
Marina Papatriantafilou – Application layer

Based on the book Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross, Addison-Wesley.

Course on Computer Communication and
Networks

Lecture 3
Chapter 2: Application-layer

EDA344/DIT 420, CTH/GU

1

Marina Papatriantafilou – Application layer 2

Chapter 2: Application Layer

Chapter goals:
• conceptual +

implementation aspects
of network application
protocols
– client server

paradigm

• specific protocols:
– http, smtp, pop, dns,
– p2p & streaming,

CDN: later in the
course)

Marina Papatriantafilou – Application layer 3

Applications and application-layer protocols

Application: communicating, distributed
processes
– running in network hosts in “user space”
– e.g., email, file transfer, the Web

Application-layer protocols
– Are only one “piece” of an application -

others are e.g. user agents.
• Web: browser
• E-mail: mail reader
• streaming audio/video: media player

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physicalApp-layer protocols:

• define messages exchanged and actions taken
• use services provided by lower layer protocols

Marina Papatriantafilou – Application layer 2-4

Client-server architecture
server:
• always-on

• permanent host address

• clusters of servers for scaling

clients:
• communicate with server

• may be intermittently
connected

• may have dynamic host
addresses

• do not communicate directly
with each other

client/server

Marina Papatriantafilou – Application layer
Application Layer

2-5

Peer2Peer architecture

• no always-on server

• peers request service from
other peers, provide service
in return

• peers are intermittently
connected and may change
addresses

– complex management

peer-peer

Marina Papatriantafilou – Application layer

Roadmap

3a-6

• Addressing and Applications needs from
transport layer

• Http
General description and functionality
Authentication, cookies and related aspects
Caching and proxies

• SMTP (POP, IMAP)

• DNS

Marina Papatriantafilou – Application layer 7

Addressing, sockets

socket: Internet application
programming interface
– 2 processes communicate by

sending data into socket,
reading data out of socket
(like sending out, receiving in
via doors)

Q: how does a process
“identify” the other
process with which it
wants to communicate?
– IP address (unique) of host

running other process
– “port number” - allows

receiving host to determine
to which local process the
message should be
delivered

Marina Papatriantafilou – Application layer

Roadmap

3a-8

• Addressing and Applications needs from
transport layer

• Http
General description and functionality
Authentication, cookies and related aspects
Caching and proxies

• SMTP (POP, IMAP)

• DNS

Marina Papatriantafilou – Application layer 9

Transport service requirements: common apps

application

file transfer
e-mail

Web documents
real-time audio/video

interactive games
text messaging

data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
no loss

throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
few kbps up
elastic

time sensitive

no
no
no
y, 100’s msec

y, 100’s msec
yes and no

Marina Papatriantafilou – Application layer 10

Services to upper layer
by Internet transport protocols

TCP service:
• connection-oriented reliable

transport between sending and
receiving process

– correct, in-order delivery of data
– setup required between client, server

• does not provide: timing,
bandwidth guarantees

UDP service:
• connectionless

• Unreliable, “best-effort”
transport between sending and
receiving process

• does not provide: timing, or
bandwidth guarantee

Marina Papatriantafilou – Application layer 11

Internet apps: application, transport protocols

application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

Marina Papatriantafilou – Application layer

Roadmap

3a-12

• Addressing and Applications needs from
transport layer

• Http
General description and functionality
Authentication, cookies and related aspects
Caching and proxies

• SMTP (POP, IMAP)

• DNS

Marina Papatriantafilou – Application layer
Application Layer

13

Web and HTTP

First, some jargon…
• web page consists of objects

• object can be HTML file, JPEG image, Java applet, audio
file,…

• web page consists of base HTML-file which includes
several referenced objects

• each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

Marina Papatriantafilou – Application layer
14

HTTP: hypertext transfer protocol overview

Web’s application layer
protocol

• http client: web browser; requests,
receives, displays Web objects

• http server: Web server sends
objects PC running

Firefox browser

server
running

Apache Web
server

iphone running
Safari browser

uses TCP:
• client initiates TCP connection to

server, port 80

• server accepts TCP connection

• HTTP messages (application-layer
protocol messages) exchanged

• TCP connection closed

Marina Papatriantafilou – Application layer 15

http example
user enters URL

eg www.someSchool.edu/someDepartment/home.index

1a. http client initiates TCP connection
to http server (process) at
www.someSchool.edu. Port 80 is
default for http server.

2. client sends http request message
(containing URL) into TCP
connection socket

1b. http server at host
www.someSchool.edu waiting for TCP
connection at port 80. “accepts”
connection, notifying client

3. server receives request, forms response
message with requested object
(someDepartment/home.index), sends
message into socket

time

(contains text,
references to 10

jpeg images)

4. client receives response msg with
file, displays html. Parsing html
file, finds 10 referenced jpeg
objects

4a. server closes TCP connection.

6. Steps 1-5 repeated for each of 10
jpeg objects

Marina Papatriantafilou – Application layer 16

Non-persistent and persistent http

Non-persistent (http1.0)
• server parses request, responds,

closes TCP connection
• non-persistent HTTP response time

= 2RTT+ file transmission time
• new TCP connection for each object

=> extra overhead per object

Persistent
• on same TCP connection: server

parses request, responds, parses
new request,..

• Client sends requests for all
referenced objects as soon as it
receives base HTML;

• Less overhead per object
• Objects are fetched sequentially

(http 1.1)
- update http/2: fetches in priority ordering

With both, browsers can open
parallel sessions

Marina Papatriantafilou – Application layer
Application Layer

17

HTTP request message

• two types of HTTP messages: request, response

• HTTP request message:
– ASCII (human-readable format)

request line
(GET, POST,

HEAD commands)

header
lines

carriage return,
line feed at start
of line indicates

end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

Marina Papatriantafilou – Application layer

19

HTTP response message
status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n

data data data data data ...

200 OK: request succeeded, requested object in this msg

301 Moved Permanently: requested object moved, new location
specified later in this message (Location:)

400 Bad Request: request message not understood

404 Not Found: requested document not found on this server

505 HTTP Version Not Supported

Marina Papatriantafilou – Application layer 20

Trying out HTTP (client side) for yourself

1. Telnet to a Web server:

opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.

anything typed in sent
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. type in a GET HTTP request:

GET /~ross/ HTTP/1.1
Host: cis.poly.edu

by typing this in (hit carriage
return twice), you send

this minimal (but complete)
GET request to HTTP server

3. look at response message sent by HTTP server!

Marina Papatriantafilou – Application layer

Topic of the programming assignment

http server

• Study RFC

• Work with the implemantation

• It is optional, but recommended! You
will learn good things

21

Marina Papatriantafilou – Application layer

Roadmap

3a-22

• Addressing and Applications needs from
transport layer

• Http
General description and functionality
Authentication, cookies and related aspects
Caching and proxies

• SMTP (POP, IMAP)

• DNS

Marina Papatriantafilou – Application layer 23

HTTP is “stateless”

HTTP server maintains no information about past client requests

protocols that maintain
“state” are complex!

 past history (state) must
be maintained

 if server/client crashes,
their views of “state”

may be inconsistent, must
be reconciled

aside
Q: how do web

applications keep
state though?

Marina Papatriantafilou – Application layer
Application Layer

2-24

Cookies: keeping “state”

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
entry

usual http response
set-cookie: 1678ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

Marina Papatriantafilou – Application layer 25

Cookies (continued)

cookies can bring:

• authorization

• shopping carts

• recommendations

• user session state

Cookies and privacy:

 cookies permit sites to
learn a lot about you

 you may supply name and
e-mail to sites

 search engines use
cookies to learn yet more

 advertising companies
obtain info across sites

aside

Marina Papatriantafilou – Application layer

Roadmap

3a-26

• Addressing and Applications needs from
transport layer

• Http
General description and functionality
Authentication, cookies and related aspects
Caching and proxies

• SMTP (POP, IMAP)

• DNS

Marina Papatriantafilou – Application layer
2: Application Layer

27

Web Caches (proxy server)

• user configures browser: Web
accesses via web cache

• client sends all http requests to web
cache; the cache(proxy) server acts
as a usually caches do

• Hierarchical, cooperative caching,
ICP: Internet Caching Protocol
(RFC2187)

Goal: satisfy client request without involving origin server

client

Proxy
server

client
origin
server

origin
server

Marina Papatriantafilou – Application layer 28

Why Web Caching?

Assume: cache is close to client
(e.g., in same network)

• smaller response time

• decrease traffic to distant
servers
– link out of institutional/local ISP

network can be bottleneck

• Important for large data
applications (e.g. video,…)

Performance effect:

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

E(delay)=hitRatio*LocalAccDelay + (1-hitRatio)*RemoteAccDelay

Marina Papatriantafilou – Application layer

Roadmap

3a-29

• Addressing and Applications needs from
transport layer

• Http
General description and functionality
Authentication, cookies and related aspects
Caching and proxies

• SMTP (POP, IMAP)

• DNS

Marina Papatriantafilou – Application layer
2: Application Layer

30

Electronic Mail
User Agent
• a.k.a. “mail reader: composing,

editing, reading mail messages -e.g.,
Outlook,

Mail Servers
• SMTP protocol between mail servers

to send email messages
– client: sending mail server
– “server”: receiving mail server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Marina Papatriantafilou – Application layer 2-31

user
agent

Scenario: Alice sends message to Bob
1) Alice, UA: message “to”

bob@someschool.edu

2) Alice, UA: sends message to
her mail server’s queue

3) Alice, mail server: TCP
connection with Bob’s mail
server (acting as a client of
SMTP)

4) Alice’s mail server sends
Alice’s message over the
TCP connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his UA to read
message

mail
server

mail
server

1

2 3 4
5

6

Alice’s mail server Bob’s mail server

user
agent

Marina Papatriantafilou – Application layer 2-32

Sample SMTP interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

You can try it out through
telnet servername 25
• see 220 reply from server

• enter HELO, MAIL FROM, RCPT
TO, DATA, QUIT commands

• SMTP (RFC 2821) uses TCP, port 25

• three phases
– handshaking (greeting)

– transfer of messages

– closure

Marina Papatriantafilou – Application layer
Application Layer

2-33

SMTP & Mail message format

RFC 822: standard for text
message format:

• header lines, e.g.,
– To:, From:, Subject:

different from SMTP MAIL
FROM, RCPT TO:
commands

• Body: the “message”
– ASCII 7-bit characters only

header

body

blank
line

Marina Papatriantafilou – Application layer
Application Layer

2-34

Mail access protocols

• SMTP: delivery/storage to receiver’s server
• mail access protocol: retrieval from server

– POP: Post Office Protocol [RFC 1939]: authorization,
download

– IMAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored msgs on server

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
IMAP)

user
agent

user
agent

Marina Papatriantafilou – Application layer

Roadmap

3a-35

• Addressing and Applications needs from
transport layer

• Http
General description and functionality
Authentication, cookies and related aspects
Caching and proxies

• SMTP (POP, IMAP)

• DNS

Marina Papatriantafilou – Application layer 36

DNS: Domain Name System

People: many identifiers:
– SSN, name, Passport #

Internet hosts, routers: IP address (32 bit) - used for
addressing datagrams (129.16.237.85)
– name (alphanumeric addresses) hard to process @ router

– “name”, e.g., (www.cs.chalmers.se)- used by humans

Q: map between IP addresses and name ?

Marina Papatriantafilou – Application layer
37

Hostname to IP address translation

• Example: www.chalmers.se 129.16.71.10

• File with mapping may be edited on the system
– Unix: /etc/hosts

– Windows: c:\windows\system32\drivers\etc\hosts

– Example of an entry manually entered in the file:

– “129.16.20.245 fibula.ce.chalmers.se fibula”

Does not scale for all possible hosts,
hard to change
• All hosts need one copy of the file
Impossible on the Internet

Alternative: DNS, a large
distributed database
DNS – Domain Name System

Marina Papatriantafilou – Application layer
Application Layer

2-38

DNS: services, structure

why not centralize DNS?
• single point of failure

• traffic volume

• maintenance

DNS services
• hostname to IP address

translation

• host aliasing
– canonical, alias names

• mail server aliasing

• load distribution

– replicated Web
servers: many IP
addresses correspond
to one name

A: would not scale!

Marina Papatriantafilou – Application layer 2-39

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

DNS: a distributed, hierarchical database

… …

aka Top- Level
Domains

Marina Papatriantafilou – Application layer 40

DNS: root name servers

13 logical root name “servers”
worldwide - each “server”
replicated many times
http://www.root-servers.org/

a. Verisign, Los Angeles CA
(5 other sites)

b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

http://www.root-servers.org/

Marina Papatriantafilou – Application layer 41

TLD, authoritative, local servers
top-level domain (TLD) servers:

– responsible for com, org, net, edu, aero, jobs, all top-level
country domains, e.g.: uk, fr, ca, jp

– Network Solutions maintains servers for .com TLD

– Educause for .edu TLD

authoritative DNS servers:
– organization’s own DNS server(s), providing authoritative

hostname to IP mappings for organization’s named hosts
– can be maintained by organization or service provider

Local name server

– acts as proxy for clients, caches entries for TTL

– Sends queries to DNS hierarchy

– each ISP has one

Marina Papatriantafilou – Application layer 42

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

DNS name
resolution example

• host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
 contacted server

replies with name of
server to contact

 “I don’t know this
name, but ask this
server”

Marina Papatriantafilou – Application layer 43

45

6

3recursive query:
 puts burden of name

resolution on
contacted name
server

 heavy load at upper
levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server
dns.cs.umass.edu

8

DNS name
resolution example

TLD DNS
server

Marina Papatriantafilou – Application layer 2-44

DNS: caching, updating records

• once (any) name server learns mapping, it caches
mapping
– cache entries timeout after some time (TTL)

– TLD servers typically cached in local name servers
• thus root name servers not often visited

• cached entries may be out-of-date (best effort
name-to-address translation!)
– if name host changes IP address, may not be known

Internet-wide until all TTLs expire

• update/notify mechanisms proposed IETF standard
– RFC 2136

Marina Papatriantafilou – Application layer
Application Layer

2-45

DNS records

DNS: distributed db storing resource records (RR)

type=NS
– name is domain (e.g.,

foo.com)
– value is hostname of

authoritative name
server for this domain

RR format: (name, value, type, ttl)

type=A
 name is hostname
 value is IP address

type=CNAME
 name is alias name for some

“canonical” (the real) name
 Eg www.ibm.com is really
servereast.backup2.ibm.com

 value is canonical name

type=MX
 value is name of mailserver

associated with name

Marina Papatriantafilou – Application layer 2-46

DNS protocol, messages
• query and reply messages (use UDP), both with

same message format
identification: 16 bit #
for query, reply to
query uses same #

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

flags:
query or reply
recursion desired
recursion available
reply is authoritative

name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

Marina Papatriantafilou – Application layer 2-47

Inserting records into DNS

• example: new startup “Network Utopia”

• register name networkuptopia.com at DNS registrar
(e.g., Network Solutions)
– provide names, IP addresses of authoritative name server

(primary and secondary)

– registrar inserts two RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

• Adding a new host/service to domain:
– Add to authoritative name server

• type A record for www.networkuptopia.com

• type MX record for networkutopia.com (mail)

Marina Papatriantafilou – Application layer

DNS and security risks

DDoS attacks

• Bombard root servers
– Mitigation (it actually

works): local DNS
servers cache IPs of TLD
servers, allowing root
server bypass

• Bombard TLD servers
– Potentially more

dangerous

Redirect attacks

• Man-in-middle
– Intercept queries

• DNS poisoning
– Send bogus replies to DNS

server, which caches

Exploit DNS for DDoS

• Send queries with
spoofed source address:
target IP

2-48

Marina Papatriantafilou – Application layer 2-49

Summary

• Addressing and Applications needs from transport layer

• application architectures

– client-server

– (p2p: will study later in the course, after the layers-
centered study)

• specific protocols:

– Http (connection to programming assignment)
• Caching etc

– SMTP (POP, IMAP)

– DNS

Coming soon, after a first
pass of the 4 top layers
- P2P applications
- video streaming and
content distribution
networks

Marina Papatriantafilou – Application layer

Resources

Reading list main
textbook:

• Study: 5/e,6/e: 2.2, 2.4-
2.5, 5/e: 2.7-2.9, 6/e:
2.7-2.8, 7/e: 2.2-2.4

• Quick reading: 5/e,6/e:
2.1, 2.3, 2.6, 7/e: 2.1,
2.5

Review questions from
the book, useful for
summary study

• Chapter 2: 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 16, 19,
20

50

Marina Papatriantafilou – Application layer 51

Example review question
Properties of transport service of interest to the app.

Data loss
• some apps (e.g., audio) can

tolerate some loss
• other apps (e.g., file transfer,

telnet) require 100% reliable
data transfer

• In-order vs arbitrary-order
delivery

Bandwidth, Timing, Security
 some apps (e.g., multimedia,

interactive games) require minimum
amount of bandwidth, and/or low
delay and/or low jitter

 other apps (elastic apps, e.g. file
transfer) are ok with any bandwidth,
timing they get

Some apps also require confidentiality,
integrity (more in network security)

Marina Papatriantafilou – Application layer

Extra slides/notes

52

Marina Papatriantafilou – Application layer
2: Application Layer

53

HTTP: Conditional GET: client-side caching

• Goal: don’t send object if client
has up-to-date stored (cached)
version

• client: specify date of cached
copy in http request
If-modified-since:

<date>

• server: response contains no
object if cached copy up-to-
date:
HTTP/1.0 304 Not

Modified

client server

http request msg
If-modified-since:

<date>

http response
HTTP/1.0

304 Not Modified

object
not

modified

http request msg
If-modified-since:

<date>

http response
HTTP/1.1 200 OK

…
<data>

object
modified

Marina Papatriantafilou – Application layer

Application Layer 54

Caching example:

origin
servers

public
Internet

institutional
network

100Mbps LAN

1.54 Mbps
access link

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to

origin servers:15/sec
 i.e. avg data rate to browsers: 1.50

Mbps
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 1.5%
 access link utilization = 99%
 total delay = Internet delay +

access delay + LAN delay
= 2 sec + minutes + quite_small

problem!

Marina Papatriantafilou – Application layer
Application Layer

55

assumptions:
 avg object size: 100K bits
 avg request rate from browsers

to origin servers:15/sec
 i.e. avg data rate to browsers: 1.50

Mbps
 RTT from institutional router to

any origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 1.5%
 access link utilization = 99%
 total delay = Internet delay +

access delay + LAN delay
= 2 sec + minutes + usecs

Caching example: faster access link

origin
servers

1.54 Mbps
access link154 Mbps 154 Mbps

msecs

Cost: increased access link speed (not cheap!)

9.9%

public
Internet

institutional
network

100Mbps LAN

Marina Papatriantafilou – Application layer

institutional
network

100Mbps LAN

Application Layer
56

Caching example: install local cache

origin
servers

1.54 Mbps
access link

local web
cache

assumptions:
 avg object size: 100K bits
 avg request rate from browsers

to origin servers:15/sec
 i.e. avg data rate to browsers: 1.50

Mbps
 RTT from institutional router to

any origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 1.5%
 access link utilization
 total delay

?
?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public
Internet

Marina Papatriantafilou – Application layer
Application Layer

57

Caching example: install local cache

Calculating access link utilization,
delay with cache:

• suppose cache hit rate is 0.4
– 40% requests satisfied at cache, 60%

requests satisfied at origin

origin
servers

1.54 Mbps
access link

 access link utilization:
 60% of requests use access link

 data rate to browsers over access link
= 0.6*1.50 Mbps = .9 Mbps
 utilization = 0.9/1.54 = .58

 total delay
 = 0.6 * (delay from origin servers)

+0.4 * (delay when satisfied at
cache)

 = 0.6 (2.01) + 0.4 (~msecs)
 = ~ 1.2 secs
 less than with 154 Mbps link (and

cheaper too!)

public
Internet

institutional
network

100Mbps LAN

local web
cache

Marina Papatriantafilou – Application layer
Application Layer

2-58

FTP: separate control, data connections

• FTP client contacts FTP server
at port 21, using TCP

• client authorized over control
connection

• client browses remote
directory, sends commands
over control connection

• when server receives file
transfer command, server
opens 2nd TCP data connection
(for file) to client

• after transferring one file,
server closes data connection

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

 server opens another TCP
data connection to transfer
another file

 control connection: “out of
band”

 FTP server maintains
“state”: current directory,
earlier authentication

Marina Papatriantafilou – Application layer
Application Layer

2-59

FTP commands, responses

sample commands:
• sent as ASCII text over

control channel
• USER username
• PASS password

• LIST return list of file in
current directory

• RETR filename
retrieves (gets) file

• STOR filename stores
(puts) file onto remote
host

sample return codes
• status code and phrase (as

in HTTP)
• 331 Username OK,
password required

• 125 data
connection
already open;
transfer starting

• 425 Can’t open
data connection

• 452 Error writing
file

Marina Papatriantafilou – Application layer
Application Layer

2-60

POP3 protocol

authorization phase
• client commands:

– user: declare username

– pass: password

• server responses
– +OK
– -ERR

transaction phase, client:
• list: list message numbers

• retr: retrieve message by
number

• dele: delete

• quit

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

Marina Papatriantafilou – Application layer
Application Layer

2-61

POP3 (more) and IMAP

more about POP3
• previous example uses

POP3 “download and
delete” mode
– Bob cannot re-read e-

mail if he changes
client

• POP3 “download-and-
keep”: copies of messages
on different clients

• POP3 is stateless across
sessions

IMAP
• keeps all messages in one

place: at server

• allows user to organize
messages in folders

• keeps user state across
sessions:

– names of folders and
mappings between
message IDs and folder
name

	Course on Computer Communication and Networks ��Lecture 3 �Chapter 2: Application-layer
	Chapter 2: Application Layer
	Applications and application-layer protocols
	Client-server architecture
	Peer2Peer architecture
	Roadmap
	Addressing, sockets
	Roadmap
	Transport service requirements: common apps
	Services to upper layer �by Internet transport protocols
	Internet apps: application, transport protocols
	Roadmap
	Web and HTTP
	HTTP: hypertext transfer protocol overview
	http example
	Non-persistent and persistent http
	HTTP request message
	HTTP response message
	Trying out HTTP (client side) for yourself
	Topic of the programming assignment
	Roadmap
	HTTP is “stateless”
	Cookies: keeping “state”
	Cookies (continued)
	Roadmap
	Web Caches (proxy server)
	Why Web Caching?
	Roadmap
	Electronic Mail
	Scenario: Alice sends message to Bob
	Sample SMTP interaction
	SMTP & Mail message format
	Mail access protocols
	Roadmap
	DNS: Domain Name System
	Hostname to IP address translation
	DNS: services, structure
	DNS: a distributed, hierarchical database
	DNS: root name servers
	TLD, authoritative, local servers
	DNS name �resolution example
	Slide Number 43
	DNS: caching, updating records
	DNS records
	DNS protocol, messages
	Inserting records into DNS
	DNS and security risks
	Summary
	Resources
	Example review question �Properties of transport service of interest to the app.
	Extra slides/notes
	HTTP: Conditional GET: client-side caching
	Caching example:
	Caching example: faster access link
	Caching example: install local cache
	Caching example: install local cache
	FTP: separate control, data connections
	FTP commands, responses
	POP3 protocol
	POP3 (more) and IMAP

