQL-specific lines are marked with *.
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static void getCapital(Connection conn, String country) throws SQLException

{

PreparedStatement st =

conn.prepareStatement("SELECT capital FROM Countries WHERE name = ?") ;

st.setString(1,country) ;

ResultSet rs = st.executeQuery() ;

if (rs.next())

System.out.println(rs.getString(1)) ;

rs.close() ;

st.close() ;

}

Modifications - inserts, updates, and deletes - are made with statements in
a similar way as queries. In JDBC, they are all called updates. A Statement
is needed for them as well. Here is an example of registering a mountain with
its name, continent, and height.

// user input example: Kebnekaise Europe 2111

static void addMountain(Connection conn, String name, String continent, String height)

throws SQLException

{

PreparedStatement st =

conn.prepareStatement("INSERT INTO Mountains VALUES (?,?,?)") ;

st.setString(1,name) ;

st.setString(2,continent) ;

st.setInt(3,Integer.parseInt(height)) ;

st.executeUpdate() ;

st.close() ;

}

Now, how to divide the work between SQL and Java? As a guiding principle,

Put as much of your program in the SQL query as possible.

In a more complex program (as we will see shortly), one can send several queries
and collect their results from result sets, then combine the answer with some Java
programming. But this is not using SQL’s capacity to the full:

• You miss the optimizations that SQL provides, and have to reinvent them man-
ually in your code.

• You increase the network traffic.
Just think about the ”pushing conditions” example from Section 6.5.2.

SELECT * FROM countries, currencies

WHERE code = ’EUR’ AND continent = ’EU’ AND code = currency

If you just query the first line with SQL and do the WHERE part in Java, you may
have to transfer thousands of times of more rows that you moreover have to inspect
than when doing everything in SQL.
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7.3 Managing the primitive datatypes*

One needs to ensure that the host language datatypes can hold what comes from the
database and that the host program only trys to store to the database such information
that the database can hold.

This way, it is beneficial to have Java datatypes that include information about
the characteristics of the database field. For instance, to avoid trying to insert too
long strings into the database, one needs to check the length. Even though there can
be a mismatch basically for all data types, particular care is needed with various date
and time variables, as they vary between SQL implementations and do not necessarily
match the programming language types.

The NULL values need special treatment. JDBC has functions for testing if a
value is NULL and to set it NULL. However, if a value is NULL, then no matter how
the database software layer treats it, the application logic needs to take it into account
and how to do that is a decision by the application logic developer.

JDBC has functions to query the characteristics of data, but it will be cumbersome
to use it always for all data values. Instead, one may generate such Java code from the
data description that includes the size parameters, and generates an error when data
of wrong size is used. Below is an example of such wrapping. It demonstrates various
complications that one needs to handle. Please note that things could be implemented
in a different way and a number of design choices is already built into this code.
However, constructing your software like this means you are being systematic about
your design choices.

First, the base class for all data types:

abstract class SqlDataType

{ /* status codes used instead of exceptions: */

public final static int attrValueOk = 0;

public final static int attrValueMissing = 1;

public final static int attrValueFormatNotOk = 2;

public final static int attrValueTooSmall = 3;

public final static int attrValueTooLarge = 4;

public final static int attrValueNotAllowed = 5;

private boolean isPrime; // means "is a part of primary key"

public SqlDataType() { isPrime = false; }

public void setPrime (boolean isPrime) { this.isPrime = isPrime; }

public boolean isPrime() { return isPrime; }

abstract void setString (String input);

public String toString() { return ""; }

abstract boolean stringOk (String input); // for reading in

static boolean stringIsOk (String input) { return true; }

abstract int setAndCheck (String input, boolean notNull, String attributeName);

}

Then, the base class for all string types. This is really long, unfortunately.

package fi.uta.cs.sqldatatypes;

import fi.uta.cs.sqldatamodel.InvalidValueException;

import fi.uta.cs.sqldatamodel.NullNotAllowedException;
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import fi.uta.cs.sqldatamodel.ValueTooLongException;

/**

* Concrete implementation of string-based SQL data types.

*

* Value data type is java.lang.String.

* JDBC data type is java.lang.String.

*/

public class SqlString extends SqlDataType {

private String value;

private int maxLength;

public SqlString( int maxLength ) {

super();

value = null;

this.maxLength = maxLength;

}

// If -1 is given, the length is not limited.

public SqlString( int maxLength, String value )

{

this( maxLength );

try {

fromString( value );

} catch( InvalidValueException e ) {

// Ignored

}

}

// ======================================================================

// Bean property methods

// ======================================================================

public String getValue() {

// String is immutable

return value;

}

public void setValue( String value ) throws NullNotAllowedException, ValueTooLongException {

if( value==null && !isNullAllowed() )

throw new NullNotAllowedException();

if( value!=null && maxLength>=0 ) {

if( value.length()>maxLength ) throw new ValueTooLongException();

}

setValueUnchecked( value );

}

public void setValueUnchecked( String value ) {

if( value == null ) {

this.value = null;
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} else {

// String is immutable

this.value = value;

}

}

public int getMaxLength() {

if( maxLength<0 ) return Integer.MAX_VALUE;

return maxLength;

}

// ======================================================================

// JDBC property methods

// ======================================================================

public String jdbcGetValue() {

return getValue();

}

public void jdbcSetValue( String value ) throws NullNotAllowedException, ValueTooLongException {

setValue( value );

}

// ======================================================================

// SqlDataType methods

// ======================================================================

public String toString() {

if( value == null ) return "";

return value;

}

public void fromString( String str ) throws NullNotAllowedException, ValueTooLongException {

String newValue = null;

if( str!=null ) {

newValue = str;

}

setValue( newValue );

}

public boolean isValid() {

if( (value==null) && (!isNullAllowed()) ) return false;

if( value!=null && maxLength>=0 ) {

if( value.length()>maxLength ) return false;

}

return true;

}

public boolean equals(Object obj) {

if( !(obj instanceof SqlString) ) return false;
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SqlString strObj = (SqlString)obj;

if( value==null || strObj.value==null ) {

if( value==null && strObj.value==null ) return true;

return false;

}

return value.equals( strObj.value );

}

public Object clone() throws CloneNotSupportedException {

return super.clone();

}

public String getLongestString() {

int stringLength = getMaxLength();

if( stringLength == Integer.MAX_VALUE ) {

// Use 64K for unlimited strings

stringLength = 65536;

}

StringBuffer sb = new StringBuffer(stringLength);

for(int i = 0; i < stringLength; i++) {

sb.append("M");

}

return sb.toString();

}

}

After this, VARCHAR only needs the relevant constructors.

public class SqlVarchar extends SqlString {

public SqlVarchar( int maxLength ) {

super( maxLength );

}

public SqlVarchar( int maxLength, String value ) {

super( maxLength, value );

}

}

7.4 Wrapping relations and views in classes*

The main observation to be made is that object oriented navigation proceeds through
references and making repeated calls to the database to get data row-by-row means
misusing the SQL database. SQL databases are designed to manage queries which
retrieve a set of rows at once. The set can then be consumed in a one-by-one fashion
in the host language software. Complicated queries executed from the host program
can be implemented using views, which takes the complications of the query closer to
the database system.

We will present one way, consistent to the primitive datatype management above,
to wrap relations to classes. Wrapping of views can be done in a similar way apart
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from the fact that one cannot by default update from views. These classes are actually
created by a tool, and they are arranged accordingly: the db class holds the database
functionality while the bean class offers standard setters and getters. The top level
class is left for the application specific code. If the database changes, just the base and
the db class can be replaced, leaving the application specific code hopefully working
as before.

package fi.accounts; // only a part of the code is given here

import java.sql.*; // the supplementary materials have the rest

import java.util.Iterator;

import fi.uta.cs.sqldatamodel.*;

import fi.uta.cs.sqldatatypes.*;

//**

* Generated database access class for table Accounts.

*

*/

public class DbAccounts extends SqlAssignableObject implements Cloneable {

private SqlVarchar numberData;

private SqlVarchar numberKC;

private SqlVarchar holderData;

private SqlVarchar typeData;

private SqlInteger balanceData;

// most methods cut out - insert given here:

/**

* Inserts this object to the database table Accounts.

* @param con Open and active connection to the database.

* @throws SQLException if the JDBC operation fails.

* @throws ObjectNotValidException if the attributes are invalid.

*/

public void insert(Connection con) throws SQLException, ObjectNotValidException {

if( !numberData.isValid() ) throw new ObjectNotValidException("number");

if( !holderData.isValid() ) throw new ObjectNotValidException("holder");

if( !typeData.isValid() ) throw new ObjectNotValidException("type");

if( !balanceData.isValid() ) throw new ObjectNotValidException("balance");

String prepareString = "insert into Accounts (number, holder, type, balance) values (?, ?, ?, ?);";

PreparedStatement ps = con.prepareStatement(prepareString);

ps.setObject(1, numberData.jdbcGetValue());

ps.setObject(2, holderData.jdbcGetValue());

ps.setObject(3, typeData.jdbcGetValue());

ps.setObject(4, balanceData.jdbcGetValue());

int rows = ps.executeUpdate();

ps.close();

if( rows != 1 ) throw new SQLException("Insert did not return 1 row");

}

There is a class derived from the db class, offering setters and getters, in a fashion
used in the so called beans in Java.

public class BeanAccounts extends DbAccounts {
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/**

* Default constructor.

*/

public BeanAccounts() {

super();

}

/**

* Gets the value of the property number.

* @return Value as java.lang.String.

*/

public java.lang.String getNumber() {

return getNumberData().getValue();

}

Finally, the top level class only inherits the previous ones and the application
specific code, if any, can be added here.

package fi.accounts;

/**

* Skeleton class for application-specific functionality.

*/

public class Accounts extends BeanAccounts {

/**

* Default constructor.

*/

public Accounts() {

super();

}

// @todo Insert your additional attributes and methods here.

}

7.5 SQL injection

An SQL injection is a hostile attack where the input data contains SQL statements.
Such injections are possible if input data is pasted with SQL parts in a simple-minded
way. Here are two examples, modified from

https://www.owasp.org/index.php/SQL Injection

which is an excellent source on security attacks in general, and how to prevent them.
The first injection is in a system where you can ask information about yourself by

entering your name. If you enter the name John, it builds and executes the query

SELECT * FROM Persons

WHERE name = ’John’

If you enter the name John’ OR 0=0-- it builds the query
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SELECT * FROM Persons

WHERE name = ’John’ OR 0=0--’

which shows all information about all users!
One can also change information by SQL injection. If you enter the name “John’;DROP

TABLE Persons– it builds the statements

SELECT * FROM Persons

WHERE name = ’John’;

DROP TABLE Persons--’

which deletes all person information.
Now, if you use JDBC, the latter injection is not so easy, because you cannot

execute modifications with executeQuery(). But you can do the such a thing if the
statement asks you to insert your name.

A better help prpvided by JDBC is to use preparedStatement with ? variables
instead of pasting in strings with Java’s +. The implementation of preparedStatement
performs a proper quoting of the values. Thus the first example becomes rather like

SELECT * FROM Persons

WHERE name = ’John’’ OR 0=0;--’

where the first single quote is escaped and the whole string is hence included in the
name.

7.6 Three-tier architecture and connection pooling*

This chapter has mainly covered issues in organizing software to access the tables and
views in the database. In a normal web application, there can easily be hundreds of
thousands of client programs such as web pages sending service requests. However, the
time between a user’s actions is so long that a single server process can handle many
users one-by-one. If the users connections are such that the users keep on identifying
themselves and the information of the user activity history is sent with the request or
stored in a place where it can be read, then the server program can switch between
different users easily.

Several server programs, in turn, will connect the database, but only momentarily.
Each database connection requires resources from the server contacting the database
as well as from the database server itself. Since distributed databases are complicated,
it would nice, if possible, to have just a single database server and use it’s resources
sparingly. For this reason, when the servers start, they open up the database con-
nections and then recycle them between server processes. This is called connection
pooling. Some systems change dynamically the number of connections available for
pooling.

The architecture, as described briefly above, has three tiers: the client tier, the
application server tier, and the database tier. The database server on the database
tier typically only takes care of the database. If it takes care of some part of the
application logic, it should be through triggers and functions in the database. The
rest of the logic is spread between the client tier, typically run in a browser, and the
server tier, on the application servers.
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Nowadays JDBC connection pooling is often build into the database systems, how-
ever if not, ready made source code is easy to find. One should check how many
connections are being used, though.

7.7 Authorization and grant diagrams

Typical database applications have multiple users. Typically, there is a need to control
what different users can see from the data. There are different ways to do this.

When a user creates an SQL object (table, view, trigger, function), she becomes
the owner of the object. She can grant privileges to other users, and also revoke
them. Here is the SQL syntax for this:

statement ::=

GRANT privilege+ ON object TO user+ grantoption?

| REVOKE privilege+ ON object FROM user+ CASCADE?

| REVOKE GRANT OPTION FOR privilege ON object FROM user+ CASCADE?

| GRANT rolename TO username adminoption?

privilege ::=

SELECT | INSERT | DELETE | UPDATE | REFERENCES | ...

| ALL PRIVILEGES

object ::=

tablename (attribute+)+ | viewname (attribute+)+ | trigger | ...

user ::= username | rolename | PUBLIC

grantoption ::= WITH GRANT OPTION

adminoption ::= WITH ADMIN OPTION

Chains of granted privileges give rise to grant diagrams, which ultimately
lead to the owner. Each node consists of a username, privilege, and a tag for
ownership (**) or grant option (*). Granting a privilege creates a new node,
with an arrow from the granting privilege.

A user who has granted privileges can also revoke them. The CASCADE
option makes this affect all the nodes that are reachable only via the revoked
privilege. The default is RESTRICT, which means that a REVOKE that would
affect other nodes is rejected.

Figure 6 shows an example of a grant diagram and its evolution.
Users can be collected to roles, which can be granted and revoked privileges

together. The SQL privileges can be compared with the privileges in the Unix
file system, where
• privileges are ”read”, ”write”, and ”execute”
• objects are files and directories
• roles are groups

The main difference is that the privileges and objects in SQL are more fine-
grained.
Example. What privileges are needed for the following? TODO
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(a) (b) (c)

Figure 6: Grant diagrams, resulting from: (a) O: GRANT R TO U WITH GRANT

OPTION ; U: GRANT p TO V (b) (a) followed by O: REVOKE R FROM U (c) (a)
followed by O: REVOKE GRANT OPTION FOR R FROM U

Usually it is only the database administrators, developers, and special users
who access the data directly via SQL. Sometimes users may read the data to,
say, Excel spreadsheets, using SQL. Then granting the right SQL rights are of
vital importance,

Many users, though, access the data using a program provided for them.
This program may be a part of the web application, so in fact the user may use
a web page, which then sends a request to a server which provides the data. In
such cases the program functionalities limit the data that the user can access.
The program logs in to the database as a database user and gets the relevant
access. It makes sense to pay attention to the rights given to the programs for
various reasons, such as programing errors, various attacks, etc.

7.8 Table modification and triggers

Here we take a deeper look at inserts, updates, and deletions, in the presence of
constraints. The integrity constraints of the database may restrict these actions
or even prohibit them. An important problem is that when one piece of data
is changed, some others may need to be changed as well. For instance, when
a row is deleted or updated, how should this affect other rows that reference it
as foreign key? Some of these things can be guaranteed by constraints in basic
SQL. But some things need more expressive power. For example, when making
a bank transfer, money should not only be taken from one account, but the same
amount must be added to the other account. For situations like this, DBMSs
support triggers, which are programs that do many SQL actions at once. The
concepts discussed in this chapter are also called active elements, because they
affect the way in which the database reacts to actions. This is in contrast to the
data itself (the rows in the tables), which is ”passive”.

7.9 Active element hierarchy

Active elements can be defined on different levels, from the most local to the
most global:
• Types in CREATE TABLE definitions control the atomic values of each

attribute without reference to anything else.
• Inline constraints in CREATE TABLE definitions control the atomic

values of each attribute with arbitrary conditions, but without reference
so other attributes (except in REFERENCES constraints).
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• Constraints in CREATE TABLE definitions control tuples or other sets
of attribute, with conditions referring to things inside the table (except
for FOREIGN KEY).

• Assertions, which are top-level SQL statements, state conditions about
the whole database.

• Triggers, which are top-level SQL statements, can perform actions on the
whole database, using the DBMS.

• Host program code, in the embedded SQL case, can perform actions
on the whole database, using both the DBMS and the host program.

It is often a good practice to state conditions on as local a level as possible,
because they are then available in all wider contexts. However, there are three
major exceptions:
• Types such as CHAR(n) may seem to control the length of strings, but

they are not as accurate as CHECK constraints. For instance, CHAR(3)
only checks the maximum length but not the exact length.

• Inline constraints cannot be changed afterwards by ALTER TABLE. Hence
it can be better to use tuple-level named constraints.

• Assertions are disabled in many DBMSs (e.g. PostgreSQL, Oracle) be-
cause they can be inefficient. Therefore one should use triggers to mimick
assertions. This is what we do in this course.

Constraints that are marked DEFERRABLE in a CREATE TABLE statement
are checked only at the end of each transaction (Section 9.2). This is useful,
for instance, if one INSERT in a transaction involves a foreign key that is given
only in a later statement.

7.10 Referential constraints and policies

A referential constraint (FOREIGN KEY ... REFERENCES) means that, when
a value is used in the referring table, it must exist in the referenced table.
But what happens if the value is deleted or changed in the referenced table
afterwards? This is what policies are for. The possible policies are CASCADE
and SET NULL, to override the default behaviour which is to reject the change.

Assume we have a table of bank accounts:

CREATE TABLE Accounts (

number TEXT PRIMARY KEY,

holder TEXT,

type TEXT,

balance INT

)

The type attribute is supposed to hold the information of the bank account
type: a savings account, a current account, etc. Let us then add a table with
transfers, with foreign keys referencing the first table:

CREATE TABLE Transfers (

sender TEXT REFERENCES Accounts(number),
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recipient TEXT REFERENCES Accounts(number),

amount INT

)

What should we do with Transfers if a foreign key disappears i.e. if an account
number is removed from Accounts? There are three alternatives:
• (default) reject the deletion from Accounts because of the reference in

Transfers,
• CASCADE, i.e. also delete the transfers that reference the deleted ac-

count,
• SET NULL, i.e. keep the transfers but set the sender or recipient number

to NULL
One of the last two actions can be defined to override the default, by using the
following syntax:

CREATE TABLE Transfers (

sender TEXT REFERENCES Accounts(number)

ON UPDATE CASCADE ON DELETE SET NULL,

recipient TEXT REFERENCES Accounts(number),

amount INT

)

ON UPDATE CASCADE means that if account number is changed in Accounts,
it is also changed in Transfers. ON DELETE SET NULL means that if account
number is deleted from Accounts, it is changed to NULL in Transfers.

Finally, we have a table where we log the bank transfers. For each transfer
we log the time, the user, the type of modification, and the data (new changed
data for insert and update, old removed data for delete).

Notice. This is a simplified example. These policies are probably not the
best way to handle accounts and transfers. It probably makes more sense to
introduce dates and times, so that rows referring to accounts existing at a certain
time need never be changed later.

7.11 CHECK constraints

CHECK constraints, which can be inlined or separate, are like invariants in
programming. Here is a table definition with two attribute-level constraints,
one inlined, the other named and separate:

-- specify a format for account numbers:

-- four characters,-, and at least two characters

-- more checks could be added to limit the characters to digits

CREATE TABLE Accounts (

number TEXT PRIMARY KEY CHECK (number LIKE ’____-%--’),

holder TEXT,

balance INT,

CONSTRAINT positive_balance CHECK (balance >= 0)

)
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Here we have a table-level constraint referring to two attributes:

-- check that money may not be transferred from an account to itself

CREATE TABLE Transfers (

sender TEXT REFERENCES Accounts(number)

recipient TEXT REFERENCES Accounts(number),

amount INT,

CONSTRAINT not_to_self CHECK (recipient <> sender)

) ;

Here is a ”constraint” that is not possible in Transfers, trying to say that
the balance cannot be exceeded in a transfer:

CONSTRAINT too_big_transfer CHECK (amount <= balance)

The reason is that the Transfers table cannot refer to the Accounts table (other
than in FOREIGN KEY constraints). However, in this case, this is also un-
necessary to state: because of the positive balance constraint in Accounts, a
transfer exceeding the sender’s balance would be automatically blocked.

Here is another ”constraint” for Accounts, trying to set a maximum for the
money in the bank:

CONSTRAINT too_much_money_in_bank CHECK (sum(balance) < 1000000)

The problem is that constraints may not use aggregation functions (here, sum(balance)),
because they are about tuples, not about whole tables. Such a constraint could
be stated in an assertion, but these are not allowed in PostgreSQL even though
they are standard SQL. We will however be able to state this and many other
types of contstraints using triggers, as we will see below.

7.12 ALTER TABLE

A table once created can be changed later with an ALTER TABLE statement. The
most important ways to alter a table are:
• ADD COLUMN with the usual syntax (attribute, type, inline constraints).

The new column contains NULL values, unless some other default is speci-
fied as DEFAULT.

• DROP COLUMN with the attribute name
• ADD CONSTRAINT with the usual constraint syntax. Rejected if the already

existing table violates the constraint.
• DROP CONSTRAINT with a named constraint

7.13 Triggers

Triggers in PostgreSQL are written in the language PL/PGSQL which is almost
standard SQL, with an exception:
• the trigger body can only be a function call, and the function is written

separately
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Here is the part of the syntax that we will need:

functiondefinition ::=

CREATE FUNCTION functionname() RETURNS TRIGGER AS $$

BEGIN

* statement

END

$$ LANGUAGE ’plpgsql’

;

triggerdefinition ::=

CREATE TRIGGER triggernane

whentriggered

FOR EACH ROW|STATEMENT

? WHEN ( condition )

EXECUTE PROCEDURE functionname

;

whentriggered ::=

BEFORE|AFTER events ON tablename

| INSTEAD OF events ON viewname

events ::= event | event OR events

event ::= INSERT | UPDATE | DELETE

statement ::=

IF ( condition ) THEN statement+ elsif* END IF ;

| RAISE EXCEPTION ’message’ ;

| sqlstatement ;

| RETURN NEW|OLD|NULL ;

elsif ::= ELSIF ( condition ) THEN statement+

Comments:
• The statements may refer to NEW.attribute (in case of INSERT and UP-

DATE) and OLD.attribute (in case of UPDATE and DELETE).
• FOR EACH ROW means that the trigger is executed for each new row

affected by an INSERT, UPDATE, or DELETE statement.
• FOR EACH STATEMENT means that the trigger is executed once for

the whole statement.
• A trigger is an atomic transaction, which either succeeds or fails totally

(see Chapter 9 for more details).
• The PL/PGSQL functions have also access to further information, like

function now() telling the current time, and variables user telling the cur-
rent database user, and TG OP telling the type of database operation
(INSERT/UPDATE/DELETE).

Let us consider some examples.
The first one is a check, that we could have also done when defining the

table:
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CREATE OR REPLACE FUNCTION check_min_savings() RETURNS TRIGGER AS $$

BEGIN

IF NEW.type = ’savings’ AND NEW.balance < 100 THEN

RAISE EXCEPTION ’Balance too low for %’, NEW.Number ;

END IF;

RETURN NEW;

END

$$ LANGUAGE plpgsql ;

The related trigger:

CREATE TRIGGER minSavings

BEFORE INSERT OR UPDATE ON Accounts

FOR EACH ROW

EXECUTE PROCEDURE check_min_savings() ;

So, we can see that we can use triggers to check consistency. Since the
activities of functions are not limited, we could also here check the sum of the
balances of all accounts in the bank. The second example is doing exactly
that: limiting the maximum total balance of the bank. This trigger also doesn’t
change anything, and could therefore be defined as an ASSERTION, if they
were permitted.

CREATE OR REPLACE FUNCTION maxBalance() RETURNS TRIGGER AS $$

BEGIN

IF ((SELECT sum(balance) FROM Accounts) > 16000)

THEN RAISE EXCEPTION ’too much money in the bank’ ;

END IF ;

END

$$ LANGUAGE ’plpgsql’ ;

CREATE TRIGGER max_balance

AFTER INSERT OR UPDATE ON Accounts

FOR EACH STATEMENT

EXECUTE PROCEDURE maxBalance() ;

The third trigger introduces some application logic: it is a trigger that up-
dates balances in Accounts after each inserted Transfer. In PostgreSQL, we first
have to define a function that does the job by CREATE FUNCTION. After that, we
create the trigger itself by CREATE TRIGGER.

CREATE FUNCTION make_transfer() RETURNS TRIGGER AS $$

BEGIN

UPDATE Accounts

SET balance = balance - NEW.amount

WHERE number = NEW.sender ;

UPDATE Accounts
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SET balance = balance + NEW.amount

WHERE number = NEW.recipient ;

END

$$ LANGUAGE ’plpgsql’ ;

CREATE TRIGGER mkTransfer

AFTER INSERT ON Transfers

FOR EACH ROW

EXECUTE PROCEDURE make_transfer() ;

The function make transfer() could also contain checks of conditions, be-
tween the BEGIN line and the first UPDATE:

IF (NEW.sender = NEW.recipient)

THEN RAISE EXCEPTION ’cannot transfer to oneself’ ;

END IF ;

IF ((SELECT balance FROM Accounts WHERE number = NEW.sender) < NEW.amount)

THEN RAISE EXCEPTION ’cannot create negative balance’ ;

END IF ;

However, both of these things can be already guaranteed by constraints in the
affected tables. Then they need not be checked in the trigger. This is clearly
better that putting them into triggers, because we could easily forget them!

CREATE OR REPLACE FUNCTION maxBalance() RETURNS TRIGGER AS $$

BEGIN

IF ((SELECT sum(balance) FROM Accounts) > 16000)

THEN RAISE EXCEPTION ’too much money in the bank’ ;

END IF ;

END

$$ LANGUAGE ’plpgsql’ ;

CREATE TRIGGER max_balance

AFTER INSERT OR UPDATE ON Accounts

FOR EACH STATEMENT

EXECUTE PROCEDURE maxBalance() ;

Our fourth example is for logging the transfers:

CREATE OR REPLACE FUNCTION make_transfer_log() RETURNS TRIGGER AS $make_transfer_log$

BEGIN

IF (TG_OP = ’INSERT’) THEN -- special variable TG_OP tells the operation

INSERT INTO TransferLog SELECT now(), user, ’I’, NEW.*;

ELSIF (TG_OP = ’UPDATE’) THEN

INSERT INTO TransferLog SELECT now(), user, ’U’, NEW.*;

ELSIF (TG_OP = ’DELETE’) THEN
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INSERT INTO TransferLog SELECT now(), user, ’D’, OLD.*;

END IF;

RETURN NULL; -- no matter, as the update has already been done

END $make_transfer_log$

LANGUAGE plpgsql ;

CREATE TRIGGER mkLog

AFTER INSERT OR UPDATE OR DELETE ON Transfers

FOR EACH ROW

WHEN (pg_trigger_depth() < 1)

EXECUTE PROCEDURE make_transfer_log() ;

There is a particular risk with using triggers and functions: The function
executions may activate further triggers and in fact it is possible to create a
non-terminating loop of trigger activations and function executions. A non-
terminating execution is generally bad news, but additionally the functions may
be rapidly filling up the database as the execution is progressing. One safety
feature is to use the pg trigger depth() function which returns a 0 if we are trig-
gering the first function execution and when functions trigger further functions,
each time the value of pg trigger depth() increases by 1.

The combinations of BEFORE/AFTER, OLD/NEW, and perhaps also ROW/STATEMENT,
can be a bit tricky. The can be useful to test different combinations in Post-
greSQL, monitor effects, and try to understand the error messages. When test-
ing functions and triggers, it can be handy to write CREATE OR REPLACE instead
of just CREATE, so that a new version can be defined without a DROP of the old
version.

Triggers can also be defined on views. Then the trigger is executed INSTEAD

OF updates, inserts, and deletions.
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7.14 Transactions

Normally, when we execute the SQL operations with a query interface, each
correct operation is executed in the database as soon as they are given to the
query interface. However, one of the important facilities that database systems
give is the possibility of concurrent access to data by several users. This requires
special techniques. Suppose the following scenario. Assume that user Mary
wants to record a fact that 10 people moved from Finland to Sweden.

So, Mary issues the SQL statements

UPDATE countries

SET population = population - 10 WHERE name = ’Finland’ ;

UPDATE countries

SET population = population + 10 WHERE name = ’Sweden’ ;

Even though the UPDATE statement is just one statement, it should be clear
that the computer program (like database system) maintaining the data needs
to do several operations: It needs to read the population or a country and then
it needs to make a calculation for the new value, and then it finally needs to
write back the changed value. So, deep inside the database system, the UPDATE

statements will be executed as a process containing a series of operations. Let’s
assume they are as follows.

Mary : READ population value x from the row where name = ’Finland’

Mary : WRITE population value x-10 to the row where name = ’Finland’

Mary : READ population value y from the row where name = ’Sweden’

Mary : WRITE population value y+10 to the row where name = ’Sweden’

Various things may stop the processing at any moment, such as electrity
cable being cut of someone powering the computer off. Let’s suppose that such
a failure happens right after Mary has issued her commands and, in practice,
her process stops right berfore the last operation, leaving the population value
for Finland updated and the population value for Sweden not updated. If no
proper attention to the situation is paid, this will lead into incorrect values in
the database. If e.g. Mary just re-issues the commands after the failure, then 10
gets subtracted twice from Finland’s population value while only adding it once
to Sweden’s population value. The set of operations that Mary wants to perform
in the database is atomic - either none or all of them should be performed.

Suppose now, that at the same time user John wants to record a fact that 2
people moved from Sweden to China. He issues that SQL statements

UPDATE countries

SET population = population - 2 WHERE name = ’Sweden’ ;

UPDATE countries

SET population = population + 2 WHERE name = ’China’ ;
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which leads into the following operations

John : READ population value z from the row where name = ’Sweden’

John : WRITE population value z-2 to the row where name = ’Sweden’

John : READ population value w from the row where name = ’China’

John : WRITE population value w+2 to the row where name = ’China’

A computer is fast enough to serve several users without a significant delay
by giving them turns when some of their operations can be performed. Similarly,
many users can be connected to a database system, and the system serves them
by turns. This means that their operations are interleaved somehow in the
execution. Let’s assume now that the operations by Mary’s and John’s processes
interleave as follows.

Mary : READ population value x from the row where name = ’Finland’

Mary : WRITE population value x-10 to the row where name = ’Finland’

Mary : READ population value y from the row where name = ’Sweden’

John : READ population value z from the row where name = ’Sweden’

John : WRITE population value z-2 to the row where name = ’Sweden’

John : READ population value w from the row where name = ’China’

John : WRITE population value w+2 to the row where name = ’Sweden’

Mary : WRITE population value y+10 to the row where name = ’Sweden’

For the updates to be done correctly, the final value of Sweden’s population
should be p+10-2 where p is Sweden’s population before the updates. When
all of the operations of Mary’s process are performed before all of the opera-
tions of John’s process, we get the desired outome. However, observing closely
the interleaved operations reveals that in that case the final value of Sweden’s
population ends as p+10, which, of course, is not the desired outcome.

The reason why things go wrong is that both Mary’s and John’s operations
are meant to be a whole that is executed in isolation from other users. Before
or after that whole the other users can access the data and everything should
be ok.

Isolation and atomicity can be supported by using transactions, each of
which containing a sequence of operations such that either they all get executed
or none of them gets executed. In SQL, a transation can be started by giving
the command

START TRANSACTION

After that the SQL operations changes in the database will be ’buffered’ in
such a way that they are only visible for the user herself, and not to others. The
transaction can be terminated by giving command

COMMIT

making the updates permanent and visible to others, or by command
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ROLLBACK

which cancels all the updates of the transaction.
Once the changes are made permanent, they are assumed to be durable,

meaning that the database system will contain the data after failures like the
computers running the database system being shut down abruptly.

Atomicity, Consistency, Isolation, and Durability make up the so-called
ACID properties, generally expected from database systems.

A transaction is a sequence of statements that is executed together. A
transaction succeeds or fails as a whole. For instance, a bank transfer can
consist of two updates, collected to a transaction:

BEGIN ;

UPDATE Accounts

SET (balance = balance - 100) WHERE holder = ’Alice’ ;

UPDATE Accounts

SET (balance = balance + 100) WHERE holder = ’Bob’ ;

COMMIT ;

If the first update fails, for instance, because Alice has less than 100 pounds,
the whole transaction fails. We can also manually interrupt a transaction by a
ROLLBACK statement.

Individual SQL statements are automatically transactions. This includes the
execution of triggers, which we used for bank transfers in Chapter 6. Otherwise,
transactions can be created by grouping statements between BEGIN and COMMIT.

Transactions are expected to have so-called ACID properties:
• A, Atomicity: the transaction is an atomic unit that succeeds or fails as

a whole.
• C, Consistency: the transaction keeps the database consistent (i.e. pre-

serves its constraints).
• I, Isolation: parallel transactions operate isolated of each other.
• D, Durability: committed transactions have persistent effect even if the

system has a failure.
Hint. The main purpose of transactions is to keep the data and data access
consistent. But a transaction can also be faster than individual statements.
For instance, if you want to execute thousands of INSERT statements, it can be
better to make them into one transaction.

The full syntax of starting transactions is as follows:

statement ::=

START TRANSACTION mode* | BEGIN | COMMIT | ROLLBACK

mode ::=

ISOLATION LEVEL level

| READ WRITE | READ ONLY

level ::=

SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED
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The READ WRITE and READ ONLY modes indicate what interferences are
possible. This, as well as the effect of level, are discussed in more detail in the
chapter on SQL in software applications.

7.15 Maintaining isolation*

The technicalities of how transactions are managed is not completely in the focus
of this book. There are things, though, that a database user / programmer
should understand, at least to trouble shoot problems appear. The need for
isolation is motivated above. There are two main approaches for maintaining
isolation: locking and multiversioning.

In locking, when a process needs access to a data item, it will ask for a lock
on the item. There are two types of lockes: a Read lock (R-lock, shared lock),
and a Read-Write lock (RW lock, exclusive lock). If a process needs to read an
item and has no previous lock on it, then it asks for an R-lock on the item. If
some other process holds an RW-lock to the item, then no lock is given and the
process either rolls back or waits. If there are only R-locks or there are no locks
on the item, then the R-lock is given to the process and the information of the
lock is inserted into a lock table.

Similarly, if a process wants to write a data item, then it asks for an RW-
lock on the item. IF some other process holds any kind of a lock, then the lock
cannot be given and the requesting process either rolls back or waits. Otherwise
the lock is given and inserted to the lock table.

To maintain maximum isolation, the transaction only gives releases the locks
at COMMIT or ROLLBACK. The waiting transactions may eventually get the
locks when other transactions terminate. Otherwise they may time out and
roll back. They may also stay on waiting, but there may be problems like
deadlock, where there is a cycle of processes each waiting for the locks that the
next process in the cycle holds. This can be detected by the system and some
”random victim” can be sacrifised for the common good. Another problem is
that a process that rolls back and restarts might not get the locks even after
repeated restart - this is called starvation. As a further problem with locking,
transactions accessing large amounts of data will create a lot of entries in the
lock tables, thus making the tables big.

Multiversioning is based on the idea that several versions of the data item
are stored. Transactions are given a number or a timestamp when they start.
The basic idea is that a writing transaction updates the list of versions by writ-
ing a new version along with its timestamp in the list. Reading transactions
select from the list the value valid for their time. For instance, if the list, as-
sumed here to be ordered, has<timestamp, value> pairs<100,5.0>, <104,2.0>,
<109,11.0> for some data time A, then a transaction with timestamp 107 want-
ing to read A would pick the value 2.0 as it is the last value written before time
107.

We can remove such values from the list that there are no such transactions
anymore that would need those values. For instance, if all executing transactions
have at least timestamp 105, then we could remove <100,5.0> from the list.
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If removal of old versions is done appropriately, then reads are always suc-
cessful. However, to figure out if the writes can be executed, the reads have to
record the last timestamp when a data itme is read. Let’s suppose that the data
item A above is read at time 112 and a transaction with timestamp 111 wants
to write a value for A. Now, to simulate a correct order of transactions, then the
transaction with timestamp 111 cannot write that value anymore, as the value
it wants to write should have been read by the transaction with timestamp 112,
and, consequently, the transaction with timestamp 111 must be rolled back.
This, however, may lead to a need to roll back other transactions that have
read data written with timestamp 111.

Even though reading transactions never block, this way they have to wait
for earlier transactions to commit or roll back before they can decide if they can
commit.

7.16 Interferences and isolation levels

If we maintain the transactions as in the previous section, then the effects of
the execution are the same as if the transactions would be executed in a serial
order - thereby we such arrangements lead to serializable excutions (executions
that could be re-arranged as serial).

However, big lock tables or waiting for other transactions to commit may be
prohibiting for performance. For some applications we can have more flexible
requirements for the concurrency, e.g. it may not be absolutely necessary that
they read the last value, or it is not catastrophic if they read a value that
finally was not stored permanently by the transaction. A bank might require
serializable executions to maintain the balances while in a social media platform
we may allow users to see comments that were not stored permanently or the
uses may miss the most recent comments at some points.

Thus, sometimes Isolation requireent in the ACID properties is too rigid. If
we allow for multiversioning transactions to commit not waiting for others, then
they might have read some value that did not become permanent (dirty data).
Similarly, if locking transactions release their locks before commit/rollback and
finally roll back. In such cases also repeated reads of the data may bring different
results.

In practice, a database system may allow weakening the Isolation condition
by using isolation levels. These levels are defined as follows:

• SERIALIZABLE: the transaction only sees data that was committed be-
fore the transaction began.

• REPEATABLE READ: like READ COMMITTED, but previously read
data may not be changed.

• READ COMMITTED: the transaction can see data that is committed
by other transactions during it is running, in addition to data committed
before it started.
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• READ UNCOMMITTED: the transaction sees everything from other trans-
actions, even uncommitted.

The standard example about parallel transactions is flight booking. Sup-
pose you have the schema

Seats(date,flight,seat,status)

where the status is either ”vacant” or occupied by a passanger. Now,
an internet booking program may inspect this table to suggest flights to
customers. After the customer has chosen a seat, the system will update
the table:

SELECT seat FROM Seats WHERE status=’vacant’ AND date=...

UPDATE Seats SET status=’occupied’ WHERE seat=...

It makes sense to make this as one transaction.

However, if many customers want the same flight on the same day, how
should the system behave? The safest policy is only to allow one booking
transaction at a time and let all others wait. This would guarantee the
ACID properties. The opposite is to let SELECTs and UPDATEs be freely
intertwined. This could lead to interference problems of the following
kinds:

• Dirty reads: read data resulting from a concurrent uncommitted trans-
action.

T1 __________________READ a ____________

T2 ________INSERT a _________ROLLBACK___

• Non-repeatable reads: read data twice and get different resulats (be-
cause of concurrent committed transaction that modifies or deletes the
data).

T1 _____READ a _______________________READ a

T2 _____________UPDATE a=a’___COMMIT _______

• Phantoms: execute a query twice and get different results (because of
concurrent committed transaction).

T1 SELECT * FROM A _________________________SELECT * FROM A

T2 ________________INSERT INTO A a___COMMIT _______________

The following table shows which interference are allowed by which isolation
levels, from the strictest to the loosest:
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dirty reads non-repeatable reads phantoms
SERIALIZABLE - - -
REPEATABLE READ - - +
READ COMMITTED - + +
READ UNCOMMITTED + + +

Note. PostgreSQL has only three distinct levels: SERIALIZABLE, REPEAT-
ABLE READ, and READ COMMITTED. READ UNCOMMITTED means
READ COMMITTED. Hence no dirty reads are allowed.

7.17 The ultimate query language?*

SQL was once meant to be a high-level query language, easy to learn for non-
progammars. In some respects, it is like COBOL: very verbose with English-like
keywords, and a syntax that with good luck reads like English sentences: select
names from countries where the continent is Europe. Real natural language
queries of course have a richer syntax and may require effort from the compiler
to execute. Here are some examples of syntactic forms easily interpretable in
SQL:

what is the capital of Sweden

SELECT capital FROM countries WHERE name=’Sweden’

which countries have EUR as currency

SELECT name FROM Countries WHERE currency=’EUR’

which countries have a population under 1000000

SELECT name FROM Countries WHERE population<1000000

how many countries have a population under 1000000

SELECT count(*) FROM Countries WHERE population<1000000

show everything about all countries where the population is under 1000000

SELECT * FROM Countries WHERE population<1000000

show the country names and currency names for all countries and currencies

such that the continent is Europe and currency is the currency code

SELECT Countries.name, Currencies.name FROM Countries, Currencies

WHERE continent=’Europe’ AND currency=Currencies.code

It is possible to write grammars that analyse these queries and translate them
to SQL, just like and SQL compiler translates SQL queries to relational algebra.
This was in fact a popular topic in the 1970’s and 1980’s, after the successful
LUNAR system for querying about moon stones:

http://web.stanford.edu/class/linguist289/woods.pdf
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Natural language question answering is becoming popular again, in systems like
Wolfram Alpha and IBM Watson. They are expected to give
• more fine-grained search possibilities than plain string-based search
• support for queries in speech, like in Google’s Voice Search and Apple’s

Siri.
The main problems of natural language search are
• precision: without a grammar comparable to e.g. SQL grammar, it is

difficult to interpret complex queries correctly
• coverage: queries can be expressed in so many different ways that it is

difficult to have a complete grammar
• ambiguity: a query can have different interpretations, which is sometimes

clear from context (but exactly how?), sometime not:
– Please tell us quickly, Intelligent Defence System: Are the missiles

coming across the ocean or over the North Pole?
– Calculating........ Yes.

Interestingly, once we can solve these problems for one language, other languages
follow the same patterns:

vad är Sveriges huvudstad

vilka länder har EUR som valuta

vilka länder har en befolkning under 1000000

hur många länder har en befolkning under 1000000

visa allt om alla länder där befolkningen är under 1000000

visa landnamnen och valutanamnen för alla länder och valutor

där kontinenten är Europa och valutan är valutakoden

Natural language queries are in the intersection of database technology and
artificial intelligence. The problem can be approached incrementally, by accu-
mulating technology and knowledge. Much of the research is on collecting the
knowledge automatically, by for instance using machine learning. This is the
case in particular when the knowledge is in unstructured form such as text.
However, when the knowledge is already in a database, the question becomes
much more like query compilation.
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8 Introduction to alternative data models

The relational data model has been dominating the database world for a long
time. But there are alternative models, some of which are gaining popularity.
XML is an old model, often seen as a language for documents rather than data.
In this perspective, it is a generalization of HTML. But it is a very powerful
generalization, which can be used for any structured data. XML data objects
need not be just tuples, but they can be arbitrary trees. XML also has designated
query languages, such as XPath and XQuery. This chapter introduces XML
and gives a summary of XPath. A more general approach is that of **docu-
ment databases**, which are designed in particular textual structured or semi-
structured data. One example of such systems is MongoDB, shortly also covered
in this chapter. A particular concern in document databases is a query lan-
guage or facility, which has search structures more suitable for such documents
than SQL. The chapter concludes with Big Data and ”NoSQL” approaches more
generally, with Cassandra as example.

8.1 XML and its data model

XML (eXtensible Markup Language) is a notation for documents and data.
For documents, it can be seen as a generalization of HTML (Hypertext Markup
Language): HTML is just one of the languages that can be defined in XML.
If more structure is wanted for special kinds of documents, HTML can be ”ex-
tended” with the help of XML. For instance, if we want to store an English-
Swedish dictionary, we can build the following kind of XML objects:

<word>

<pos>Noun</pos>

<english>computer</english>

<swedish>dator</swedish>

</word>

(where pos = part of speech = ”ordklass”). When printing the dictionary, this
object could be transformed into an HTML object,

<p>

<i>computer</i> (Noun)

dator

</p>

But the HTML format is less suitable when the dictionary is used as data, where
one can look up words. Therefore the original XML structure is better suited
for storing the dictionary data.

The form of an XML data object is

<tag> ... </tag>
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document ::= header? dtd? element

starttag ::= < ident attr* >

header ::= "<?xml version=1.0 encoding=utf-8 standalone=no?>" endtag ::= </ ident >

## standalone=no if with DTD emptytag ::= < ident attr* />

dtd ::= <! DOCTYPE ident [ definition* ]> attr ::= ident = string ## string in double quotes

definition ::= ## XPath

<! ELEMENT ident rhs >

| <! ATTLIST ident attribute* > path ::=

axis item cond? path?

rhs ::= | path "|" path

EMPTY | #PCDATA | ident

| rhs"*" | rhs"+" | rhs"?" axis ::= / | //

| rhs , rhs

| rhs "|" rhs item ::= "@"? (ident*) | ident :: ident

attribute ::= ident type #REQUIRED|#IMPLIED cond ::= [ exp op exp ] | [ integer ]

type ::= CDATA | ID | IDREF exp ::= "@"? ident | integer | string

element ::= starttag element* endtag | emptytag op ::= = | != | < | > | <= | >=

Figure 7: A grammar of XML and XPath.

where <tag> is the start tag and </tag> is the end tag. A limiting case is
tags with no content in between, which has a shorthand notation,

<tag/> = <tag></tag>

A grammar of XML is given in Figure 7, using the same notation for grammar
rules as used for SQL before.

All XML data must be properly nested between start and end tags. The
syntax is the same for all kinds of XML, including XHTML (which is XML-
compliant HTML): Plain HTML, in contrast to XHTML, also allows start tags
without end tags.

From the data perspective, the XML object corresponds to a row in a rela-
tional database with the schema

Words(pos,english,swedish)

A schema for XML data can be defined in a DTD (Document Type Dec-
laration). The DTD expression for the ”word” schema assumed by the above
object is

<!ELEMENT word (pos, english, swedish)>

<!ELEMENT pos (#PCDATA)>

<!ELEMENT english (#PCDATA)>

<!ELEMENT swedish (#PCDATA)>

The entries in a DTD define elements, which are structures of data. The first
line defines an element called word as a tuple of elements pos, english, and
swedish. These other elements are all defined as #PCDATA, which means parsed
character data. It can be used for translating TEXT in SQL. But it is moreover
parsed, which means that all XML tags in the data (such as HTML formatting)
are interpreted as tags. (There is also a type for unparsed text, CDATA, but it
cannot be used in ELEMENT declarations, bur only for values of attributes.)
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XML supports more data structures than the relational model. In the re-
lational model, the only structure is the tuple, and all its elements must be
atomic. In full XML, the elements of tuples can be structured elements them-
selves. They are called daughter elements. In fact, XML supports algebraic
datatypes similar to Haskell’s data definitions:

• Elements can be defined as

tuples of elements: E, F

lists of elements: E*

nonempty lists of elements: E+

alternative elements: E | F
optional elements: E?

strings: #PCDATA

• Elements can be recursive, that is, a part of an element can be an instance
of the element itself. This enables elements of unlimited size.

• Thus the elements of XML are trees, not just tuples. (A tuple is a limiting
case, with just one branching node and leaves under it.)

The validation of an XML document checks its correctness with respect to a
DTD. It corresponds to type checking in Haskell. Validation tools are available
on the web, for instance, http://validator.w3.org/

Figure 8 gives an example of a recursive type. It encodes a data type for
arithmetic expression, and an element representing the expression 23 + 15 * x.
It shows a complete XML document, which consists of a header, a DTD (starting
with the keyword DOCTYPE), and an element. It also shows a corresponding
algebraic datatype definition in Haskell and a Haskell expression corresponding
to the XML element.

To encode SQL tuples, we only need the tuple type and the PCDATA type.
However, this DTD encoding does not capture all parts of SQL’s table defini-
tions:
• basic types in XML are not so refined: basically only TEXT is available
• constraints cannot be expressed in the DTD

Some of these problems can be solved by using attributes rather than elements.
Here is an alternative representation of dictionary entries:

<!ELEMENT word EMPTY>

<!ATTLIST word

pos CDATA #REQUIRED

english CDATA #REQUIRED

swedish CDATA #REQUIRED

>

<word pos="Noun" english="Computer" swedish="Dator">

The #REQUIRED keyword is similar to a NOT NULL constraint in SQL. Optional
attributes have the keyword #IMPLIED.

Let us look at another example, which shows how to model referential con-
straints:
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-- XML

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<!DOCTYPE expression [

<!ELEMENT expression (variable | constant | addition | multiplication)>

<!ELEMENT variable (#PCDATA)>

<!ELEMENT constant (#PCDATA)>

<!ELEMENT addition (expression,expression)>

<!ELEMENT multiplication (expression,expression)>

]>

<expression>

<addition>

<expression>

<constant>23</constant>

</expression>

<expression>

<multiplication>

<expression>

<constant>15</constant>

</expression>

<expression>

<variable>x</variable>

</expression>

</multiplication>

</expression>

</addition>

</expression>

-- Haskell

data Expression =

Variable String

| Constant String

| Addition Expression Expression

| Multiplication Expression Expression

Addition

(Constant "23")

(Multiplication

(Constant "15")

(Variable "x")))

Figure 8: A complete XML document for arithmetic expressions and the corre-
sponding Haskell code, with 23 + 15x as example.
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<!ELEMENT Country EMPTY>

<!ATTLIST Country

name CDATA #REQUIRED

currency IDREF #REQUIRED

>

<!ELEMENT Currency EMPTY>

<!ATTLIST Currency

code ID #REQUIRED

name CDATA #REQUIRED

>

The code attribute of Currency is declared as ID, which means that it is an iden-
tifier (which moreover has to be unique). The currency attribute of Country is
declared as IDREF, which means it must be an identifier declared as ID in some
other element. However, since IDREF does not specify what element, it only
comes half way in expressing a referential constraint. Some of these problems
are solved in alternative format to DTD, called XML Schema.

Attributes were originally meant for metadata (such as font size) rather than
data. In fact, the recommendation from W3C is to use elements rather than at-
tributes for data (see http://www.w3schools.com/xml/xml dtd el vs attr.asp).
However, since attributes enable some constraints that elements don’t, their use
for data can sometimes be justified.

8.2 The XPath query language

The XPath language gives a concise notation to extract XML elements. Its
syntax is quite similar to Unix directory paths. A grammar for a part of XPath
is included in the XML grammar in Figure 7. Here are some examples:
• /Countries/country all <country> elements right under <Countries>
• /Countries//@name all values of name attribute anywhere under<Countries>
• /Countries/currency/[@name = "dollar"] all <currency> elements

where name is dollar

There is an on-line XPath test program in http://xmlgrid.net/xpath.html
There is a more expressive query language called XQuery, which extends

XPath. Another possibility is to use XSLT (eXtensible Stylesheet Language
for Transformations), whose standard use is to convert between XML formats
(e.g. from dictionary data to HTML). Writing queries in a host language (in a
similar way as in JDBC) is of course also a possibility.

8.3 XML and XPath in the query converter*

TODO: update this in the web version of qconv
The Query Converter has a functionality for converting an SQL database

into an XML object, with its schema as DTD. It also implements a part of the
XPath query language. The command

x
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without an argument prints the current database as an XML document (with
DTD and the elements). The command xp takes an XPath query as an argument
and shows the result of executing it:

xp /QConvData//@name

extracts all values of the name attribute everywhere in the descendants of /QConvData.
(The XPath interpreter is not complete and has some bugs.)

The XML encoding of SQL tuples uses attributes rather than child elements.
It does not (yet) express the IDREF constraints. All tables are wrapped in an
element called QConvData.

The command

ix <FILE>

reads an XML file, parses it, and validates it if it has a DTD. The xp command
with an XPath query applies to all XML files that have been read either in this
way or by conversion from SQL. Hence one can also query XML databases that
are not representable as SQL.

8.4 JSON

JSON (JavaScript Object Notation)6 is similar to XML as it supports arbitrarily
nested, tree-like data structures. Data in JSON is grouped in objects, which
are key-value pairs enclosed in curly braces. Thus the following object encodes
an English-Swedish dictionary entry:

{"pos": noun", "english": "computer", "swedish": "dator"}

JSON objects are similar to objects in Java and JavaScript, and to records in
some other programming languages. A peculiarity of JSON is that the keys are
quoted, not only the string values.

Both objects and values can be collected to arrays in square brackets. Thus
a dictionary with two entries is an array of two objects:

[

{"pos": "noun", "english": "computer", "swedish": "dator"},

{"pos": "verb", "english": "compute", "swedish": "beräkna"}

]

and an entry with three Swedish equivalents for an English word has an array
of three string values:

{"pos": "noun", "english": "boy",

"swedish": ["pojke","kille","grabb"]}

The grammar of JSON is simple:

6https://www.json.org/
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element ::= object | array | string | number

object ::= "{" member* "}"

member ::= string ":" element

array ::= "[" element* "]"

Some things to notice:
• both keys and values are strings in double quotes
• number values can also be given without quotes
• strings "null", "true", , "false" have special semantics
• JSON data can be freely divided into lines
• the order of key-value pairs in an object doesn’t matter
• the order of items in an array does matter
Compared with XML, a thing to notice is that JSON doesn’t have ordered

tuples, where values can be found by position. In a JSON object, values are
found by the key. In a JSON array, position does matter. But since the length of
an array is not determined, it is uncertain whether a certain position does hold
a value. One consequence of this is that we cannot encode Haskell datatypes as
easily as we did in XML (Figure 8). The types that can be encoded are record
types, which are datatypes with named positions. For example, a dictionary
entry can have the type

data Entry = Entry {

pos :: String,

english :: String,

swedish :: [String] -- allowing multiple translations

}

The Haskell library Aeson enables automatic conversion between this kind of
Haskell types and JSON encodings.

Haskell datatypes are one way to define schemas for JSON objects: they
specify the format of objects and types of values. Another way is to use JSON
itself to define this. JSON schemas are still at the level of a draft, which says
that the schema for dictionary Entry objects could look as follows:7

{

"$schema": "http://json-schema.org/schema#",

"title": "Entry",

"type": "object",

"required": ["pos", "english", "swedish"],

"properties": {

"pos": {

"type": "string"

},

"english": {

"type": "string"

7https://json-schema.org/latest/json-schema-core.html
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},

"swedish": {

"type": "array",

"items": {

"type": "string"

}

}

}

}

8.5 Querying JSON

As the name tells, JSON was designed to be an object format for JavaScript.
Thus it can be queried by JavaScript functions in various ways. Similar support
is available in many other languages as well, so that a specific query language is
not needed. For instance, the Aeson library in Haskell enables JSON queries via
their corresponding Haskell datatypes by using list comprehensions and other
Haskell construts. Thus a query that finds all English words with more than
one Swedish translation can be written

[english e | e <- entries, length (swedish e) > 1]

However, JSON can also be queried with XPath and even with PostgreSQL.
In XPath, this works in a way similar to XML, by navigation in the object tree.
• TODO example of XPath in JSON

In PostgreSQL, an extension of standard SQL introduces the type json as a
possible type of a column8. For example, a dictionary entry could be defined as
follows:

CREATE TABLE Entries {

id INT PRIMARY KEY,

entry JSON NOT NULL

}

The entry part, alas, does not have a specified schema, so the database user
must rely on the data being of an expected format. But given that this is
granted, one can make the following kinds of queries:
• retrieve JSON objects with ordinary attribute selection

SELECT entry

FROM Entries

;

{"pos": "noun", "english": "computer", "swedish": "dator"}

‘ {"pos": "verb", "english": "compute", "swedish": "beräkna"}

• retrieve values from JSON objects with the -> operator

8http://www.postgresqltutorial.com/postgresql-json/
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SELECT entry -> ’english’

FROM Entries

;

"computer"

"compute"

• retrieve values from JSON objects in unquoted text with the ->> operator
SELECT entry ->> ’english’

FROM Entries

;

computer

compute

• filter with the same arrow operators in WHERE clauses
SELECT entry -> ’english’

FROM Entries

WHERE entry ->> ’pos’ = ’noun’

;

computer

Populating a PostgreSQL database with JSON values can be done with the
usual INSERT statements:

INSERT INTO Entries VALUES (

4,

{"pos": "noun", "english": "computation", "swedish": "beräkning"}

)

8.6 YAML

JSON and XML have partly similar data models. One thing that has made
JSON more popular recently is its more compact syntax: instead of writing
tags both before and after each value, one just writes them before the value.
Thus JSON is easier for humans to read and write than XML. But even the use
of brackets and quotes in JSON can be disturbing to humans. As an attempt
to solve this problem, YAML (YAML Ain’t Markup Language)9 provides a
minimalistic notation, where newlines and indentation are used to structure the
data. The items in an array start with a dash -. Thus the two-entry dictionary
example becomes

- pos: noun

english: computer

swedish: dator

- pos: verb

english: compute

swedish: beräkna

Technically, YAML is not just a simplification of JSON, but a proper exten-
sion of it. One can see it as JSON extended with layout syntax, similar to how

9http://yaml.org/
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Python and Haskell avoid brackets by the use of line breaks and indentation.
But JSON is included in YAML, so that a YAML element can contain parts that
are in ordinary JSON. This is sometimes more compact than ”pure” YAML, as
a short array or object can be placed on a single line. In the following example,
the left column shows a ”pure” YAML object and the right column uses inlined
JSON.

pos: noun pos: noun

english: boy english : boy

swedish: swedish: [pojke,kille,grabb]

- pojke

- kille

- grabb

YAML may look simple to the human eye, but its processing for a machine
is much more complicated than JSON, because complicated rules are needed
to deal with things like white space (as used for indentation and inside string
values) and escape characters (to know that belongs to the notation and what
is a part of a value). This can also, paradoxically, make it more difficult for
human authors to write valid YAML without noticing it. We don’t even try to
formulate a grammar of YAML here.

8.7 MongoDB*

MongoDB, another public open-source database product, uses the document
metaphora for data storage. This makes it flexible and useful for TODO

8.8 Pivot tables and OLAP*

TODO

8.9 NoSQL data models*

Big Data is a word used for data whose mere size is a problem. What the size
is depends on many things, such as available storage and computing power. At
the time of writing, Big Data is often expected to be at least terabytes (1012

bytes), maybe even petabytes (1015).
In relational databases, each table must usually reside in one computer. In

Big Data, data is usually distributed, maybe to thousands of computers (or
millions in the case of companies like Google). The computations must also be
parallelizable as much as possible. This has implications for big data systems,
which makes them different from relational databases:
• simpler queries (e.g. no joins, search on indexed attributes only)
• looser structures (e.g. no tables with rigid schemas)
• less integrity guarantees (e.g. no checking of constraints, no transactions)
• more redundancy (”denormalization” to keep together data that belongs

together)
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NoSQL is not just one data model but several:
• key-value model
• column-oriented model
• graph model

We will take a closer look at Cassandra, which is a hybrid of the first two models.

8.10 The Cassandra DBMS and its query language CQL*

”Cassandra is essentially a hybrid between a key-value and a column-oriented
(or tabular) database. Its data model is a partitioned row store with tunable
consistency... Rows are organized into tables; the first component of a table’s
primary key is the partition key; within a partition, rows are clustered by the
remaining columns of the key... Other columns may be indexed separately from
the primary key.”
https://en.wikipedia.org/wiki/Apache Cassandra

Here is a comparison between Cassandra and relational databases:

Cassandra SQL
data object key-value pair=(rowkey, columns) row
single value column=(attribute,value,timestamp) column value
collection column family table
database keyspace schema, E-R diagram
storage unit key-value pair table
query language CQL SQL
query engine MapReduce relational algebra

Bigtagle is a proprietary system, which was the model of the open-source
Cassandra, together with Amazon’s Dynamo data storage system.10 The
MapReduce implementation used by Cassandra is Hadoop.

It is easy to try out Cassandra, if you are familiar with SQL. Let us follow
the instructions from the tutorial in

https://wiki.apache.org/cassandra/GettingStarted

Step 1. Download Cassandra from http://cassandra.apache.org/download/
Step 2. Install Cassandra by unpacking the downloaded archive.
Step 3. Start Cassandra server by going to the created directory and giving
the command

bin/cassandra -f

Step 4. Start CQL shell by giving the command

bin/cqlsh

10 The distribution and replication of data in Cassandra is more like in Dynamo.
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The following CQL session shows some of the main commands. First time you
have to create a keyspace:

cqlsh> CREATE KEYSPACE mykeyspace

WITH REPLICATION = { ’class’ : ’SimpleStrategy’, ’replication_factor’ : 1 };

Take it to use for your subsequent commands:

cqlsh> USE mykeyspace ;

Create a column family - in later versions kindly called a ”table”!

> CREATE TABLE Countries (

name TEXT PRIMARY KEY,

capital TEXT,

population INT,

area INT,

currency TEXT

) ;

Insert values for different subsets of the columns:

> INSERT INTO Countries

(name,capital,population,area,currency)

VALUES (’Sweden’,’Stockholm’,9000000,444000) ;

> INSERT INTO Countries

(name,capital)

VALUES (’Norway’,’Oslo’) ;

Make your first queries:

> SELECT * FROM countries ;

name | area | capital | currency | population

--------+--------+-----------+----------+------------

Sweden | 444000 | Stockholm | SEK | 9000000

Norway | null | Oslo | null | null

> SELECT capital, currency FROM Countries WHERE name = ’Sweden’ ;

capital | currency

-----------+----------

Stockholm | SEK

Now you may have the illusion of being in SQL! However,
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> SELECT name FROM Countries WHERE capital = ’Oslo’ ;

InvalidRequest: code=2200 [Invalid query] message=

"No secondary indexes on the restricted columns support the provided operators: "

So you can only retrieve indexed values. PRIMARY KEY creates the primary
index, but you can also create a secondary index:

> CREATE INDEX on Countries(capital) ;

> SELECT name FROM Countries WHERE capital = ’Oslo’ ;

name

--------

Norway

Most SQL constraints have no counterparts, but PRIMARY KEY does:

> INSERT INTO countries

(capital,population,area,currency)

VALUES (’Helsinki’,5000000, 337000,’EUR’) ;

InvalidRequest: code=2200 [Invalid query] message=

"Missing mandatory PRIMARY KEY part name"

A complete grammar of CQL can be found in

https://cassandra.apache.org/doc/cql/CQL.html

It is much simpler than the SQL grammar. But at least my version of CQL
shell does not support the full set of queries.

8.11 Physical arrangement of data on disk*

HBase is another open-source commmunity-driven implementation based on the
BigTable database. It provides a low-level access to the data: all data is stored
as bytes and the application has to provide its own transformation functions
to interpret the data. Storing data is based on a primitive put function while
reading the data is based on a primitive get function.

Disk is still a slow component of computer systems. As a solution to this,
Hbase organizes the data on disk physically sequentially to support fast retrieval
based on the primary key. This means that if an application needs large amounts
of data, the system only needs to locate the data start position once, after which
it can read the data sequentially in order, which is relatively fast. As an example,
suppose that we position timestamp first in the primary key, and know the time
interval for which we need the data. This allows fast retrieval and storage.
Building secondary indices does not give similar advantage, as the data is only
organized on the primary key.
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The obvious general drawback is that there may be a need to reorganize the
data, and this can take a reasonably - or indeed unreasonably - long. This can
even result into a service break. Similar possibility exists with Cassandra.

The data is also replicated, in a configurable way. The data is stored using
the Hadoop HDFS file system.

Further features include so called sharding where data placement on servers
is defined based on the data values. In HBase the data can be split horizon-
tally (using row sets e.g. placing data of customers on a particular continent
physically nearby) and vertically by using attribute families.

If avoiding downtime and service break is a priority, then key-value stores
such as Amazon’s key-value database or ??? There, the data is hashed on disk
based on key values. In ??? the data storage can dynamically be extended by
introducing new servers on-the-fly. As a result, the system will not encounter
service breaks due to data reorganization. However, data retrieval is harder
than in HBase - the basic choice to access the data is writing a MapReduce
program.

A further complication due to distributed storage and parallel access lies
within the reliability and transactional aspects. However, discussion of these
requires considerable knowledge of distributed system theory, and as such, it is
skipped in this book.

8.12 NoSQL and MapReduce*

The precise definition of NoSQL is ”not only SQL”, which does not exclude SQL
but adds to it other ways to access that data. In practice, however, when talking
about NoSQL databases, people often mean systems that do not support SQL
at all. The main reason for such systems are computational needs that are hard
to fulfill with SQL, and, in particular combined with large amounts of data.
These models are often implemented to support distributed-parallel computing
using a computing cluster. There are also traditional database systems that
support distributed large data sets, but there are primarily two things that
drive the users to the new systems. The first is money, as these systems are
often open-source community-developed software products, and participating in
the development even gives a possibility to support the features necessary for a
company, or alternatively just gives a cost-efficient solution. The other are the
application needs, as there are needs to do perform such machine learning and
data mining tasks for which SQL is not a feasible option, and certain traditional
database services may not be so important. In particular, the MapReduce
computational model is popular.

In MapReduce, a round of computations consists of first selecting the rele-
vant data and mapping it by the values into suitable subsets, then followed by
the reduce step in which those subsets are used to compute some results. These
results may be intermediate and further MapReduce rounds may follow. The
MapReduce query engine is similar to map and fold in functinal program-
ming. The computations can be made in parallel in different computers. It was
originally developed at Google, on top of the Bigtable data storage system.
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TODO more details of MapReduce
Also, the traditional ACID properties may not be required by the new ap-

plications - it is not so fatal if sometimes some comment in the social media is
lost, some users see some dirty data which has been deleted, and so on.

The efficiency of Big Data databases often cricitally depends on the data
arrangement on disk. We will review some options for this in this chapter,
along with some Big Data database products.

8.13 Further reading on NoSQL*

The course book covers XML, in chapters 11 and 12. The NoSQL approach
is more recent, so we must refer to other material. I have found the following
useful and readable:

• CQL Reference Manual https://docs.datastax.com/en/cql/3.1/index.html
The source used in this chapter.

• Martin Fowler, Introduction to NoSQL
https://www.youtube.com/watch?v=qI g07C Q5I A very good overview
talk without hype.

• ”Cassandra Essentials Tutorial”. http://www.datastax.com/resources/tutorials
Recommended by Oscar Söderlund in his Spotify guest talk.

• Kelley Reynolds, ”Understanding the Cassandra Data Model from a SQL
Perspective”, 2010.
http://rubyscale.com/blog/2010/09/13/understanding-the-cassandra-data-
model-from-a-sql-perspective/

• Chang, Fay; Dean, Jeffrey; Ghemawat, Sanjay; Hsieh, Wilson C; Wallach,
Deborah A; Burrows, Michael ‘Mike’; Chandra, Tushar; Fikes, Andrew;
Gruber, Robert E, ”Bigtable: A Distributed Storage System for Struc-
tured Data”, 2006.
http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-
osdi06.pdf

• Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kaku-
lapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian,
Peter Vosshall and Werner Vogels, ”Dynamo: Amazon’s Highly Available
Key-value Store”, 2007.
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

• Jeffrey Dean and Sanjay Ghemawat, MapReduce: ”Simplified Data Pro-
cessing on Large Clusters”, 2004.
http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-
osdi04.pdf

• Ralf Lämmel, ”Google’s MapReduce Programming Model - Revisited”,
2008.
http://userpages.uni-koblenz.de/˜laemmel/MapReduce/paper.pdf
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A Appendix: SQL in a nutshell

Figure 9 shows a grammar of SQL. It is not full SQL, but it does contain all those
constructs that are used in this course for database definitions and queries. The
syntax for triggers, indexes, authorizations, and transactions will be covered in
later chapters.

In addition to the standard constructs, different DBMSs contain their own
ones, thus creating ”dialects” of SQL. They may even omit some standard con-
structs. In this respect, PostgreSQL is closer to the standard than many other
systems.

The grammar notation is aimed for human readers. It is hence not com-
pletely formal. A full formal grammar can be found e.g. in PostgreSQL refer-
ences:

http://www.postgresql.org/docs/9.5/interactive/index.html

Another place to look is the Query Converter source file

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-
converter/MinSQL.bnf

It is roughly equivalent to Figure 9, and hence incomplete. But it is completely
formal and is used for implementing an SQL parser.11

The grammar is BNF (Backus Naur form) with the following conventions:
• CAPITAL words are SQL keywords, to take literally
• small character words are names of syntactic categories, defined each in

their own rules
• | separates alternatives
• + means one or more, separated by commas
• * means zero or more, separated by commas
• ? means zero or one
• in the beginning of a line, + * ? operate on the whole line; elsewhere,

they operate on the word just before
• ## start comments, which explain unexpected notation or behaviour
• text in double quotes means literal code, e.g. "*" means the operator *
• other symbols, e.g. parentheses, also mean literal code (quotes are used

only in some cases, to separate code from grammar notation)
• parentheses can be added to disambiguate the scopes of operators

Another important aspect of SQL syntax is case insensitivity:
• keywords are usually written with capitals, but can be written by any

combinations of capital and small letters
• the same concerns identifiers, i.e. names of tables, attributes, constraints
• however, string literals in single quotes are case sensitive

11 The parser is generated by using the BNF Converter tool,
http://bnfc.digitalgrammars.com/ which is also used for the relational algebra and
XML parsers in qconv.
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statement ::= type ::=

CREATE TABLE tablename ( CHAR ( integer ) | VARCHAR ( integer ) | TEXT

* attribute type inlineconstraint* | INT | FLOAT

* [CONSTRAINT name]? constraint deferrable?

) ; inlineconstraint ::= ## not separated by commas!

| PRIMARY KEY

DROP TABLE tablename ; | REFERENCES tablename ( attribute ) policy*

| | UNIQUE | NOT NULL

INSERT INTO tablename tableplaces? values ; | CHECK ( condition )

| | DEFAULT value

DELETE FROM tablename

? WHERE condition ; constraint ::=

| PRIMARY KEY ( attribute+ )

UPDATE tablename | FOREIGN KEY ( attribute+ )

SET setting+ REFERENCES tablename ( attribute+ ) policy*

? WHERE condition ; | UNIQUE ( attribute+ ) | NOT NULL ( attribute )

| | CHECK ( condition )

query ;

| policy ::=

CREATE VIEW viewname ON DELETE|UPDATE CASCADE|SET NULL

AS ( query ) ; deferrable ::=

| NOT? DEFERRABLE (INITIALLY DEFERRED|IMMEDIATE)?

ALTER TABLE tablename tableplaces ::=

+ alteration ; ( attribute+ )

|

COPY tablename FROM filepath ; values ::=

## postgresql-specific, tab-separated VALUES ( value+ ) ## keyword VALUES only in INSERT

| ( query )

query ::=

SELECT DISTINCT? columns setting ::=

? FROM table+ attribute = value

? WHERE condition

? GROUP BY attribute+ alteration ::=

? HAVING condition ADD COLUMN attribute type inlineconstraint*

? ORDER BY attributeorder+ | DROP COLUMN attribute

|

query setoperation query localdef ::=

| WITH tablename AS ( query )

query ORDER BY attributeorder+

## no previous ORDER in query columns ::=

| "*"

WITH localdef+ query | column+

table ::= column ::=

tablename expression

| table AS? tablename ## only one iteration allowed | expression AS name

| ( query ) AS? tablename

| table jointype JOIN table ON condition attributeorder ::=

| table jointype JOIN table USING (attribute+) attribute (DESC|ASC)?

| table NATURAL jointype JOIN table

setoperation ::=

condition ::= UNION | INTERSECT | EXCEPT

expression comparison compared

| expression NOT? BETWEEN expression AND expression jointype ::=

| condition boolean condition LEFT|RIGHT|FULL OUTER?

| expression NOT? LIKE ’pattern*’ | INNER?

| expression NOT? IN values

| NOT? EXISTS ( query ) comparison ::=

| expression IS NOT? NULL = | < | > | <> | <= | >=

| NOT ( condition )

compared ::=

expression ::= expression

attribute | ALL|ANY values

| tablename.attribute

| value operation ::=

| expression operation expression "+" | "-" | "*" | "/" | "%"

| aggregation ( DISTINCT? *|attribute) | "||"

| ( query )

pattern ::=

value ::= % | _ | character ## match any string/char

integer | float | ’string’ | [ character* ]

| value operation value | [^ character* ]

| NULL

aggregation ::=

boolean ::= MAX | MIN | AVG | COUNT | SUM

AND | OR

Figure 9: A grammar of the main SQL constructs.
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