
Chalmers | Göteborgs Universitet
Alejandro Russo, Computer Science and Engineering

Advanced Functional Programming TDA342/DIT260

Tuesday, March 13th, 2018, Samhällsbyggnad, 8:30 (4hs)

(including example solutions to programming problems)

Alejandro Russo, tel. 0729744968

• The maximum amount of points you can score on the exam: 60 points. The grade for the
exam is as follows:

Chalmers: 3: 24 - 35 points, 4: 36 - 47 points, 5: 48 - 60 points.
GU: Godkänd 24-47 points, Väl godkänd 48-60 points
PhD student: 36 points to pass.

• Results: within 21 days.

• Permitted materials (Hjälpmedel): Dictionary (Ordlista/ordbok).

You may bring up to two pages (on one A4 sheet of paper) of pre-written notes — a “summary
sheet”. These notes may be typed or handwritten. They may be from any source. If this
summary sheet is brought to the exam it must also be handed in with the exam (so make a
copy if you want to keep it).

• Notes:

– Read through the paper first and plan your time.

– Answers preferably in English, some assistants might not read Swedish.

– If a question does not give you all the details you need, you may make reasonable
assumptions. Your assumptions must be clearly stated. If your solution only works
under certain conditions, state them.

– Start each of the questions on a new page.

– The exact syntax of Haskell is not so important as long as the graders can understand
the intended meaning. If you are unsure just put in an explanation of your notation.

– Hand in the summary sheet (if you brought one) with the exam solutions.

– As a recommendation, consider spending around 1h 20 minutes per exercise. However,
this is only a recommendation.

– To see your exam: by appointment (send email to Alejandro Russo)

1

Problem 1: (eta-conversion)
An eta-conversion, written η-conversion, is adding or dropping of abstraction over a function

without changing the meaning of your program. For example, id and λx → id x are equivalent
terms because it is possible to eta-convert one into the other. The term “η-conversion” can refer to
the process in either direction. Extensive use of η-reduction can lead to point free programming, i.e.,
where functions are elegantly expressed as, for instance, f = f1 ◦ f2 ◦ f3 . Furthermore, η-conversion
is also typically used in certain compile-time optimisations.

There is an interesting interaction between forcing evaluation in Haskell and eta-conversion.
Recall the primitive seq :: a → b → b which forces evaluation in Haskell. It takes two arguments,
forces the evaluation of the first one and returns the second one. To illustrate how it works, you
can appreciate below some invocations of it.

Prelude> undefined ‘seq‘ 42

*** Exception: Prelude.undefined

Prelude> (5+5) ‘seq‘ 42

42

Prelude> unsafePerformIO (putStrLn "I am being forced") ‘seq‘ 42

I am being forced

42

Prelude>

Your task is to define f such that f ‘seq ‘ 42 and (λx → f x) ‘seq ‘ 42 behave differently. In fact,
it is known that eta-conversion holds up to strictness in Haskell, i.e., up to forcing evaluation of
terms. In other words, if you never use seq , then you have η-conversion in Haskell.

Solution:

f = ⊥
f ′ = λx → f x

test1 = f ‘seq ‘ 42 -- it crashes
test2 = f ′ ‘seq ‘ 42 -- it returns 42

(10p)

Problem 2: (Monads)

a) Consider the definition of State s a.

newtype State s a = State {runState :: s → (a, s)}

Define a monad instance Monad (State s) as well as two functions put :: s → State s () and
get :: State s s such that the following five laws are satisfied:

put s >> put s ′ ≡ put s ′

put s >> get ≡ put s >> return s
get >>= put ≡ return ()
get >>= λs → get >>= k s ≡ get >>= λs → k s s
return () 6≡ ⊥

2

The symbol ⊥ denotes undefined in Haskell. Recall the definition ma >>mb = ma >>= λ →
mb.

Solution:

instance Monad (State s) where
return a = State $ λs → (a, s)
ma >>= k = State $ λs → (λas → runState (k (fst as)) (snd as)) (runState ma s)

put :: s → State s ()
put s = State $ λ → ((), s)

get :: State s s
get = State $ λs → (s, s)

(8p)

b) We assume that we have only total monadic computations, that is, computations which always
terminate (e.g., there is no ⊥ or infinite loops anywhere). Under that assumption, prove that
your definitions satisfy the monadic laws as well as the laws described in a).

You can assume the following properties:

(state id 1)

State (runState ma) ≡ ma

(state id 2)

runState (State f) ≡ f

Solution:

Conventions:

fst x ≡ x .1
snd x ≡ x .2
runState ma s ≡ JmaK s

Left id:

return x >>= f
-- by definition of return and bind
≡ State (λs → (λas → Jf as.1K as.2) (JState (λs → 〈x , s〉)K s))

-- by state id 2
≡ State (λs → (λas → Jf as.1K as.2) ((λs → 〈x , s〉) s))

-- by λ-application
≡ State (λs → (λas → Jf as.1K as.2) 〈x , s〉)

-- by definition of fst, snd and λ-application
≡ State (λs → Jf xK s)

-- by η-conversion
≡ State (Jf xK)

-- by state id 1
≡ f x

3

Rigth id:

f >>= return
-- by definition of return and bind
≡ State (λs → (λas → JState (λs ′ → 〈as.1, s ′〉)K as.2) (Jf K s))

-- by state id 2
≡ State (λs → (λas → (λs ′ → 〈as.1, s ′〉) as.2) (Jf K s))

-- by λ-application
≡ State (λs → (λas → 〈as.1, as.2〉) (Jf K s))

-- by η-conversion and λ-application
≡ State (λs → Jf K s)

-- by η-conversion and state id 1
≡ f

Assoc:

(m >>= f)>>= g
-- by definition of bind
≡ State (λs → (λas → Jg as.1K as.2) (Jm >>= f K s))

-- by definition of bind
≡ State (λs → (λas → Jg as.1K as.2) (JState (λs ′ → (λas ′ → Jf as ′.1K as ′.2) (JmK s ′))K s))

-- by state id 2 and λ-application
≡ State (λs → (λas → Jg as.1K as.2) ((λas ′ → Jf as ′.1K as ′.2) (JmK s)))

-- by η-conversion
≡ State (λs → ((λas → Jg as.1K as.2) ◦ (λas ′ → Jf as ′.1K as ′.2)) (JmK s))

-- by η-conversion
≡ State (λs → (λas ′ → (λas → Jg as.1K as.2) (Jf as ′.1K as ′.2)) (JmK s))

-- by η-conversion
≡ State (λs → (λas ′ → (λs ′ → (λas → Jg as.1K as.2) (Jf as ′.1K s ′)) as ′.2) (JmK s))

-- by state id 2
≡ State (λs → (λas ′ → JState (λs ′ → (λas → Jg as.1K as.2) (Jf as ′.1K s ′))K as ′.2) (JmK s))

-- by definition of bind
≡ State (λs → (λas ′ → Jf as ′.1>>= gK as ′.2) (JmK s))

-- by η-conversion
≡ State (λs → (λas ′ → J(λx → f x >>= g) as ′.1K as ′.2) (JmK s))

-- by definition of bind
≡ m >>= (λx → f x >>= g)

4

Put-put:

put s >> put s ′

≡
State λs0 → (λas → Jput s ′K as.2) (Jput sK s0)
≡ {-For all s and s ′, we have Jput sK s ′ ≡ JState λ → 〈>, s〉K s ′ ≡ 〈>, s〉. -}

State λs0 → (λas → 〈>, s ′〉) (Jput sK s0)
≡

State λs0 → 〈>, s ′〉
≡

put s ′

Put-get:

put s >> get
≡

State λs0 → (λas → JgetK as.2) (Jput sK s0)
≡ {-For all s, we have JgetK s ≡ JState λs0 → 〈s0, s0〉K s ≡ 〈s, s〉. -}

State λs0 → (λas → 〈as.2, as.2〉) 〈>, s〉
≡

State λs0 → 〈s, s〉
≡

State λs0 → (λas → 〈s, as.2〉) 〈>, s〉
≡ {-For all a and s, we have Jreturn aK s ≡ JState λs0 → 〈a, s0〉K s ≡ 〈a, s〉. -}

State λs0 → (λas → Jreturn sK as.2) (Jput sK s0)
≡

put s >> return s

Get-put:

get >>= put
≡

State λs0 → (λas → J(λs → put s) as.1K as.2) (JgetK s0)
≡

State λs0 → (λas → Jput as.1K as.2) (JgetK s0)
≡

State λs0 → (λas → 〈>, as.1〉) 〈s0, s0〉
≡

State λs0 → 〈>, s0〉
≡

return >

5

Get-get:

get >>= λs → get >>= k s
≡

State λs0 → (λas0 → J(λs → get >>= k s) as0.1K as0.2) (JgetK s0)
≡

State λs0 → (λas0 → Jget >>= k as0.1K as0.2) (JgetK s0)
≡

State λs0 → (λas0 → JState λs1 → (λas1 → Jk as0.1 as1.1K as1.2) (JgetK s1)K as0.2) (JgetK s0)
≡

State λs0 → (λas0 → (λas1 → Jk as0.1 as1.1K as1.2) (JgetK as0.2)) (JgetK s0)
≡

State λs0 → (λas0 → (λas1 → Jk as0.1 as1.1K as1.2) 〈as0.2, as0.2〉) 〈s0, s0〉
≡

State λs0 → Jk s0 s0K s0
≡

State λs0 → (λas → Jk as.1 as.1K as.2) 〈s0, s0〉
≡

State λs0 → (λas → Jk as.1 as.1K as.2) (JgetK s0)
≡

State λs0 → (λas → J(λs → k s s) as.1K as.2) (JgetK s0)
≡

get >>= λs → k s s

Return:

return >
≡

State λs0 → 〈>, s0〉
6≡

⊥

(5p)

c) Now, let us assume that you are in Haskell. There is one monadic law that does not hold in
Haskell due to eta-conversion (recall Problem 1). Which one is it? Justify your answer.

Solution:

⊥>>= return ≡ State $ λs → (λas → runState (return (fst as)) (snd as)) (runState ⊥ s)
≡ State $ λs → ⊥
6≡ ⊥

(8p)

6

Problem 3: (DSLs)
Consider the following type of expressions with explicit application

data Expr = Lit Int
| Plus
| App Expr Expr -- the application of a function expression to an argument

In this language the expression 1 + 2 is modelled as App (App Plus (Lit 1)) (Lit 2). The
following terms are valid elements of the Expr type but they do not correspond to well-formed
expressions: App (Lit 1) (Lit 2) and App Plus Plus.

a) Define a generalised datatype (GADT) Expr t whose elements correspond only to well-formed
expressions of type t . For instance,

App (App Plus (Lit 1)) (Lit 2) :: Expr Int

App Plus (Lit 1) :: Expr (Int → Int)

Solution:

data Expr t where
Lit :: Int → Expr Int
Plus :: Expr (Int → Int → Int)
App :: Expr (a → b)→ Expr a → Expr b

(5p)

b) Implement an evaluator eval :: Expr t → t for your expressions.

Solution:

eval :: Expr t → t
eval (Lit n) = n
eval Plus = (+)
eval (App e1 e2) = (eval e1) (eval e2)

(5p)

Problem 4: (Singleton types)
A singleton type is a type with exactly one value—note that undefined is not a value! Because

of this, learning something about the value of a singleton type tells you about the type, and vice
versa. For instance, we have the following definition of natural numbers as singleton types.

data Z = Zero
data S n = Succ n

7

a) Given a function f ::S (S Z)→ Int , what is the value (or values) that it receives as argument?
Given the value Succ (Succ (Succ Zero)), what is its type? Justify your answers.

Solution:

The only possible value of type S (S Z) is:

Succ (Succ Zero) :: S (S Z)

The type of Succ (Succ (Succ Zero)) is:

Succ (Succ (Succ Zero)) :: S (S (S Z))

(1p)

b) Sometimes, we need to take type-level natural numbers and cast them into simple integers.
For that, you should envision the function toInt which gets applied to values of singleton
types and returns an integer. Please, see below many invocations to that function.

Prelude> toInt Zero

0

Prelude> toInt (Succ (Succ Zero))

2

Your task is to implement such function. What is its type?

Solution:

class ToInt a where
toInt :: a → Int

instance ToInt Z where
toInt Zero = 0

instance ToInt n ⇒ ToInt (S n) where
toInt (Succ n) = 1 + toInt n

The type of toInt is ToInt a ⇒ a → Int .

(8p)

c) Now, we would like to write a function which converts integers into a value of a singleton type.
Observe that we want a function that, when given an argument at runtime, it generates the
right value of a singleton type. However, singleton types (as any other types) are compile-time
information. How come can we transform some information at runtime into information at
compile-time? Well, we cannot! What we can do instead is to verify (at runtime) that the
argument of the function coincides with the value associated to the singleton type assumed
at compile-time. Let us assume that the function toSZ is the one taking an integer as an
argument and returning a value of a singleton type. Observe the following invocations.

8

Prelude> let p = do putStr "Number? "

str <- getLine

return (toInt (toSZ (read str) :: (S (S Z))))

Prelude> p

Number? 4

*** Exception: Non-exhaustive patterns in function toSZ

Prelude> p

Number? 2

2

In the example, the argument of toSZ is runtime information, i.e., obtained when running
the program. The argument is the result of converting the input string str into an integer via
read str . In contrast, the type signature S (S Z)) is information given to the type-system,
i.e., before running anything. As you can see in the example, the definition of p is well typed.
Now, when calling p, if the input is different from 2, the program halts. This is because, at
compile time, we assume that the argument of toSZ will be converted into the value of the
singleton type S (S Z) and for that, the user needs to enter the number 2 at runtime.

You task is to implement toSZ . What is its type?

Solution:

class ToSZ a where
toSZ :: Int → a

instance ToSZ Z where
toSZ 0 = Zero

instance ToSZ n ⇒ ToSZ (S n) where
toSZ n = Succ (toSZ (n − 1))

(10p)

9

