
Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

Based on the book Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross, Addison-Wesley.

Course on Computer Communication and
Networks

Lecture 4
Chapter 3; Transport Layer, Part A

EDA344/DIT 423, CTH/GU

1

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

Transport services and protocols

• provide communication services to

app-layer protocols

• transport protocols run in end

systems

– send side: breaks app messages into

segments, passes to network layer

– rcv side: reassembles segments into

messages, passes to app layer

2

application
transport
network
data link
physical

application
transport
network
data link
physical

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

Parenthesis: On last week’s questions

3

Q: Types of services that a transport layer may need to provide.
– Which of those are provided by in the Internet transport layer protocols?

Services i.e. properties
– No-loss

– In-order delivery

– Timeliness i.e. latency, bandwidth guarantees

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

Internet transport-layer protocols

Reliable, in-order delivery: TCP
• also provides

– connection setup
– flow control
– + care for the health of the network (aka TCP’s congestion

control)

4

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

Best effort (can be unreliable, unordered) delivery: UDP
– no-frills extension of “best-effort” IP

Both support addressing (encapsulation), of course!

Recall: best-effort
datagram service

Transport Layer services not available in the Internet:
Delay/bandwidth guarantees. Why?
When the (successful due to simplicity) TCP/IP protocol stack
was defined, no foreseeable need for such applications in an
inter-net.

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

Roadmap

5

• Transport layer services in Internet

• Addressing, multiplexing/demultiplexing

• Connectionless, unreliable transport: UDP

• Principles of reliable data transfer

• Next lecture: connection-oriented transport: TCP

– reliable transfer

– flow control

– connection management

– TCP congestion control

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 6

Addressing: Multiplexing/demultiplexing
(+ recall encapsulation)

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data, enveloping data
with header (later used for
demultiplexing)

Multiplexing at send host:

Recall: segment - unit of data exchanged between transport layer entities
aka TPDU: transport protocol data unit

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 7

Addressing

Host receives IP datagrams
 Datagram (i.e. IP packet) has source IP address,

destination IP address

 datagram carries transport-layer segment

 segment has source, destination port number

Host uses IP addresses & port numbers to

direct segment to appropriate socket

source port # dest port #

32 bits

application
data
(payload)

other header fields

TCP/UDP segment format

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 8

UDP addressing – demultiplexing + example

DatagramSocket
serverSocket = new
DatagramSocket
(6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket
mySocket1 = new
DatagramSocket
(5775);

DatagramSocket
mySocket2 = new
DatagramSocket
(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

when host receives UDP segment:

 directs UDP segment to socket with that port #

IP datagrams with same dest. port # (but perhaps different source IP
addresses or source port numbers will be directed) to the same socket

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

TCP socket identified by 4-tuple:

 source IP address, source port number

 dest IP address, dest port number

9

TCPConnection-oriented (TCP) addressing/demux + example

transport

application

physical

link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

client: IP address A

client: IP address C

network

P6P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

server: IP address B

(Demux) Receiver uses all 4 values to
direct segment to appropriate socket

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 10

TCP demux: Threaded web server

transport

application

physical

link

network

P3
transport

application

physical

link

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

server: IP
address B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

Roadmap

11

• Transport layer services

• Addressing, multiplexing/demultiplexing

• Connectionless, unreliable transport: UDP

• principles of reliable data transfer

• Next lecture: connection-oriented transport: TCP

– reliable transfer

– flow control

– connection management

– TCP congestion control

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 12

UDP: User Datagram Protocol [RFC 768]

“best effort” service, UDP segments may be:
– lost

– delivered out-of-order

• connectionless:

– no handshaking between UDP sender, receiver

– each UDP segment handled independently of others

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 13

UDP: segment header

source port # dest port #

32 bits

application
data
(payload)

UDP datagram format

length checksum

length, in bytes of
UDP datagram,

including header

• Must do the addressing job
• no connection establishment

(which could add delay)
• simple: no connection state at

sender, receiver
• small header size
• no congestion control: UDP can

blast away segments faster
(than TCP)

why is there a UDP?

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 14

UDP Checksum[RFC 1071]: check bit flips

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

Wraparound:
Add to final

sum
checksum

Sender:

 treat segment contents as sequence of 16-bit
integers

 checksum: addition (1’s complement sum) of
segment contents

 sender puts checksum value into UDP checksum
field

Receiver:
 compute checksum of received segment
 check if computed checksum == checksum field value:

 NO - error detected (report error to app or discard)
 YES - no error detected.

• But maybe (rarely) errors nonetheless? More later ….

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

Roadmap

15

• Transport layer services

• Addressing, multiplexing/demultiplexing

• Connectionless, unreliable transport: UDP

• principles of reliable data transfer

• Next lecture: connection-oriented transport:
TCP

– reliable transfer

– flow control

– connection management

– TCP congestion control

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 16

characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

top-10 list of important networking topics!

Principles of reliable data transfer

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 17

Reliable data transfer (RDT): getting started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

RDT:

A sends one page at a time;

How do A & B do their job if MMS connection…

• …is reliable?

• …might introduce errors?

• …might lose MMSs?
18

S application: Author
Writes and Sends pages R application: publisher

Receives & publishes written pages

S transport: secretary Alice
Must send pages on behalf of author

S transport: secretary Bob
Receives pages;
Must pass on to publisher in-order

Bidirectional 1-page-at-a-time-MMS connection

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 19

We will:

• incrementally develop sender, receiver sides of reliable data transfer
protocol (rdt)

• use finite state machines (FSM) to specify sender, receiver behaviour

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this “state”
next state uniquely

determined by next
event

event
actions

Reliable data transfer: getting started

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 20

rdt1.0: reliable transfer & reliable channel

underlying channel perfectly reliable
 no bit errors, no loss of packets

separate FSMs for sender, receiver:

Wait for
call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)
extract (packet,data)
deliver_data(data)

Wait for
call from
below

rdt_rcv(packet)

sender receiver

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 21

• underlying channel may flip bits in packet
• checksum to detect bit errors

• how to recover from errors:
• acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK
• negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors
• sender retransmits pkt on receipt of NAK

rdt2.0: channel with bit errors

New mechanisms in rdt2.0 (beyond rdt1.0):
• error detection
• feedback: control msgs (ACK,NAK) from receiver to sender

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 22

rdt2.0: FSM specification

Wait for
call from
above

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or
NAK

Wait for
call from
belowsender

receiver
rdt_send(data)

Λ

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 23

rdt2.0: operation with no errors

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or
NAK

Wait for
call from
below

rdt_send(data)

Λ

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 24

rdt2.0: error scenario

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or
NAK

Wait for
call from
below

rdt_send(data)

Λ

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

Recall: RDT
(Reliable Data Transfer, aka error control)

A sends one page at a time;

How do A & B do their job if MMS connection…

• …is reliable?

• …might introduce errors?

• …might lose MMSs?

25

S application: Author
Writes and Sends pages R application: publisher

Receives & publishes written pages

S transport: secretary Alice
Must send pages on behalf of author

S transport: secretary Bob
Receives pages;
Must pass on to publisher in-order

Bidirectional 1-page-at-a-time-MMS connection

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 26

rdt3.0: channels with errors and loss

We saw: how ack+retransmit can solve problems with errors

New assumption: underlying channel can also lose packets (data, ACKs)

approach: sender waits “reasonable”

amount of time for ACK
• retransmits if no ACK received in this time

– requires countdown timer

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

Recall: RDT
(Reliable Data Transfer, aka error control)

A sends one page at a time;

How do A & B do their job if MMS connection…

• …is reliable?

• …might introduce errors?

• …might lose MMSs?
– (lost vs too late MMS?)

27

S application: Author
Writes and Sends pages R application: publisher

Receives & publishes written pages

S transport: secretary Alice
Must send pages on behalf of author

S transport: secretary Bob
Receives pages;
Must pass on to publisher in-order

Bidirectional 1-page-at-a-time-MMS connection

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 3-28

rdt3.0 (cont) : channels with errors and loss

We saw: how ack+retransmit can solve problems with errors

New assumption: underlying channel can also lose packets (data, ACKs)

approach: sender waits “reasonable”

amount of time for ACK
• retransmits if no ACK received in this time

– requires countdown timer

• if pkt (or ACK) just delayed (not lost):

– Must handle duplicates ->

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 29

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

rdt3.0 in action

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 30

rdt3.0 in action

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0
rcv pkt0

pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1

send pkt0
rcv ack1

pkt0

ack1

ack0

send pkt0
rcv ack1 pkt0

rcv pkt0
send ack0ack0

rcv pkt0

send ack0
(detect duplicate)

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

Roadmap

31

• Transport layer services in Internet

• Addressing, multiplexing/demultiplexing

• Connectionless, unreliable transport: UDP

• principles of reliable data transfer

– Efficiency perspective

• Next lecture: connection-oriented transport:
TCP

– reliable transfer

– flow control

– connection management

– TCP congestion control

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 32

Performance of rdt3.0 (stop&wait)

• rdt3.0 is correct, but performance stinks
• e.g.: 1 Gbps channel, 15 ms prop. delay, 8000 (1KB) bit packet:

Dtrans = L
R

8000 bits
109 bits/sec= = 8 microsecs

sender receiver

RTT
first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 33

Performance of rdt3.0 (cont)

Utilization (fraction of time sender busy sending, or fraction of utilized bandwidth):

U
sender =

.008
30.008

= 0.00027
L / R

RTT + L / R
=

 Ie approx. 300 kbps effective
throughput over a 1 Gbps channel

 network protocol limits use of
physical resources!

0.00027

L / R

RTT + L / R

=

30.008

.008

=

U

=

sender

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

Is RDT necessarily that slow/inefficient?

34

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 35

Pipelined protocols
pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged pkts

– range of sequence numbers must be increased

– buffering at sender and/or receiver

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 36

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

U
sender =

.0024
30.008

= 0.00081
3L / R

RTT + L / R
=

.0024

3L / R

0.00081

RTT + L / R

=

30.008

=

U

=

sender

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 37

Pipelined protocols: ack-based error control

if data is lost, two generic forms of pipelined protocols:
go-Back-n, selective repeat

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 38

Go-Back-n: sender

• “window” of up to N, consecutive unack’ed pkts allowed

• ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
• may receive duplicate ACKs

• timer for oldest in-flight pkt
• timeout(n): retransmit packet n and all higher seq # pkts in window

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 39

GBn in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
(re)send ack1rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

Xloss

receive pkt4, discard,
(re)send ack1

receive pkt5, discard,
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw
/content/interactiveanimations/go-back-n-protocol/index.html

https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/go-back-n-protocol/index.html

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 40

Selective repeat: sender, receiver windows

• receiver individually
acknowledges received pkts
– buffers pkts for eventual in-

order delivery to upper
layer

• sender only resends pkts for
which ACK not received
– Requires timer for each

unACKed pkt

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 41

Selective repeat

…data from above:
 if next_pkt_seq # in window, send pkt

…timeout(n):
 resend pkt n, restart timer

…ACK(n) in [sendbase,sendbase+N]:

 mark pkt n as received

 if n smallest unACKed pkt, advance window
base to next unACKed seq #

Sender: upon…
… pkt n in [rcvbase, rcvbase+N-1]

 send ACK(n)
 If out-of-order: buffer
 If in-order: deliver (also deliver buffered, in-

order pkts), advance window to next not-yet-
received pkt

…pkt n in [rcvbase-N,rcvbase-1]

 ACK(n)

otherwise:
 ignore

Receiver: upon receiving…

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 42

Selective repeat in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

Xloss

receive pkt4, buffer,
send ack4

receive pkt5, buffer,
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

record ack4 arrived

record ack5 arrived

Q: what happens when ack2 arrives?

https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content
/interactiveanimations/selective-repeat-protocol/index.html

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

Roadmap

43

• Transport layer services in Internet

• Addressing, multiplexing/demultiplexing

• Connectionless, unreliable transport: UDP

• principles of reliable data transfer

– Efficiency perspective: pipelined protocols & error
control through go-back-n, selective-repeat

• Sequence numbers

• Next: connection-oriented transport: TCP

– reliable transfer

– flow control

– connection management

– TCP congestion control

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 44

Selective repeat:
Sequence numbers

example:
• seq #’s: 0, 1, 2, 3
• window size=3

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2X
X
X

will accept packet
with seq number 0

(b) oops!

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

pkt0

pkt1

pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

0 1 2 3 0 1 2

X

will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

receiver can’t see sender side.
receiver behavior identical in both cases!
something’s (very) wrong!

 duplicate data accepted as new in (b)

Q: what relationship between seq # size
and window size to avoid problem in (b)?

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

Roadmap

45

• Transport layer services

• Addressing, multiplexing/demultiplexing

• Connectionless, unreliable transport: UDP

• principles of reliable data transfer

• Next: connection-oriented transport: TCP

– reliable transfer

– flow control

– connection management

– TCP congestion control

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

Reading instructions chapter 3

• KuroseRoss book

• Other resources (further, optional study)

– Lakshman, T. V., Upamanyu Madhow, and Bernhard Suter. "Window-based error recovery and flow control with a
slow acknowledgement channel: a study of TCP/IP performance." INFOCOM'97. Sixteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings IEEE. Vol. 3. IEEE, 1997.

– Rizzo, Luigi. "Effective erasure codes for reliable computer communication protocols." ACM SIGCOMM Computer
Communication Review 27.2 (1997): 24-36.

– A. Agarwal and M. Charikar, “On the advantage of network coding for improving network throughput,” in
Proceedings of the IEEE Information Theory Workshop, Oct. 2004

– Harvey, N. J., Kleinberg, R., & Lehman, A. R. (2006). On the capacity of information networks. IEEE/ACM
Transactions on Networking (TON), 14(SI), 2345-2364.

Careful Quick

3.1, 3.2, 3.4-3.7 3.3

46

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

Some review questions on this part

• Why do we need an extra protocol, i.e. UDP, to deliver the datagram service of Internets IP to the
applications?

• Draw space-time diagrams without errors and with errors, for the following, for a pair of sender-receive
S-R: (assume only 1 link between them)

– Stop-and-wait: transmission delay < propagation delay and transmission delay > propagation delay

– Sliding window aka pipelined protocol, with window’s transmission delay < propagation delay and
window’s transmission delay > propagation delay; illustrate both go-back-n and selective repeat
when there are errors

– Show how to compute the effective throughput between S-R in the above cases, when there are no
errors

• What are the goals of reliable data transfer?

• Reliable data transfer: show why we need sequence numbers when the sender may retransmit due to
timeouts.

• Show how there can be wraparound in a reliable data transfer session if the sequence-numbers range is
not large enough.

• Describe the go-back-N and selective repeat methods for reliable data transfer

47

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT

Extra slides, for further study

3: Transport Layer 3a-48

Marina Papatriantafilou – Transport layer part1: Addressing in Internet Transport layer ; RDT 49

Bounding sequence numbers for stop-and-wait…

… s.t. no wraparound, i.e. we do not run out of
numbers: binary value suffices for stop-and-wait:

Proof sketch: assume towards a contradiction that
there is wraparound when we use binary seq. nums.
– R expects segment #f, receives segment #(f+2):

R rec. f+2 => S sent f+2 => S rec. ack for f+1
=> R ack f+1=> R ack f => contradiction

– R expects f+2, receives f:
R exp. f+2 => R ack f+1 => S sent f+1
=> S rec. ack for f => contradiction

	Course on Computer Communication and Networks ��Lecture 4 �Chapter 3; Transport Layer, Part A
	Transport services and protocols
	Parenthesis: On last week’s questions
	Internet transport-layer protocols
	Roadmap
	Addressing: Multiplexing/demultiplexing�(+ recall encapsulation)
	Addressing
	UDP addressing – demultiplexing + example
	TCPConnection-oriented (TCP) addressing/demux + example
	TCP demux: Threaded web server
	Roadmap
	UDP: User Datagram Protocol [RFC 768]
	UDP: segment header
	UDP Checksum[RFC 1071]: check bit flips
	Roadmap
	Principles of reliable data transfer
	Reliable data transfer (RDT): getting started
	RDT:
	Reliable data transfer: getting started
	rdt1.0: reliable transfer & reliable channel
	rdt2.0: channel with bit errors
	rdt2.0: FSM specification
	rdt2.0: operation with no errors
	rdt2.0: error scenario
	Recall: RDT �(Reliable Data Transfer, aka error control)
	rdt3.0: channels with errors and loss
	Recall: RDT �(Reliable Data Transfer, aka error control)
	rdt3.0 (cont) : channels with errors and loss
	rdt3.0 in action
	rdt3.0 in action
	Roadmap
	Performance of rdt3.0 (stop&wait)
	Performance of rdt3.0 (cont)
	Is RDT necessarily that slow/inefficient?
	Pipelined protocols
	Pipelining: increased utilization
	Pipelined protocols: ack-based error control
	Go-Back-n: sender
	GBn in action
	Selective repeat: sender, receiver windows
	Selective repeat
	Selective repeat in action
	Roadmap
	Selective repeat:�Sequence numbers
	Roadmap
	Reading instructions chapter 3
	Some review questions on this part
	Extra slides, for further study
	Bounding sequence numbers for stop-and-wait…

