
Data structures
Binary, leftist, and skew heaps

Dr. Alex Gerdes
DIT961 - VT 2018



• There are a couple of reasons why we choose to have a 
complete tree:  
- It makes sure the tree is balanced 
- When we insert a new element, it means there is only one 

place the element can go – this is one less design decision 
we have to make  

• There is a third reason which trumps the first two, but 
that will have to wait for next time!

Why completeness?



• A binary heap is really implemented using an array! 

Binary heaps are arrays! 
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• To insert an element into a binary heap:  
- Add the new element at the end of the heap  
- Sift the element up: while the element is less than its 

parent, swap it with its parent  

• We can do exactly the same thing for a binary heap 
represented as an array! 

Reminder: inserting into a binary heap



• Step 1: add the new element to the end of the array, set 
child to its index

Inserting into a binary heap
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• Step 2: compute parent = (child-1)/2 

Inserting into a binary heap
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• Step 3: if array[parent] > array[child], swap 
them

Inserting into a binary heap
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swap them

6

18 29

37 26 76 32 74 89

20 28 39 8

0 1 2 7 8 9 10 11 123 4 5 6

6 18 29 20 28 39 8 37 26 76 32 74 89
13
66

C
h
ild

P
a
re
n
t

66



• Step 4: set child = parent,  
parent = (child – 1) / 2, and repeat

Inserting into a binary heap
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• Step 4: set child = parent,  
parent = (child – 1) / 2, and repeat
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• Binary heaps are “morally” trees  
- This is how we view them when we design the heap 

algorithms  

• But we implement the tree as an array  
- The actual implementation translates these tree concepts 

to use arrays  

• In the rest of the lecture, we will only show the heaps 
as trees  
- But you should have the “array view” in your head when 

looking at these trees 

Binary heaps as arrays



• One more operation, build heap  
- Takes an arbitrary array and makes it into a heap  
- In-place: moves the elements around to make the heap 

property hold  

• Idea:  
- Heap property: each element must be less than its children 

If a node breaks this property, we can fix it by sifting down  
- So simply looping through the array and sifting down each 

element in turn ought to fix the invariant  
- But when we sift an element down, its children must already 

have the heap property (otherwise the sifting doesn't work)  
- To ensure this, loop through the array in reverse

Building a heap



• Go through elements in reverse order, sifting each 
down

Building a heap
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• Leaves never need sifting down!
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• 29 is greater than 18 so needs swapping

Building a heap
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• 37 is greater than 20 so needs swapping

Building a heap
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• 28 is greater than 6 so needs swapping

Building a heap
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• You would expect O(n log n) complexity:  
- n “sift down” operations 
- each sift down has O(log n) complexity  

• Actually, it's O(n)! 
- (Rough reason: sifting down is most expensive for elements 

near the root of the tree, but the vast majority of elements 
are near the leaves)

Build heap complexity



• To sort a list using a heap:  
- start with an empty heap 
- add all the list elements in turn  
- repeatedly find and remove the smallest element from the 

heap, and add it to the result list  

• (this is a kind of selection sort)  

• However, this algorithm is not in-place. Heapsort uses 
the same idea, but without allocating any extra 
memory.

Heapsort



• We are going to repeatedly remove the largest value 
from the array and put it in the right place  
- using a so-called max heap, a heap where you can find and 

delete the maximum element instead of the minimum  

• We'll divide the array into two parts  
- The first part will be a heap 
- The rest will contain the values we've removed  

• (This division is the same idea we used for in-place 
selection and insertion sort) 

Heapsort, in-place



• First turn the array into a heap  

• Then just repeatedly delete the maximum element! 
Remember the deletion algorithm:  
- Swap the maximum (first) element with the last element of 

the heap  
- Reduce the size of the heap by 1 

(deletes the first element, breaks the invariant)  
- Sift the first element down  

(repairs the invariant)  

• The swap actually puts the maximum element in the 
right place in the array 

Heapsort, in-place



• First build a heap (not shown) 

Trace of heapsort
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• Step 1: swap maximum and last element; decrease size 
of heap by 1

Trace of heapsort
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• Step 2: sift first element down

Trace of heapsort
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• Step 2: sift first element down

Trace of heapsort

  

Trace of heapsort

76

6 74

37 32 39 66

20 26 18 28 29 89

Step 2: sift /rst element down



• Step 2: sift first element down

Trace of heapsort

  

Trace of heapsort

76

37 74

6 32 39 66

20 26 18 28 29 89

Step 2: sift /rst element down



• Step 2: sift first element down

Trace of heapsort
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• We now have the biggest element at the end of the 
array, and a heap that's one element smaller! 

Trace of heapsort
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• Step 1: swap maximum and last element; decrease size 
of heap by 1

Trace of heapsort
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• Step 2: sift first element down

Trace of heapsort
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• Step 2: sift first element down

Trace of heapsort
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• Step 2: sift first element down

Trace of heapsort
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• Step 1: swap maximum and last element; decrease size 
of heap by 1

Trace of heapsort
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• Step 2: sift first element down

Trace of heapsort
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• Step 2: sift first element down

Trace of heapsort

  

Trace of heapsort

66

37 28

26 32 39 29

20 6 18 74 76 89

Step 2: sift /rst element down



• Step 2: sift first element down

Trace of heapsort
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Trace of heapsort
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• Building the heap takes O(n) time  

• We delete the maximum element n times, each deletion 
taking O(log n) time  

• Hence the total complexity is O(n log n) 

Complexity of heapsort



• Our formulas for finding children and parents in the 
array assume 0-based arrays  

• Others, for some reason, use 1-based arrays  

• In a heap implemented using a 1-based array:  
- the left child of index i is index 2i  
- the right child is index 2i+1
- the parent is index i/2  

• Be careful when doing the lab! 

Warning



• Binary heaps: a complete binary tree with the heap 
property, represented as an array 
- insert: O(log n) 
- find minimum: O(1)  
- delete minimum: O(log n)  

• Heapsort: build a max heap, repeatedly remove last 
element and place at end of array  
- Can be done in-place, O(n log n)  

• In fact, heaps were originally invented for heapsort!

Summary of binary heaps



Leftist heaps



• Another operation we might want to do is merge two heaps  
- Build a new heap with the contents of both heaps  
- e.g., merging a heap containing 1, 2, 8, 9, 10 and a heap containing 

3, 4, 5, 6, 7 gives a heap containing 1, 2, 3, 4, 5, 6, 7, 8, 9, 10  

• For our earlier naive priority queues:  
- An unsorted array: concatenate the arrays 
- A sorted array: merge the arrays (as in mergesort)  

• For binary heaps:  
- Takes O(n) time because you need to at least copy the contents 

of one heap to the other  
- Can't combine two arrays in less than O(n) time!

Merging two heaps



• Go back to our idea of a binary tree with the heap 
property: 

• If we can merge two of these trees, we can implement 
insertion and delete minimum!  

• (We'll see how to implement merge later)

Merging two heaps

  

Merging tree-based heaps

Go back to our idea of a binary tree with 
the heap property:

If we can merge two of these trees, we 
can implement insertion and delete 
minimum!
(We'll see how to implement merge later)
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• To insert a single element:  
- build a heap containing just that one element 
- merge it into the existing heap! 

• E.g., inserting 12

Insertion

  

Insertion

To insert a single element:
● build a heap containing just that one element
● merge it into the existing heap!
E.g., inserting 12
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• To delete the minimum element:  
- take the left and right branches of the tree 
- these contain every element except the smallest 
- merge them!  

• E.g., deleting 8 from the previous heap

Delete minimum

  

Delete minimum

To delete the minimum element:
● take the left and right branches of the tree
● these contain every element except the smallest
● merge them!
E.g., deleting 8 from the previous heap
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• If we can take trees with the heap property, and 
implement merging with O(log n) complexity, we get a 
priority queue with:  
- O(1) find minimum 
- O(log n) insertion (by merging) 
- O(log n) delete minimum (by merging)  
- plus this useful merge operation itself  

• There are lots of heaps based on this idea:  
- skew heaps, Fibonacci heaps, binomial heaps  

• We will study two: leftist and skew heaps

Heaps based on merging



• How to merge these two heaps?  

• Idea: root of resulting heap must be 18  

• Take heap A, it has the smallest root 

• Pick one of its children and recursively merge B into that child 

• Which child should we pick? Let's pick the right child for no 
particular reason 

Naive merging

  

Naive merging

How to merge these two heaps?

Idea: root of resulting heap must be 18
Take heap A, it has the smallest root.
Pick one of its children. Recursively merge B
into that child.
Which child should we pick? Let's pick the
right child for no particular reason
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• To merge two non-empty heaps: pick the heap with the 
smallest root:  

• Let C be the other heap  

• Recursively merge B and C! 

Naive merging
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1. Look at the roots of the two trees  

We are going to pick the smaller one as the root of the 
new tree

Naive merging
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2. Recursively merge the right branch and the second tree  

Naive merging
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2. Recursively merge the right branch and the second tree  
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2. Recursively merge the right branch and the second tree  

Naive merging
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• The merge algorithm descends down the right branch of 
both trees  

• So the runtime depends on how many times you can 
follow the right branch before you get to the end of the 
tree  
- Let's call this the right null path length  

• Complexity: O(m+n)  
- where m and n are the right null path lengths of the two trees  

• Logarithmic complexity for balanced trees, but can 
become linear if the trees are heavily “right- biased” 

Performance of naive merging 



• A heavily right-biased tree: 

• Unfortunately, you get this just by doing insertions! So 
insert takes O(n) time...  

• How can we stop the tree from becoming right-heavy? 

Worst case for naive merging

  

Worst case for naïve merging

A heavily right-biased tree:



• Naive merging is:  
- bad (linear complexity) for right-biased trees  
- good (logarithmic or better) for left-biased trees  

• Idea of leftist heaps:  
- Add an invariant that stops the tree becoming right-biased  
- In other words, by repeatedly following the right branch, 

you quickly reach the end of the tree

Leftist heaps – observation 



• We define the null path length (npl) of a node to be the 
shortest path that leads to the end of the tree (a null in 
Java) 

• The null path length of null itself is 0  

• Similar concept to height, but with height we measure the 
longest path in the tree

Null path length

  

Null path length

We de/ne the null path length (npl) of a node to be 
the shortest path that leads to the end of the tree (a 
null in Java)

⇠e null path length of null itself is 0
Similar concept to height, but with height we 
measure the longest path in the tree
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• Leftist invariant: the npl of the left child ≥ the npl of the 
right child  

• This means: the quickest way to reach a null is to follow 
the right branch 

Leftist heaps

  

Leftist heaps

Leftist invariant: the npl of the left child 
I the npl of the right child

⇠is means: the quickest way to reach a 
null is to follow the right branch
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• We start with the naive merging algorithm from earlier:  
- The leftist invariant means that naive merging stops after 

O(log n) steps  

• But the merge might break the leftist invariant!  
- When we descend into the right child, its npl might 

increase, and become greater than the left child  

• Fix it by:  
- Going upwards in the tree from where the merge finished, 

and wherever we encounter a node where left child's npl < 
right child's npl, swap the two children!

Leftist merging



1. Start with naive merging from earlier 

Leftist merging

  

Leftist merging

1. Start with naïve merging from earlier
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2. The recursion “bottomed out” at 66 here 

Leftist merging

  

Leftist merging

2. ⇠e recursion “bottomed out” at 66 
here
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3. Go up to the parent, compare left and right child's npl

Leftist merging

  

Leftist merging

3. Go up to the parent, compare left and 
right child's npl
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4. If the leftist invariant is broken, swap the left and right 
children

Leftist merging

  

Leftist merging

4. If the leftist invariant is broken, swap 
the left and right children
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5. Go up again and repeat!

Leftist merging

  

Leftist merging

5. Go up again and repeat!
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5. Go up again and repeat!

Leftist merging
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5. Go up again and repeat!
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5. Go up again and repeat!

Leftist merging
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5. Go up again and repeat!
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6. When we've reached the root, we've finished!  

Notice how the final heap “leans to the left”. 

Leftist merging
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6. When we've reached the root, we've 
/nished!
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• Implementation:  
- Need to be able to compute npl efficiently 
- Add a field for the npl to each node, and update it 

whenever we modify the node  
- Update by computing: npl = 1 + right child's npl

Implementation



• I claim: the npl of a tree of size n is O(log n)  
- Check it for yourself :)  
- For balanced trees, the npl is O(log n), much like height  
- By unbalancing a tree, we make some paths longer, and some 

shorter. This increases the height, but decreases the npl!  

• Hence, in a leftist heap, by following the right branch 
O(log n) times, you reach a null  

• So merge takes O(log n) time!  
- log n steps down the tree to do the naive merge 
- then log n steps upwards while repairing the leftist invariant

Complexity of leftist merging



• Implementation of priority queues:  
- binary trees with heap property  
- leftist invariant for O(log n) merging  
- other operations are based on merge  

• A good fit for functional languages:  
- based on trees rather than arrays 

Leftist heaps



Skew heap



• In a skew heap, after making a recursive call to merge, 
we swap the two children:  

• Amazingly, this small change completely fixes the 
performance of merge!  

• We almost never end up with right-heavy trees 

• We get O(log n) amortised complexity

Skew merging

  

Skew merging

In a skew heap, after making a recursive call
to merge, weswap the two children:

Amazingly, this small change completely .xes
the performance of merge!
We almost never end up with right-heavy
trees.
We get O(log n) amortised complexity.
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AB + C



• One way to do skew merge is to first do naive merge, 
then go up the tree swapping left and right children... 

Example

  

Example

One way to do skew merge is to .rst do naive
merge, then go up the tree swapping left and
right children...
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• … like this:
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• … like this:
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• Implementation of priority queues:  
- binary trees with heap property  
- skew merging avoids right-heavy trees, gives O(log n) 

amortised complexity  
- other operations are based on merge 

• A good fit for functional languages:  
- based on trees rather than arrays, tiny implementation!  

• Based on same idea as leftist heaps: naive merging + 
avoiding right heavy trees 

• See webpage for link to visualisation site! 

Skew heaps


