CHALMERS | @mnsmnﬂ GOTHENBURG

EDA344/DIT 420, CTH/GU

Based on the book Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross, Addison-Wesley.

Marina Papatriantafilou — Transport layer part2 1

Roadmap Transport Layer

e transport layer services
e multiplexing/demultiplexing
e connectionless transport: UDP
e principles of reliable data transfer
e connection-oriented transport: TCP
— reliable transfer
e Acknowledgements
* Retransmissions
 Connection management
e Flow control and buffer space
— Congestion control
e Principles
e TCP congestion control

Marina Papatriantafilou — Transport layer part2

3b-2

TCP: Overview Rrcs: 793,1122,1323, 2018, 5681

socket
door

* point-to-point:
— one sender, one receiver

e reliable, in-order byte steam:

e pipelined:

— TCP congestion and flow
control set window size

TCP
send buffer

¢ full duplex data:

= bi-directional data flow in same
connection

= MSS: maximum segment size

O/

** connection-oriented:

= handshaking (exchange of control
msgs) inits sender & receiver
state before data exchange

s+ flow control:

= sender will not overwhelm
receiver

/

% congestion control:

= sender will not flood network
(but still try to maximize

SOCi’(c(btroughput)

door

receive buffer

O [Seoment] —» ®

Marina Papatriantafilou — Transport layer part2

3-3

TCP segment structure

« 32 bits

counting

by bytes

of data

(not segments!)

N source port # dest port #
. sequence number

\kngwledgement number
head|n
len _l@d_ A_LRSF receive window

7

ACK: ACK # valid —__|

bytes

rcvr willing
to buffer
(flow control)

—

sum Urg data pointer
RST, SYN, FIN:/ op/o'(s (variable length)

connection estab

(setup, teardown /
commands) application

Internet / datq
checksum (variable length)
(as in UDP)

Marina Papatriantafilou — Transport layer part2 3-4

Roadmap Transport Layer

e transport layer services
e multiplexing/demultiplexing
e connectionless transport: UDP
e principles of reliable data transfer
e connection-oriented transport: TCP
— reliable transfer
* Acknowledgements
* Retransmissions
e Connection management
e Flow control and buffer space
— Congestion control
e Principles
e TCP congestion control

Marina Papatriantafilou — Transport layer part2

3b-5

TCP seg. numbers, ACKs

outgoing segment from sender

source port # dest port #

sequence number

acknowledgement number
| | rwnd

sequence numbers: checksum

wmdow SI

—“number” of first byte in

e IIIIIIIII T

acknowledgements: sender sequence number spece

—seq # Of next byte sent sent not- usable not
: ACKed yet ACKed but not usable

expected from other side Cin. yet sent
. flight”)
—cumulative ACK incoming segment to sender
source port # dest port #
sequence number

ll 2cknowledgement number

A rwnd

checksum

Marina Papatriantafilou — Transport layer part2 3-6

TCP seq. numbers, ACKs

Always ack next in-order expected byte

Host A Host B
3 e
User -
types
‘C, \

Seq=42, ACK=79,w
host ACKs
/ echoes back

Seq=79,ACK=43, data = ‘C’ s

host ACKs —
receipt _ _
of echoed ‘C’ Seq=43, ACK K

Simple example scenario
Based on telnet msg exchange

receipt of ‘C’,

Host A Host B
| e
Seq=92, 8 bytes of data
5 -
5 ACK=100
5 X

Seq=92, 8 bytes of data

ACK=100

—

Marina Papatriantafilou — Transport layer part2

3-7

TCP:

cumulative Ack - retransmission scenarios

Host A Host B

g =

Seq=92, 8 bytes of data

T~ \

Seq=100, 20 bytes%fdg

ACK=100
X«

ACK=120

=

le—— timeout

Seq=120, 15 bytes of data

\L

Cumulative ACK

Host A Host B
SendBase=92 ~—

‘ Seq=92, 8 bytes %

§ Seq=100, 20 bytes of dat

g =<
ACK=100

ACK=120

Seq=92, 8

SendBase=100
bytes of data\

SendBase=120

\

ACK=120

SendBase=120 /

(Premature) timeout

Marina Papatriantafilou — Transport layer part2

3-8

Roadmap Transport Layer

e transport layer services
e multiplexing/demultiplexing
e connectionless transport: UDP
e principles of reliable data transfer
e connection-oriented transport: TCP
— reliable transfer
e Acknowledgements
* Retransmissions
 Connection management
e Flow control and buffer space
— Congestion control
e Principles
e TCP congestion control

Marina Papatriantafilou — Transport layer part2

3b-11

Q: how to set TCP timeout value?

** longer than end-
to-end RTT

= but that varies!!!
*» too short timeout:

premature, application
unnecessary transport
.. hetwork
retransmissions L
X . hysical —
* too Jong: slow phy application Pl soom
reaction to loss transport tr
hetwork ® hetwork
link li
physical —phydical

Marina Papatriantafilou — Transport layer part2 12

TCP round trip time, timeout estimation

EstimatedRTT = (1-a)*EstimatedRTT + a*SampleRTT

» exponential weighted moving average: influence of past
sample decreases exponentially fast; s o recon

'cﬂ : :
v i . — c RTT: gaia.cs.umass.edu to fantagsia.eurecom.fr
typical value:a =0.125 : o
N2
I |
™~ M)
=

* sampleRT
Estimated|

DevRTT = (1-B)*DevRTT + T e T
B*|SampleRTT-EstimatedRTT]| (seconds)

(typically, B = 0.25)
Timeoutinterval = EstimatedRTT + 4*DevRTT

13 . 7
safety-margin

Marina Papatrian Srou — Transport layer part2 3-13

TCP fast retransmit (RFC 5681)

* time-out can be long:

= |ong delay before resending
lost packet

** IMPROVEMENT: detect lost
segments via duplicate ACKs

— TCP fast retransmit

if sender receives 3 duplicate
ACKs for same data

resend unacked seg

with smallest seq #

Host A Host

— Seq=92, 8 bytes of data

\seqzloow
\X

ACK=100

ACK=100

‘{CKzloo

e
TSeq=100, 20 bytes of data

\.

)

timeout

= |ikely that unacked segment

Implicit NAK!
Q: Why need at
least 37

lost, so don’ t wait for

timeout

la
I

)

Marina Papatriantafilou — Transport layer part2

3b-14

Roadmap Transport Layer

e transport layer services
e multiplexing/demultiplexing
e connectionless transport: UDP
e principles of reliable data transfer
e connection-oriented transport: TCP
— reliable transfer
e Acknowledgements
* Retransmissions
e Connection management
e Flow control and buffer space
— Congestion control
e Principles
e TCP congestion control

Marina Papatriantafilou — Transport layer part2

3b-15

Connection Management

before exchanging data, sender/receiver “handshake”:

’

e agree to establish connection + connection parameters

application

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server,client

network

Socket clientSocket =
newSocket(""*hostname™, " port

number'™) ;

application

connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server,client

network

Socket connectionSocket
welcomeSocket.accept();

3-16

Marina Papatriantafilou — Transport layer part2

Setting up a connection: TCP 3-way handshake

client state server state

«g Bl LISTEN
T~

choose init seq num, X
send TCP SYN msg

SYNSENT SYN=1, Seg=x
\ choose init seq num, y

send TCP SYN/ACK

/ msg, acking SYN SYN RCVD
SYN=1, Seq=y Reserve buffer

ACK=1; ACKnum=x+1

v received SYN/ACK(X) /

server is live;
ESTAB send ACK for SYN/ACK;

this segment may contain ACK=1, ACKnum=y+1

client-to-server data .
T~ received ACK(y)

indicates client is live v
ESTAB

. . . Transport Layer
Marina Papatriantafilou — Transport layer part2 P y 3-17

TCP: closing a connection

client state / V/ H server state
ESTAB ~~ ESTAB
| clientSocket.close() \FIN 1
FIN_ WAIT 1 can no longer =1, seq=x
n B send but can T v
receive data _— CLOSE_WAIT
! ACK=1; ACKnum=x+1 can stil
FIN._ WAIT 2 wait for server —" send data
close
— LAST_ACK
4 4)’N:l, Seg=y
TIME WAIT can no longer
B \ ~— send data
ACK=1; ACKnum=y+1
ti_med wait ~—— v
(typically 30s) CLOSED
simultaneous FINs
CLOSED can be handled

RST: alternative way to close connection
immediately, when error occurs

Marina Papatriantafilou — Transport layer part2 3-18

Roadmap Transport Layer

e transport layer services
e multiplexing/demultiplexing
e connectionless transport: UDP
e principles of reliable data transfer
e connection-oriented transport: TCP
— reliable transfer
e Acknowledgements
* Retransmissions
e Connection management
e Flow control and buffer space
— Congestion control
e Principles
e TCP congestion control

Marina Papatriantafilou — Transport layer part2

3b-20

TCP flow control

application

might remove data from

TCP socket buffers

... Slower than TCP
is delivering —

(i.e. slower than
sender is sending)

application
process

application

TCP socket
receiver bu

ffers

A

TCP
code

— flow control
receiver controls sender, so

sender won’ t overflow
receiver s buffer by transmitting
too much, too fast

S
D

code

|
from sender

receiver protocol stack

Marina Papatriantafilou — Transport layer part2

3-21

TCP flow control to application process

—

e receiver “advertises free RevBuffer buffered data
buffer space through rwnd !
value in header rwnd free buffer space
— RcvBuffer size set via socket —LL
options (typical default 4 Kbytes) t
— OS can autoadjust RcvBuffer TCP segment payloads

recelver-side buffering
e sender limits unacked (“in-
flight”) data to receiver’s
rwnd value

— s.t. receiver’s buffer will not
overflow

source port # dest port #
seguence number

O 0[0[S. e PE
: rwnd

Jo sender

<
<

checksum

Marina Papatriantafilou — Transport layer part2 3-22

Q: Is TCP stateful or stateless?

Marina Papatriantafilou — Transport layer part2

23

Roadmap Transport Layer

e transport layer services
e multiplexing/demultiplexing
e connectionless transport: UDP
e principles of reliable data transfer
e connection-oriented transport: TCP
— reliable transfer
e Acknowledgements
* Retransmissions
 Connection management
e Flow control and buffer space
— Congestion control
e Principles
e TCP congestion control

Marina Papatriantafilou — Transport layer part2

3b-25

Principles of congestion control

congestion:

e informally: “many sources sending too much data too
fast for network to handle”

e Manifestations?
— lost packets (buffer overflow at routers)
— long delays (queueing in router buffers)

e —

Marina Papatriantafilou — Transport layer part2 26

pistinction between Tiow control ana

congestion control

\ Transmission
rate adjustment

Transmission

nelwork Intermal

congestion

Small-capacity Large-capacity Fig. A. Tanenbaum
receiver . ﬁ receiver Computer Networks

(a) (b)

Fi

Need for flow control Need for congestion control

Marina Papatriantafilou — Transport layer part2

27

Causes/costs of congestion

original data: A, throughput: 7\'out

¢ Recall queueing behaviour + losses

¢ Losses => retransmissions => even higher load...

output link capacity: R
link buffers

Host B
B

R/I24-----------. c/2 |
5 5 .
< i 2
; ’
Ain RI2 . A, (nel- Retransmisions)
+* ldeal per-connection throughput: * reality ®

R/2 (if 2 connections)

Marina Papatriantafilou — Transport layer part2 28

Approaches towards congestion control

— end-end congestion
control:

*** no explicit feedback
from network

¢ congestion inferred
from end-system
observed loss, delay

_network-assisted
congestion control:

» routers collaborate for
optimal rates + provide
feedback to end-systems
eg.

= asingle bit indicating
congestion

= explicit rate for sender
to send at

Marina Papatriantafilou — Transport layer part2

3-32

Roadmap Transport Layer

e transport layer services
e multiplexing/demultiplexing
e connectionless transport: UDP
e principles of reliable data transfer
e connection-oriented transport: TCP
— reliable transfer
e Acknowledgements
* Retransmissions
 Connection management
e Flow control and buffer space
— Congestion control
e Principles
e TCP congestion control

Marina Papatriantafilou — Transport layer part2

3b-33

TCP congestion control:
itive tilicative d

end-end control (no network assistance), sender limits transmission
How does sender perceive congestion?
= |oss = timeout or 3 duplicate acks

TCP sender reduces rate (Congestion Window) then

cwnd
~ —— bytes/sec
rate — y

Additive Increase: increase cwnd by 1 MSS every RTT until loss detected

Multiplicative Decrease: cut cwnd in half after loss

To start with: slow start

additively increase window size ...
o ... until loss occurs (then cut window in half)
o 2
AIMD saw tooth © 38
. . o C
behavior: probing 2% V|
for bandwidth © &
a0
25
5 3

time

Marina Papatriantafilou — Transport layer part2 3-34

TCP Slow Start

** when connection begins, Host A Host B
increase rate exponentially .,g
until first loss event:

= initially cwnd = 1 MSS

= double cwnd every ack of
previous “batch”

= done by incrementing cwnd for
every ACK received

—

one segment

%

ur segments

+«— RTT—

* summary: initial rate is slow
but ramps up exponentially
fast time

**then, saw-tooth

Marina Papatriantafilou — Transport layer part2

3-35

TCP cwnd:
__from exponential to linear growth + reacting to loss

14— Reno: loss indicated by
TCP Reno . .
12— timeout or 3 duplicate ACKs:
= 0 .
S 104 cwnd is cut in half; then grows
ST gssthresh A7 linearly
c £
22 o
g; ssthresh
&~ 47
o TCP Tahoe
2_
0 I I I I | | | I I I I | I I |
01 2 34 56 7 8 910111213 1415
Transmission round
Implementation: Non-optimized: loss indicated by timeout:

\/
0’0

\/
0’0

variable ssthresh (slow

cwnd set to 1 MSS; then window slow start
to threshold, then grows linearly

start threshold)
on loss event, ssthresh =

%B*cwnd

Marina Papatriantafilou — Transport layer part2 3-36

Q: How many windows does a TCP’s sender maintain?

\ Transmission
rate adjustment

Transmission
nelwork

Fi

Small-capacity Large-capacity Fig. A. Tanenbaum
receiver . ﬁ receiver Computer Networks

(&) (b}

Need for flow control Need for congestion control

Marina Papatriantafilou — Transport layer part2

39

TCP combined flow-ctrl, congestion ctrl windows

sender sequence number space

M TCP sending rate:

||||||||| ||||||||||||||\ * send min {cwnd, rwnd}
bytes, wait for ACKS, then

st byte \ last byte send more
ACKed sent, not- gant

yet ACKed

(“in-

flight”)

sender limits transmission:

LastByteSent- _ pin{cwnd, rwnd}
LastByteAcked

¢ cwnd is dynamic, function of perceived network congestion,
** rwnd dymanically limited by receiver’s buffer space

Marina Papatriantafilou — Transport layer part2 40

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should
have average rate of R/K

TCP connection 1

4
g

TCP connection 2

bottleneck
router
capacity R

. . . Transport Layer
Marina Papatriantafilou — Transport layer part2 P Y

3-41

Roadmap Transport Layer

e transport layer services
e multiplexing/demultiplexing
e connectionless transport: UDP
e principles of reliable data transfer
e connection-oriented transport: TCP
— reliable transfer
e Acknowledgements
* Retransmissions
* Connection management
e Flow control and buffer space
— Congestion control
e Principles
e TCP congestion control

Marina Papatriantafilou — Transport layer part2 3b-42

Chapter 3: summary

+¢* principles behind transport
layer services:

= Addressing

= reliable data transfer
= flow control

= congestion control

¢ instantiation, implementation
in the Internet
= UDP
= TCP

next:

e |eaving the network
“edge” (application,
transport layers)

* into the network
“Core”

Marina Papatriantafilou — Transport layer part2

3-43

Some review questions on this part

t upon a 3rd ack and not a 2nd?
ol: principle, method for detection

' increase indefinitely?
management?
in the start and the end of

data transfer if it uses UDP? How or

Marina Papatriantafilou — Transport layer part2 3b-44

Reading instructions chapter 3

e KuroseRoss book

Careful Quick

3.1, 3.2,3.4-3.7 3.3

e Other resources (further study)

— Eddie Kohler, Mark Handley, and Sally Floyd. 2006. Designing DCCP: congestion
control without reliability. SIGCOMM Comput. Commun. Rev. 36, 4 (August 2006),
27-38. DOI=10.1145/1151659.1159918
http://doi.acm.org/10.1145/1151659.1159918

— http://research.microsoft.com/apps/video/default.aspx?id=1
04005

— Exercise/throughput analysis TCP in following slides

Marina Papatriantafilou — Transport layer part2 3-45

http://research.microsoft.com/apps/video/default.aspx?id=104005

Extra slides, for further study

Marina Papatriantafilou — Transport layer part2 3: Transport Layer 3b-46

TCP throughput

e avg. TCP throughput as function of window size, RTT?

— ignore slow start, assume always data to send

e W: Window Size (measured in bytes) Where l0Ss occurs
— avg. window size (# in-flight bytes) is % W
— avg. trhoughput is 3/4W per RTT

S W
avg TCP trhoughput =~ RTT bytes/sec

W/2 —

. . . Transport Layer
Marina Papatriantafilou — Transport layer part2 P Y

3-47

TCP Futures: TCP over “long, fat pipes”

e example: 1500 byte segments, 100ms RTT, want
10 Gbps throughput

 requires W = 83,333 in-flight segments
e throughput in terms of segment loss probability, L

[Mathis 1997]:
_1.22-MSS
TCP throughput = RTTJf

=>» to achieve 10 Gbps throughput, need a loss rate of L =
2:101% — g very small loss rate!

 new versions of TCP for high-speed

Transport Layer

Marina Papatriantafilou — Transport layer part2 3-48

Why is TCP fair?

two competing sessions:

)

(J

» additive increase gives slope of 1, as throughout increases

L)

)

o0

* multiplicative decrease decreases throughput proportionally

R equal bandwidth share
/
/
3
5 loss: decrease window by factor of 2
> comgestion avoidance: additive increase
_g loss: decrease window by factor of 2
& , ngestion avoidance: additive increase
C //
i) e
S ’
o .
E | 4
C@nection 1 throughput R

Marina Papatriantafilou — Transport layer part2 3-49

Fairness (more)

e —
Fairness and UDP Fairness, parallel TCP

connections

*** multimedia apps often *»* application can open

do not use TCP multiple parallel
= do not want rate connections between two
throttled by hosts
congestion control **web browsers do this
instead use UDP: »e.g., link of rate R with 9

existing connections:

. : :
send audio/video at = new app asks for 1 TCP, gets rate
constant rate, tolerate R/10

packet loss = new app asks for 11 TCPs, gets R/2

Marina Papatriantafilou — Transport layer part2 3-30

TCP delay modeling (slow start — related)

Q: How long does it take to Notation, assumptions:
receive an object from a Web « Assume one link between client
server after sending a and server of rate R
request? « Assume: fixed congestion

window, W segments

e S: MSS (bits)

e O:object size (bits)

* no retransmissions (no loss, no
corruption)

e TCP connection establishment
e data transfer delay

e Receiver has unbounded buffer

Marina Papatriantafilou — Transport layer part2 3: Transport Layer 3b-51

1CP aelay ivioaeling: simplitied, Tixea

mtiate TCF
ti R
mection S

L
titre ¥
at client

Case 1: WS/R>RTT + S/R:
ACK for first segment in window

itk
e T

IRTT

SR

rrrrrr

returns before window's worth

of data nsent
delay = 2RTT + O/R

initiate TCF
connection ot e
WH_M_MWH_
e T RTT
request i
object T [
g SR
SR WaIE
ETT

///‘\
/’/ lstack

returtis

titne
at client

Case 2: WS/R<RTT + S/R:

wait for ACK after sending

window's worth of data sent
delay = 2RTT + O/R

+ (K-1)[S/R + RTT - WS/R]

titme
at server

Marina Papatriantafilou — Transpordélay = =7t 2RTT + Z idleTime, 3b-52

TCP Delay Modeling: Slow Start

initiate TCP

connection

Delay components: —

« 2 RTT for connection estab request __|
and r‘equeST object 3 first window
=S/R

 O/R to transmit object .
- time server idles due to slow RIT
start

I second window

= 2SIR
-

Server idles: third window
. . =4S/R
P = min{K-1,Q} times

4
A

» &

where

- Q = #times server stalls
until cong. window is larger
than a “full-utilization"” window

fourth window
=8S/R

v

(if the object were of "\ complet
unbounded SIZC). dglli:)\ﬁ(r:éd Example: transmission
. . * O/S = 15 SegmenTS time at

- K = #(incremental-sized) tmeal K = 4 windows server
congestion-windows that cent, Q=2
cover” the object. - Server idles P = min{K-1,Q} = 2 times

Marina Papatriantafilou — Transport layer part2 3: Transport Layer 3b-53

TCP Delay Modeling (slow start - cont)

%+ RTT = time from when server starts to send segment

until server receives acknowledgement

initiate TCP
connection
1S - : e
2 == time to transmit the kth window oaes
object -) .
¢ flrst:vg;}gow
+ 4
{%+ RTT -2 %} —idle time after the kth window ~ *] oo amee
third window
=4S/R
O e, . _
delay = =7 2RTT + Z‘{ idleTime, fourth vindon
p:
O =S k-1
=—+2RTT +) [=+RTT -2""— v
R Z;[R R] bject \ complete
onjec transmission
delivered
_ O L ORTT 4+ P[RTT +2]- (27 -1 v tme a
R R R Icrﬂsna: server
3: Transport Layer 3b.54

Marina Papatriantafilou — Transport layer part2

TCP Delay Modeling

Recall K = number of windows that cover object

How do we calculate K ?

K=min{k:2°S+2'S+---+2“"'S >0}
=min{k:2°+2'+...+2*>0/S}

=min{k : 2" -1> %}
=min{k : k > Iogz(%+l)}
={Iog2(%+1)—‘

Calculation of Q, number of idles for infinite-size object,
is similar.

Marina Papatriantafilou — Transport layer part2 3b-55

	Course on Computer Communication and Networks ��Lecture 5 �Chapter 3; Transport Layer, Part B
	Roadmap Transport Layer
	TCP: Overview RFCs: 793,1122,1323, 2018, 5681
	TCP segment structure
	Roadmap Transport Layer
	TCP seq. numbers, ACKs
	TCP seq. numbers, ACKs
	TCP: �cumulative Ack - retransmission scenarios
	Roadmap Transport Layer
	Q: how to set TCP timeout value?
	TCP round trip time, timeout estimation
	TCP fast retransmit (RFC 5681)
	Roadmap Transport Layer
	Connection Management
	Setting up a connection: TCP 3-way handshake
	TCP: closing a connection
	Roadmap Transport Layer
	TCP flow control
	TCP flow control
	Q: Is TCP stateful or stateless?
	Roadmap Transport Layer
	Principles of congestion control
	Distinction between flow control and congestion control
	Causes/costs of congestion
	Approaches towards congestion control
	Roadmap Transport Layer
	TCP congestion control: �additive increase multiplicative decrease
	TCP Slow Start
	TCP cwnd: �from exponential to linear growth + reacting to loss
	Q: How many windows does a TCP’s sender maintain?
	TCP combined flow-ctrl, congestion ctrl windows
	TCP Fairness
	Roadmap Transport Layer
	Chapter 3: summary
	Some review questions on this part
	Reading instructions chapter 3
	Extra slides, for further study
	TCP throughput
	TCP Futures: TCP over “long, fat pipes”
	Why is TCP fair?
	Fairness (more)
	TCP delay modeling (slow start – related)
	TCP delay Modeling: simplified, fixed window
	TCP Delay Modeling: Slow Start
	TCP Delay Modeling (slow start - cont)
	TCP Delay Modeling

