
Marina Papatriantafilou – Transport layer part2: TCP 

Based on the book Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross, Addison-Wesley.

Course on Computer Communication and 
Networks 

Lecture 5 
Chapter 3; Transport Layer, Part B

EDA344/DIT 423, CTH/GU

1



Marina Papatriantafilou – Transport layer part2: TCP 

Roadmap

2

• Transport layer services in Internet

• Addressing, multiplexing/demultiplexing

• Connectionless, unreliable transport: UDP

• principles of reliable data transfer

– Efficiency perspective

• Next lecture: connection-oriented transport: 
TCP

– reliable transfer

– flow control

– connection management

– TCP congestion control



Marina Papatriantafilou – Transport layer part2: TCP 3

Pipelined ack-based error-control protocols
pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged pkts

– range of sequence numbers must be increased

– buffering at sender and/or receiver



Marina Papatriantafilou – Transport layer part2: TCP 4

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
stop&wait utilization by a factor of 3!

 

U 
sender = 

.0024 
30.008 

= 0.00081  
3L / R 

RTT + L / R 
= 

RTT = Round Trip Time
= 2 * Tpropagation




.0024





3L / R





0.00081 





RTT + L / R





=





30.008





=





U





=





sender










Marina Papatriantafilou – Transport layer part2: TCP 5

Pipelined protocols: ack-based error control

two generic forms (i.e. ack + book-keeping policies) to deal with lost data: 

• go-Back-n

• selective repeat



Marina Papatriantafilou – Transport layer part2: TCP 6

Go-Back-n
sender

• “window” of up to N, consecutive 
unack’ed pkts allowed

• ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
• may receive duplicate ACKs 

• timer for oldest in-flight pkt
• timeout(n): retransmit packet n and all higher seq # pkts in window

receiver

• Ack last correctly received pkt



Marina Papatriantafilou – Transport layer part2: TCP 7

GBn in action

send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard, 
(re)send ack1rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send  pkt2
send  pkt3
send  pkt4
send  pkt5

Xloss

receive pkt4, discard, 
(re)send ack1

receive pkt5, discard, 
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8 

sender window (N=4)

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw
/content/interactiveanimations/go-back-n-protocol/index.html

https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/go-back-n-protocol/index.html


Marina Papatriantafilou – Transport layer part2: TCP 8

Selective repeat: sender, receiver windows

• receiver individually
acknowledges received pkts
– buffers pkts for eventual in-

order delivery to upper 
layer

• sender only resends pkts for 
which ACK not received
– Requires timer for each 

unACKed pkt



Marina Papatriantafilou – Transport layer part2: TCP 10

Selective repeat in action

send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer, 
send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send  pkt2

Xloss

receive pkt4, buffer, 
send ack4

receive pkt5, buffer, 
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8 

sender window (N=4)

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 
0 1 2 3 4 5 6 7 8 

record ack4 arrived

record ack5 arrived

Q: what happens when ack2 arrives?

https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content
/interactiveanimations/selective-repeat-protocol/index.html

https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/selective-repeat-protocol/index.html


Marina Papatriantafilou – Transport layer part2: TCP 

Roadmap

11

• Transport layer services in Internet

• Addressing, multiplexing/demultiplexing

• Connectionless, unreliable transport: UDP

• principles of reliable data transfer

– Efficiency perspective: pipelined protocols & error 
control through go-back-n, selective-repeat

• Sequence numbers

• Next: connection-oriented transport: TCP

– reliable transfer

– flow control

– connection management

– TCP congestion control



Marina Papatriantafilou – Transport layer part2: TCP 12

Selective repeat:
Sequence numbers

example: 
• seq #’s: 0, 1, 2, 3
• window size=3

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2X
X
X

will accept packet
with seq number 0

(b) oops!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

receiver can’t see sender side.
receiver behavior identical in both cases!
something’s (very) wrong!

 duplicate data accepted as new in (b)

Q: what relationship between seq # size 
and window size to avoid problem in (b)?



Marina Papatriantafilou – Transport layer part2: TCP 

What do Ack’s achieve besides reliability?

Flow control: receiver can ack its receiving
capacity i.e. avoid swamping the receiver

Flow control: Sender/receiver (ie network
edge) issue:  S cares to not overwhelm R

13

Question



Marina Papatriantafilou – Transport layer part2: TCP 3b-14

Ack-based pipelining => 
error-control & flow control at the same time!!!

first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

Flow control: Sender/receiver problem;  S cares to not overwhelm R



Marina Papatriantafilou – Transport layer part2: TCP 3b-15

Roadmap Transport Layer

• transport layer services
• multiplexing/demultiplexing
• connectionless transport: UDP
• principles of reliable data transfer
• connection-oriented transport: TCP

– reliable transfer
• Acknowledgements 
• Retransmissions 
• Connection management
• Flow control and buffer space 

– Congestion control
• Principles
• TCP congestion control



Marina Papatriantafilou – Transport layer part2: TCP 16

 point-to-point & full duplex data:
 one sender, one receiver

 bi-directional data flow in same connection

 MSS: maximum segment size

 connection-oriented, reliable, in-order byte steam:
 Needs handshaking (exchange of control msgs); inits sender & receiver state before data exchange

 Flow&error control: ack-based, pipelined:

 (+ extra) congestion control:
 sender will not flood network

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

TCP: Overview  RFCs: 793,1122,1323, 2018, 5681



Marina Papatriantafilou – Transport layer part2: TCP 3-17

TCP segment structure

dest port #

32 bits

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not
used

options (variable length)

ACK: ACK # valid

URG: urgent data 
(generally not used)

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

counting
by bytes 
of data
(not segments!)

Internet
checksum

(as in UDP)

# bytes 
rcvr willing
to buffer
(flow control)

application
data 
(variable length)

source port #



Marina Papatriantafilou – Transport layer part2: TCP 3b-18

Roadmap Transport Layer

• transport layer services
• multiplexing/demultiplexing
• connectionless transport: UDP
• principles of reliable data transfer
• connection-oriented transport: TCP

– reliable transfer
• Acknowledgements 
• Retransmissions 
• Connection management
• Flow control and buffer space 

– Congestion control
• Principles
• TCP congestion control



Marina Papatriantafilou – Transport layer part2: TCP 3-19

TCP seq. numbers, ACKs

sequence numbers:

–“number” of first byte in segment’s data

acknowledgements:

–seq # of next byte expected from other side

–cumulative ACK

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd

incoming segment to sender

A

sent 
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not 
yet sent

not 
usable

window size
N

sender sequence number space 

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd

outgoing segment from sender



Marina Papatriantafilou – Transport layer part2: TCP 3-20

TCP seq. numbers, ACKs

User
types

‘C’

host ACKs 
receipt 

of echoed ‘C’

host ACKs 
receipt of ‘C’, 
echoes back 
‘C’

Simple example scenario
Based on telnet msg exchange

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Always ack next in-order expected byte



Marina Papatriantafilou – Transport layer part2: TCP 3-21

TCP: cumulative Ack - retransmission scenarios

Cumulative ACK (Premature) timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92,  8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

X

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120,  15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120



Marina Papatriantafilou – Transport layer part2: TCP 3b-22

TCP ACK generation [RFC 1122, RFC 5681]

Event

in-order segment arrival, 
no gaps,
everything else already ACKed

in-order segment arrival, 
no gaps,
one delayed ACK pending

out-of-order segment arrival
higher-than-expect seq. #
gap detected

TCP Receiver action

Delayed ACK. Wait max 500ms
for next segment then 
send ACK

immediately send single
cumulative ACK 

send (duplicate) ACK, indicating seq. #
of next expected byte



Marina Papatriantafilou – Transport layer part2: TCP 3b-23

Roadmap Transport Layer

• transport layer services
• multiplexing/demultiplexing
• connectionless transport: UDP
• principles of reliable data transfer
• connection-oriented transport: TCP

– reliable transfer
• Acknowledgements 
• Retransmissions 
• Connection management
• Flow control and buffer space 

– Congestion control
• Principles
• TCP congestion control



Marina Papatriantafilou – Transport layer part2: TCP 24

application
transport
network

link
physical

application
transport
network

link
physical

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

segment

segment

Q: how to set TCP timeout value?

 longer than end-to-end RTT
 but that varies!!!

 too short timeout:
premature, unnecessary 

retransmissions

 too long:
 slow reaction to loss



Marina Papatriantafilou – Transport layer part2: TCP 3-25

EstimatedRTT = (1-α)*EstimatedRTT + α*SampleRTT

TCP round trip time, timeout estimation

 exponential weighted moving average: influence of past sample 
decreases exponentially fast

 typical value: α = 0.125

DevRTT = (1-β)*DevRTT +
β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

“safety margin”

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T (

mi
llis

ec
on

ds
)

SampleRTT Estimated RTT

RT
T 

(m
ill

is
ec

on
ds

) RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time 
(seconds)



Marina Papatriantafilou – Transport layer part2: TCP 3b-26

TCP fast retransmit (RFC 5681)
 time-out can be long:

 long delay before resending 
lost packet

 IMPROVEMENT: detect lost 
segments via duplicate ACKs

if sender receives 3 duplicate 
ACKs for same data

• resend unacked segment 
with smallest seq #

 likely that unacked segment 
lost, so don’t wait for 
timeout

TCP fast retransmit

Implicit NAK!
Q: Why need at 
least 3?

X

Host BHost A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut ACK=100

ACK=100

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data



Marina Papatriantafilou – Transport layer part2: TCP 

Q: Is TCP stateful or stateless?

27



Marina Papatriantafilou – Transport layer part2: TCP 

Is it possible to  have 
reliable transfer over UDP? 

28



Marina Papatriantafilou – Transport layer part2: TCP 

reliable transfer over UDP? 

29

• add reliability at application layer
• application-specific error recovery

• But best to: not “reinvent “ TCP on top of UDP 
• i.e.. if you need TCP, use TCP 
• i.e..: it is best to have protocol definitions and implementations for types of 

services needed (so that they are reused and not need to be implemented 
by each “user” separately and from scratch)



Marina Papatriantafilou – Transport layer part2: TCP 3b-30

Roadmap Transport Layer

• transport layer services
• multiplexing/demultiplexing
• connectionless transport: UDP
• principles of reliable data transfer
• connection-oriented transport: TCP

– reliable transfer
• Acknowledgements 
• Retransmissions 
• Connection management
• Flow control and buffer space 

– Congestion control
• Principles
• TCP congestion control



Marina Papatriantafilou – Transport layer part2: TCP 3-31

Connection Management

before exchanging data, sender/receiver “handshake”:
• agree to establish connection + connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client 

application

network

Socket clientSocket =   
newSocket("hostname","port 
number");

Socket connectionSocket = 
welcomeSocket.accept();



Marina Papatriantafilou – Transport layer part2: TCP 
Transport Layer 3-32

Setting up a connection: TCP 3-way handshake

SYN=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYN=1, Seq=y
ACK=1; ACKnum=x+1

choose init seq num, y
send TCP SYN/ACK
msg, acking SYN
Reserve buffer

ACK=1, ACKnum=y+1

received SYN/ACK(x) 
server is live;

send ACK for SYN/ACK;
this segment may contain 

client-to-server data
received ACK(y) 
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state server state

LISTEN



Marina Papatriantafilou – Transport layer part2: TCP 3-33

FIN_WAIT_2

CLOSE_WAIT

FIN=1, seq=y

ACK=1; ACKnum=y+1

ACK=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIME_WAIT

timed wait 
(typically 30s)

CLOSED

TCP: closing a connection

FIN_WAIT_1 FIN=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB

simultaneous FINs
can be handled

RST: alternative way to close connection 
immediately, when error occurs



Marina Papatriantafilou – Transport layer part2: TCP 3b-34

Roadmap Transport Layer

• transport layer services
• multiplexing/demultiplexing
• connectionless transport: UDP
• principles of reliable data transfer
• connection-oriented transport: TCP

– reliable transfer
• Acknowledgements 
• Retransmissions 
• Connection management
• Flow control and buffer space 

– Congestion control
• Principles
• TCP congestion control



Marina Papatriantafilou – Transport layer part2: TCP 3-35

TCP flow control
application
process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application
might remove data from 

TCP socket buffers …. 

… what if slower than TCP is delivering
(i.e. slower than sender is sending)

from sender

receiver controls sender, so 
sender won’t overflow 
receiver’s buffer by transmitting 
too much, too fast

flow control



Marina Papatriantafilou – Transport layer part2: TCP 3-36

TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

• receiver “advertises” free buffer space 
through rwnd value in header
– RcvBuffer size set via socket options 

(typical default 4 Kbytes)
– OS can autoadjust RcvBuffer

• sender limits unacked (“in-flight”) data to 
receiver’s rwnd value 
– s.t. receiver’s buffer will not overflow

receiver-side buffering

3-36

source port # dest port #

sequence number
acknowledgement number

checksum
rwndA

To sender 



Marina Papatriantafilou – Transport layer part2: TCP 3b-37

Roadmap Transport Layer

• transport layer services
• multiplexing/demultiplexing
• connectionless transport: UDP
• principles of reliable data transfer
• connection-oriented transport: TCP

– reliable transfer
• Acknowledgements 
• Retransmissions 
• Connection management
• Flow control and buffer space 

– Congestion control
• Principles
• TCP congestion control



Marina Papatriantafilou – Transport layer part2: TCP 

Difference between congestion control and flow
control? 

Congestion control =  Avoid congesting the network

Congestion is network-core issue

in contrast to 

flow-control, which is sender-receiver  (i.e. network
edge) issue

38

Question:



Marina Papatriantafilou – Transport layer part2: TCP 39

congestion:
• informally: “many sources sending too much data too fast for 

network to handle”

• Manifestations?
– lost packets (buffer overflow at routers) 
– long delays (queueing in router buffers)

Principles of congestion control



Marina Papatriantafilou – Transport layer part2: TCP 

Distinction between flow control and congestion control

40

Need for flow control Need for congestion control

Fig. A. Tanenbaum
Computer Networks



Marina Papatriantafilou – Transport layer part2: TCP 

 Recall queueing behaviour + losses
 Losses => retransmissions => even higher load…

41

Causes/costs of congestion

 Ideal per-connection throughput: 
R/2 (if 2 connections)

output link capacity: R
link buffers

Host A

original data: λin

Host B

throughput: λout

R/2

R/2

λ o
ut

λin
R/2

de
la

y
λin

 reality 



Marina Papatriantafilou – Transport layer part2: TCP 3-42

Approaches towards congestion control

end-end congestion 
control:

 no explicit feedback 
from network

 congestion inferred 
from end-system 
observed loss, delay

network-assisted 
congestion control:

 routers collaborate for 
optimal rates + provide 
feedback to end-systems 
eg.
 a single bit indicating 

congestion 
 explicit rate for sender 

to send at



Marina Papatriantafilou – Transport layer part2: TCP 3b-43

Roadmap Transport Layer

• transport layer services
• multiplexing/demultiplexing
• connectionless transport: UDP
• principles of reliable data transfer
• connection-oriented transport: TCP

– reliable transfer
• Acknowledgements 
• Retransmissions 
• Connection management
• Flow control and buffer space 

– Congestion control
• Principles
• TCP congestion control



Marina Papatriantafilou – Transport layer part2: TCP 3-44

TCP congestion control: 
additive increase multiplicative decrease (AIMD)

 end-end control (no network assistance), sender limits transmission
How does  sender perceive congestion?

 loss = timeout or 3 duplicate acks
 TCP sender reduces rate (Congestion Window) then

 Additive Increase: increase  cwnd by 1 MSS every RTT until loss detected

 Multiplicative Decrease: cut cwnd in half after loss 

 To start with: slow start 

AIMD saw tooth
behavior: probing

for bandwidth

c
w
n
d
:

TC
P 

se
nd

er
 

co
ng

es
tio

n 
w

in
do

w
 s

iz
e

additively increase window size …
…. until loss occurs (then cut window in half)

time

rate ~~
cwnd
RTT

bytes/sec



Marina Papatriantafilou – Transport layer part2: TCP 3-45

TCP Slow Start 

when connection begins, increase rate 
exponentially until first loss event:
 initially cwnd = 1 MSS

 double cwnd every ack of previous “batch”

 done by incrementing cwnd for every ACK received

summary: initial rate is slow but ramps up 
exponentially fast
then, saw-tooth

Host A

R
TT

Host B

time



Marina Papatriantafilou – Transport layer part2: TCP 3-46

Implementation:
 variable ssthresh (slow start threshold)

 on loss event, ssthresh = ½*cwnd

TCP cwnd: 
from exponential to linear growth + reacting to loss

Reno: loss indicated by  
timeout or 3 duplicate ACKs:
cwnd is cut in half; then grows 
linearly

Non-optimized: loss indicated by timeout:
cwnd set to 1 MSS; then window slow start 
to threshold, then grows linearly



Marina Papatriantafilou – Transport layer part2: TCP 3-47

TCP’s throughput (Fast recovery - Reno)

Session’s experience



Marina Papatriantafilou – Transport layer part2: TCP 

2 problems, joint solution: limit the rate of the sender! 
(or ”How many windows does a TCP’s sender maintain?”)

48

Need for flow control Need for congestion control

Fig. A. Tanenbaum
Computer Networks

cwnd, rwnd

cwndrwnd



Marina Papatriantafilou – Transport layer part2: TCP 49

TCP combined flow-ctrl, congestion ctrl windows

sender limits transmission:

 cwnd is dynamic, function of perceived network congestion, 
 rwnd dymanically limited by receiver’s buffer space

TCP sending rate:

 send min {cwnd, rwnd}  
bytes, wait for ACKS, then 
send more 

Min{cwnd, rwnd}

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte 
sent

LastByteSent-
LastByteAcked

< Min{cwnd, rwnd}

sender sequence number space 



Marina Papatriantafilou – Transport layer part2: TCP 3-50

fairness goal: if K TCP sessions share same bottleneck link of 
bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router
capacity R

TCP Fairness

TCP connection 2



Marina Papatriantafilou – Transport layer part2: TCP 51

Q: Can a TCP implementation deviate from the 
Congestion-Control standard?



Marina Papatriantafilou – Transport layer part2: TCP 3b-52

Roadmap Transport Layer

• transport layer services
• multiplexing/demultiplexing
• connectionless transport: UDP
• principles of reliable data transfer
• connection-oriented transport: TCP

– reliable transfer
• Acknowledgements 
• Retransmissions 
• Connection management
• Flow control and buffer space 

– Congestion control
• Principles
• TCP congestion control



Marina Papatriantafilou – Transport layer part2: TCP 3-53

Chapter 3: summary

 principles behind transport 
layer services:

 Addressing

 reliable data transfer

 flow control

 congestion control

 instantiation, implementation 
in the Internet
 UDP

 TCP

next:
• leaving the network “edge”

(application, transport layers)
• into the network “core”



Marina Papatriantafilou – Transport layer part2: TCP 

Some more review questions on this part

• Describe TCP’s flow control

• Why does TCp do fast retransmit upon a 3rd ack and not a 2nd?

• Describe TCP’s congestion control: principle, method for detection of
congestion, reaction.

• Can a TCP’s session sending rate increase indefinitely?

• Why does TCP need connection management?

• Why does TCP use handshaking in the start and the end of connection?

• Can an application have reliable data transfer if it uses UDP? How or why not?

3b-54



Marina Papatriantafilou – Transport layer part2: TCP 

Reading instructions chapter 3

• KuroseRoss book

• Other resources (further study)
– Eddie Kohler, Mark Handley, and Sally Floyd. 2006. Designing DCCP: congestion control

without reliability. SIGCOMM Comput. Commun. Rev. 36, 4 (August 2006), 27-38. 
DOI=10.1145/1151659.1159918 http://doi.acm.org/10.1145/1151659.1159918 

– http://research.microsoft.com/apps/video/default.aspx?id=104005

– Exercise/throughput analysis TCP in extra

– slides

Careful Quick

3.1, 3.2, 3.4-3.7 3.3

3-55

http://research.microsoft.com/apps/video/default.aspx?id=104005


Marina Papatriantafilou – Transport layer part2: TCP 

Extra slides, for further study

3: Transport Layer 3b-56



Marina Papatriantafilou – Transport layer part2: TCP 3-57

From RFC 1122: TCP Ack
• TCP SHOULD implement a delayed ACK, but an ACK should not be excessively delayed; 

in particular, the delay MUST be less than 0.5 seconds, and in a stream of full-sized 
segments there SHOULD be an ACK for at least every second segment. 

• A delayed ACK gives the application an opportunity to update the window and perhaps 
to send an immediate response. In particular, in the case of character-mode remote 
login, a delayed ACK can reduce the number of segments sent by the server by a factor 
of 3 (ACK, window update, and echo character all combined in one segment). 

• In addition, on some large multi-user hosts, a delayed ACK can substantially reduce 
protocol processing overhead by reducing the total number of packets to be processed.

• However, excessive delays on ACK's can disturb the round-trip timing and packet 
"clocking" algorithms. 

• We also emphasize that this is a SHOULD, meaning that an implementor should indeed 
only deviate from this requirement after careful consideration of the implications. 



Marina Papatriantafilou – Transport layer part2: TCP 3-58

TCP – Closing a connection: Reset

• RST is used to signal an error condition and causes an immediate 
close of the connection on both sides

• RST packets are not supposed to carry data payload, except for an 
optional human-readable description of what was the reason for 
dropping this connection. 

• Examples:
– A TCP data segment when no session exists
– Arrival of a segment with incorrect sequence number
– Connection attempt to non-existing port
– Etc.

RST



Marina Papatriantafilou – Transport layer part2: TCP 
Transport Layer 3-63

TCP throughput

• avg. TCP throughput as function of window size, RTT?
– ignore slow start, assume always data to send

• W: window size (measured in bytes) where loss occurs
– avg. window size (# in-flight bytes) is ¾ W

– avg. trhoughput is 3/4W per RTT

W

W/2

avg TCP trhoughput = 34
W
RTT bytes/sec



Marina Papatriantafilou – Transport layer part2: TCP 
Transport Layer 3-64

TCP Futures: TCP over “long, fat pipes”

• example: 1500 byte segments, 100ms RTT, want 
10 Gbps throughput

• requires W = 83,333 in-flight segments

• throughput in terms of segment loss probability, L 
[Mathis 1997]:

➜ to achieve 10 Gbps throughput, need a loss rate of L = 
2·10-10  – a very small loss rate!

• new versions of TCP for high-speed

TCP throughput = 1.22 . MSS
RTT L



Marina Papatriantafilou – Transport layer part2: TCP 3-65

Why is TCP fair?

two competing sessions:
 additive increase gives slope of 1, as throughout increases

multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2



Marina Papatriantafilou – Transport layer part2: TCP 3-66

Fairness (more)

Fairness and UDP

multimedia apps often do not 
use TCP
 do not want rate throttled by 

congestion control

 instead use UDP:
 send audio/video at constant 

rate, tolerate packet loss

Fairness, parallel TCP connections
application can open multiple 

parallel connections between two 
hosts

web browsers do this 
e.g., link of rate R with 9 existing 

connections:
 new app asks for 1 TCP, gets rate R/10
 new app asks for 11 TCPs, gets R/2 



Marina Papatriantafilou – Transport layer part2: TCP 3: Transport Layer 3b-67

TCP delay modeling (slow start – related)

Q: How long does it take to 
receive an object from a Web 
server after sending a 
request? 

• TCP connection establishment

• data transfer delay

Notation, assumptions:
• Assume one link between client 

and server of rate R

• Assume: fixed congestion 
window, W segments

• S: MSS (bits)

• O: object size (bits)

• no retransmissions (no loss, no 
corruption)

• Receiver has unbounded buffer



Marina Papatriantafilou – Transport layer part2: TCP 3: Transport Layer 3b-68

TCP delay Modeling: simplified, fixed window

Case 1: WS/R > RTT + S/R:
ACK for first segment in window 
returns before window’s worth 
of data nsent
delay = 2RTT + O/R

Case 2: WS/R < RTT + S/R:
wait for ACK after sending 
window’s worth of data sent
delay = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

K:= O/WS

idleTimeRTT
R
O P

p2delay ++= ∑



Marina Papatriantafilou – Transport layer part2: TCP 3: Transport Layer 3b-69

TCP Delay Modeling: Slow Start 

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Example:
• O/S  = 15 segments
• K = 4 windows
• Q = 2
• Server idles P = min{K-1,Q} = 2 times

Delay components:
• 2 RTT for connection estab
and request
• O/R to transmit object
• time server idles due to slow 
start

Server idles: 
P = min{K-1,Q} times

where 
- Q  = #times server stalls 
until cong. window is  larger 
than a “full-utilization” window 
(if the object were of 
unbounded size).

- K = #(incremental-sized) 
congestion-windows that 
“cover” the object.



Marina Papatriantafilou – Transport layer part2: TCP 3: Transport Layer 3b-70

TCP Delay Modeling (slow start - cont)

R
S

R
SRTTPRTT

R
O

R
SRTT

R
SRTT

R
O

idleTimeRTT
R
O

P

k
P

k

P

p
p

)12(][2

]2[2

2delay

1

1

1

−−+++=

−+++=

++=

−

=

=

∑

∑

th window after the  timeidle 2 1 k
R
SRTT

R
S k =



 −+

+
−

ementacknowledg receivesserver  until                   

segment  send  tostartsserver   whenfrom time=+ RTT
R
S

 window kth the transmit  totime2 1 =−

R
Sk

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server



Marina Papatriantafilou – Transport layer part2: TCP 3b-71

TCP Delay Modeling 





 +=

+≥=

≥−=

≥+++=

≥+++=
−

−

)1(log

)}1(log:{min

}12:{min

}/222:{min
}222:{min

2

2

110

110

S
O

S
Okk

S
Ok

SOk
OSSSkK

k

k

k

L
L

Calculation of Q, number  of idles for infinite-size object,
is similar.

Recall K = number of windows that cover object

How do we calculate K ?


	Course on Computer Communication and Networks ��Lecture 5 �Chapter 3; Transport Layer, Part B
	Roadmap
	Pipelined ack-based error-control protocols
	Pipelining: increased utilization
	Pipelined protocols: ack-based error control
	Go-Back-n
	GBn in action
	Selective repeat: sender, receiver windows
	Selective repeat in action
	Roadmap
	Selective repeat:�Sequence numbers
	What do Ack’s achieve besides reliability?
	Ack-based pipelining => �error-control & flow control at the same time!!!
	Roadmap Transport Layer
	TCP: Overview  RFCs: 793,1122,1323, 2018, 5681
	TCP segment structure
	Roadmap Transport Layer
	TCP seq. numbers, ACKs
	TCP seq. numbers, ACKs
	TCP: cumulative Ack - retransmission scenarios
	TCP ACK generation [RFC 1122, RFC 5681]
	Roadmap Transport Layer
	Q: how to set TCP timeout value?
	TCP round trip time, timeout estimation
	TCP fast retransmit (RFC 5681)
	Q: Is TCP stateful or stateless?��
	Is it possible to  have reliable transfer over UDP? 
	reliable transfer over UDP? 
	Roadmap Transport Layer
	Connection Management
	Setting up a connection: TCP 3-way handshake
	TCP: closing a connection
	Roadmap Transport Layer
	TCP flow control
	TCP flow control
	Roadmap Transport Layer
	Difference between congestion control  and flow control? 
	Principles of congestion control
	Distinction between flow control and congestion control
	Causes/costs of congestion
	Approaches towards congestion control
	Roadmap Transport Layer
	TCP congestion control: �additive increase multiplicative decrease (AIMD)
	TCP Slow Start 
	TCP cwnd: �from exponential to linear growth + reacting to loss
	TCP’s throughput (Fast recovery - Reno)
	2 problems, joint solution: limit the rate of the sender! �(or ”How many windows  does a TCP’s sender maintain?”)
	TCP combined flow-ctrl, congestion ctrl windows
	TCP Fairness
	Slide Number 51
	Roadmap Transport Layer
	Chapter 3: summary
	Some more review questions on this part
	Reading instructions chapter 3
	Extra slides, for further study
	From RFC 1122: TCP Ack
	TCP – Closing a connection: Reset
	TCP throughput
	TCP Futures: TCP over “long, fat pipes”
	Why is TCP fair?
	Fairness (more)
	TCP delay modeling (slow start – related)
	TCP delay Modeling: simplified, fixed window
	TCP Delay Modeling: Slow Start 
	TCP Delay Modeling (slow start - cont)
	TCP Delay Modeling 

