

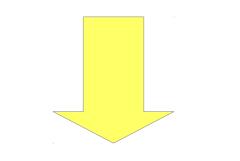
UNIVERSITY OF GOTHENBURG

Data structures

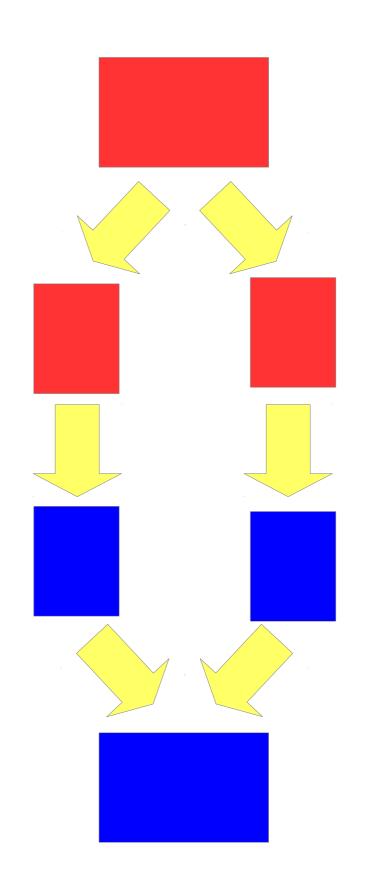
More sorting

Dr. Alex Gerdes DIT961 - VT 2018

- Very general name for a type of recursive algorithm
- You have a problem to solve:
 - *Split* that problem into smaller subproblems
 - *Recursively* solve those subproblems
 - *Combine* the solutions for the subproblems to solve the whole problem

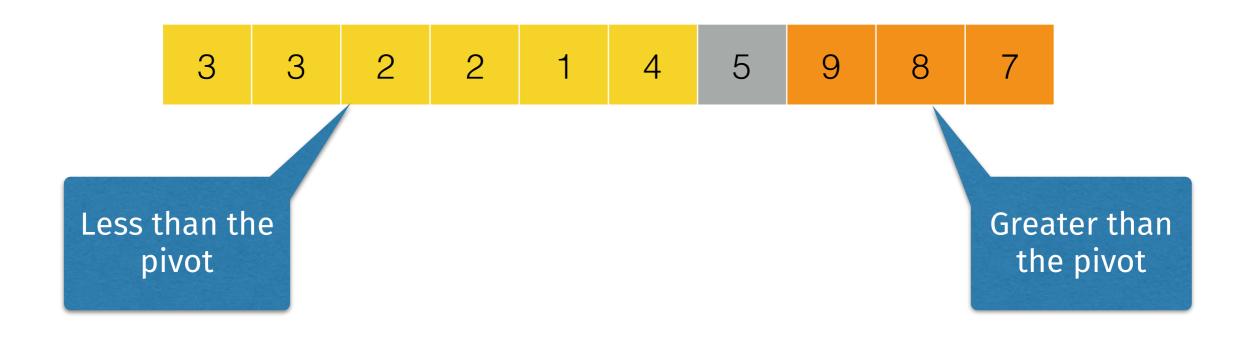


- 1. *Split* the problem into subproblems
- 2. *Recursively* solve the subproblems
- 3. Combine the solutions

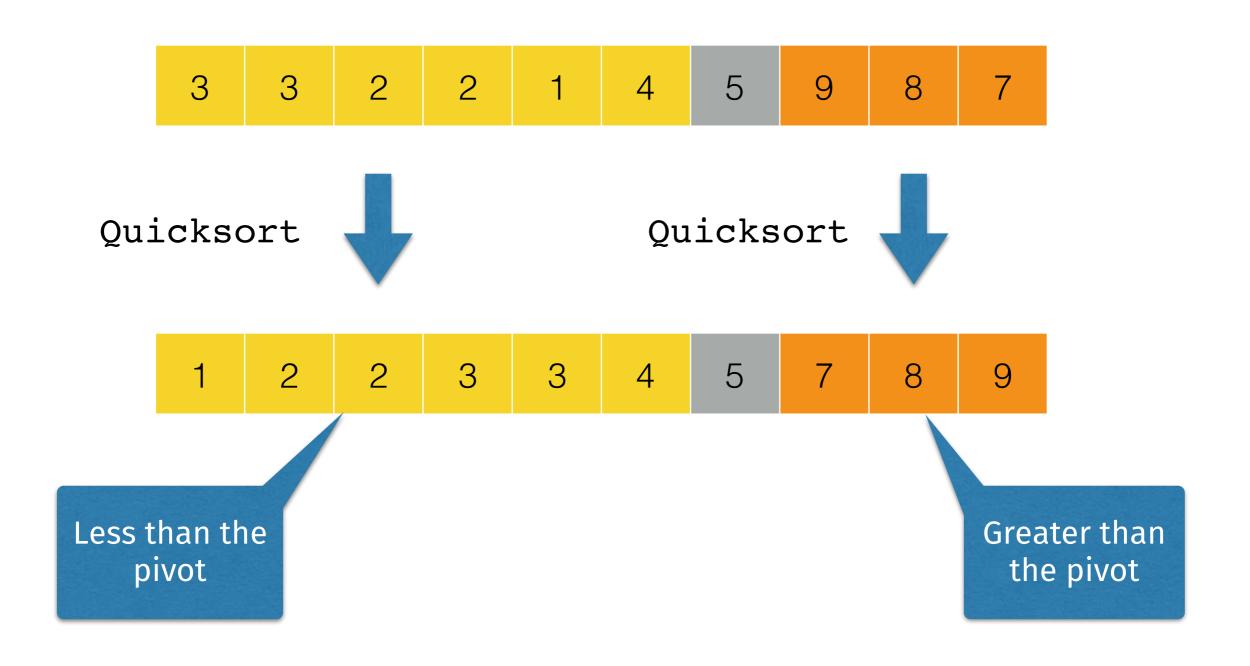


- Pick an element from the array, called the *pivot*
- *Partition* the array:
 - First come all the elements smaller than the pivot, then the pivot, then all the elements greater than the pivot
- *Recursively* quicksort the two partitions

- Say the pivot is 5.
- Partition the array into: all elements less than 5, then 5, then all elements greater than 5



• Now recursively quick sort the two partitions!



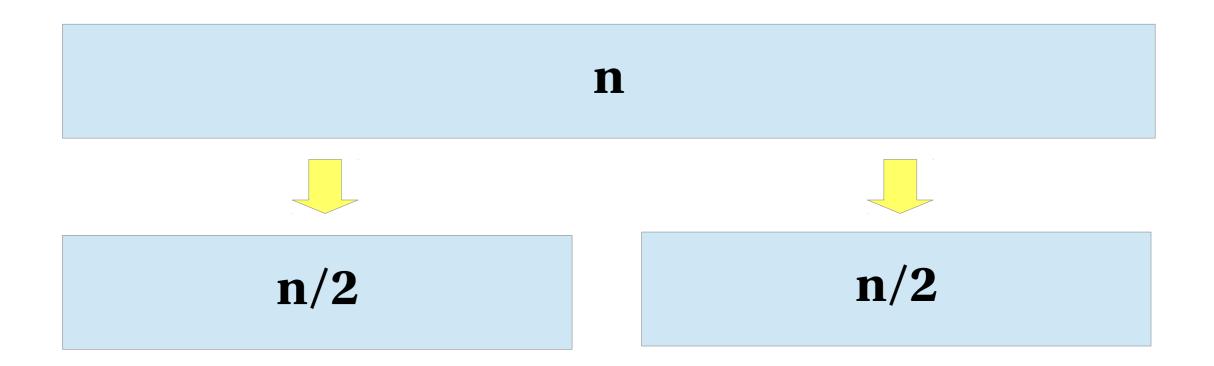
// call as sort(a, 0, a.length-1); void sort(int[] a, int low, int high) { if (low >= high) return; int pivot = partition(a, low, high); // assume that partition returns the // index where the pivot now is sort(a, low, pivot-1); sort(a, pivot+1, high); }

 Common optimisation: switch to insertion sort when the input array is small

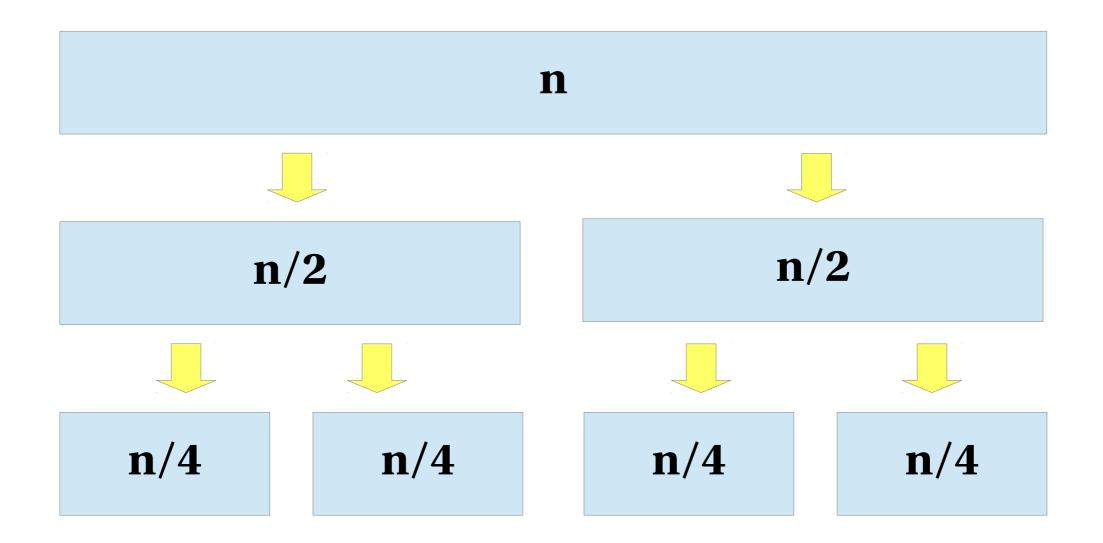
What is the complexity of quicksort? (assuming partition is O(n))

- O(log *n*)
- O(n)
- $O(n \log n)$
- $O(n^2)$
- Vet ej

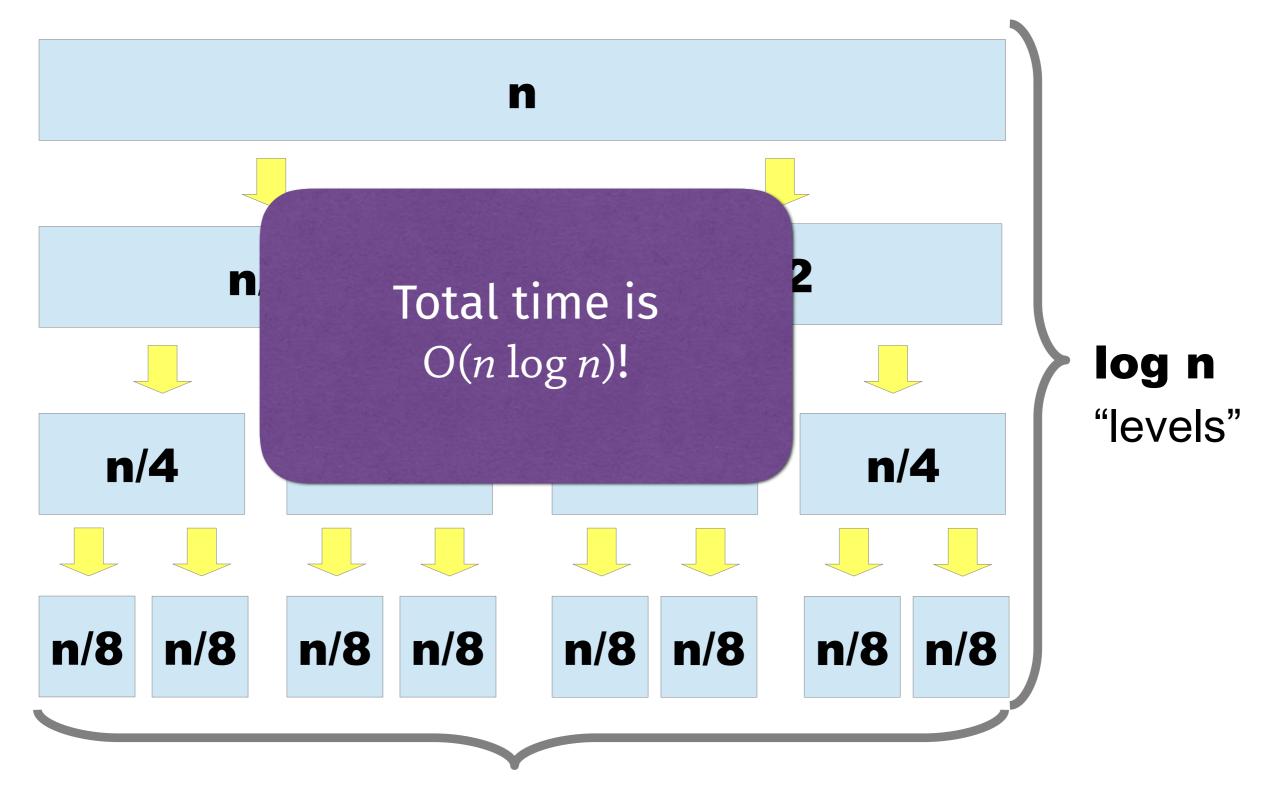
 In the best case, partitioning splits an array of size n into two halves of size n/2:



• The recursive calls will split these arrays into four arrays of size *n*/4:

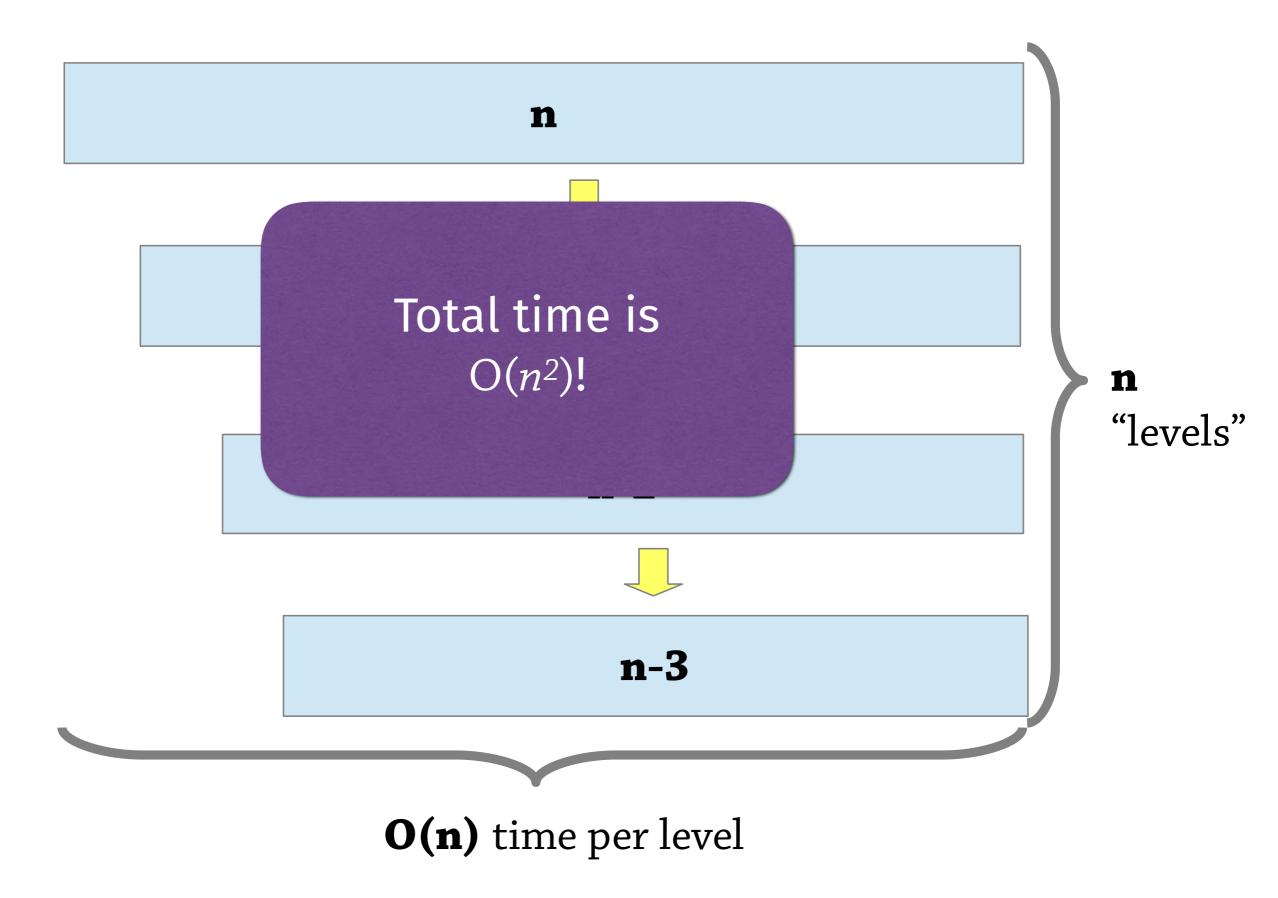


Complexity of quick sort



O(n) time per level

- But that's the best case!
- In the worst case, everything is greater than the pivot (say)
 - The recursive call has size *n*-1
 - Which in turn recurses with size *n*-2, etc.
 - Amount of time spent in partitioning: $n + (n-1) + (n-2) + ... + 1 = O(n^2)$



- When we pick the first element as the pivot, we get this worst case for:
 - Sorted arrays
 - Reverse-sorted arrays
- The best pivot to use is the *median* value of the array, but in practice it's too expensive to compute...
- Most important decision in QuickSort: what to use as the pivot
- You don't need to split the array into exactly equal parts, it's enough to have some balance (e.g. 10%/90% split still gives O(n log n) runtime)

- Quicksort works well when the pivot splits the array into roughly equal parts
 - Median-of-three: pick first, middle and last element of the array and pick the median of those three
 - Pick pivot at random: gives O(n log n) expected
 (probabilistic) complexity
- Introsort: detect when we get into the $O(n^2)$ case and switch to a different algorithm (e.g. heapsort)

Partitioning algorithm

1. Pick a pivot (here 5)

5	3	9	2	8	7	3	2	1	4

2. Set two indexes, low and high

Idea: everything to the left of low is *less* than the pivot (coloured yellow), everything to the right of high is *greater* than the pivot (orange)

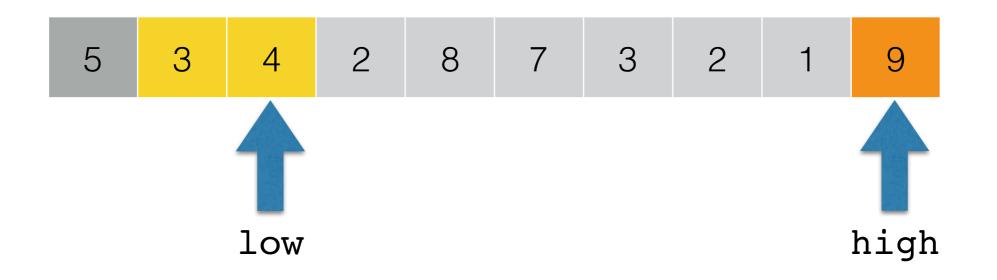
while (a[low] < pivot) low++;</pre>

while (a[low] < pivot) low++;</pre>

while (a[low] < pivot) low++;</pre>

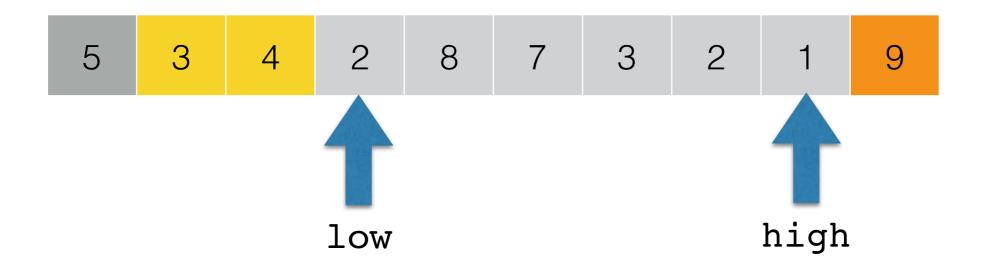
while (a[high] < pivot) high-;</pre>

4. Swap them!

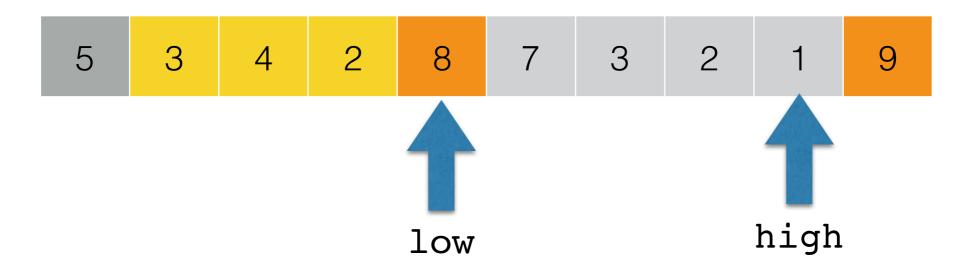


swap(a, low, high);

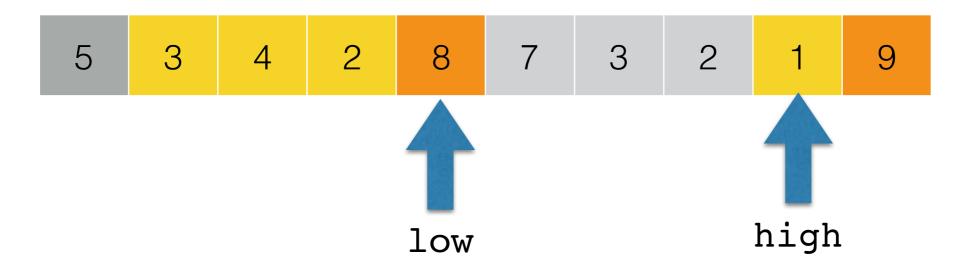
5. Advance low and high and repeat



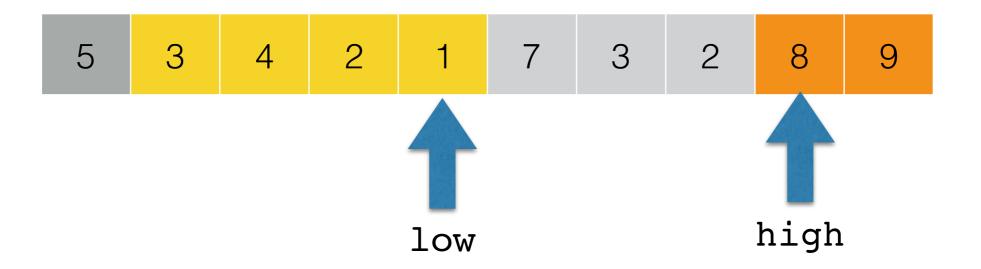
Move low until *higher* than pivot



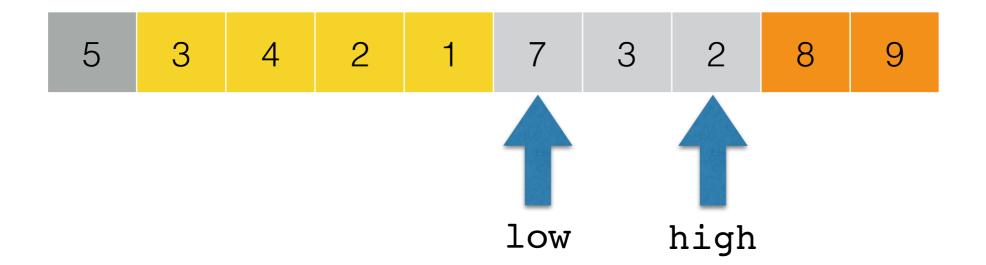
Move high until *lower* than pivot



Swap low and high

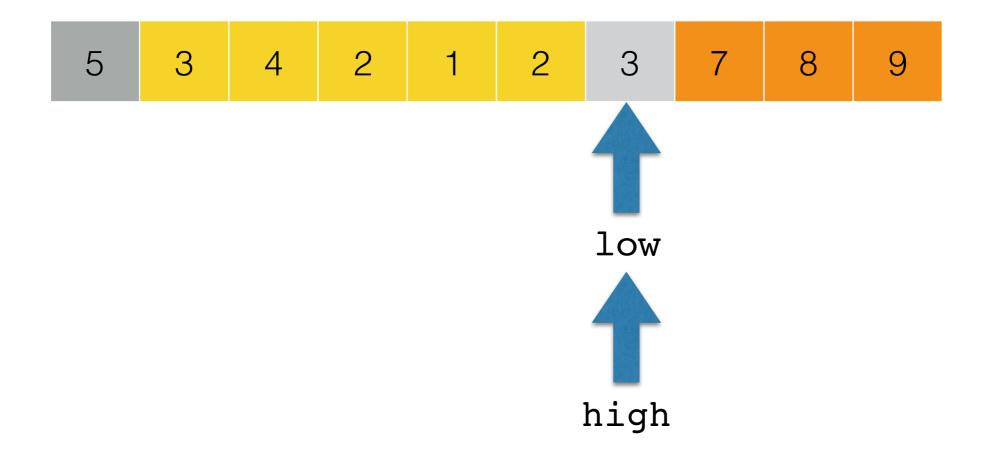


Advance and repeat

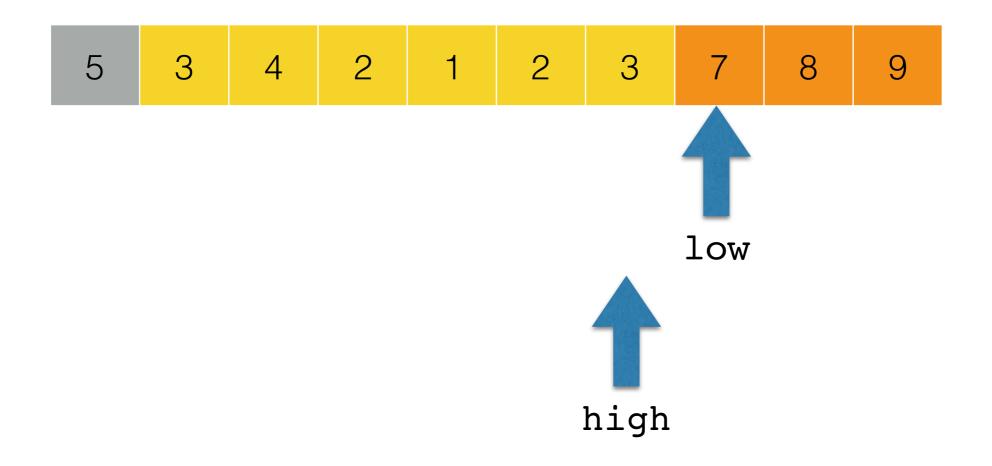


Move low and then high

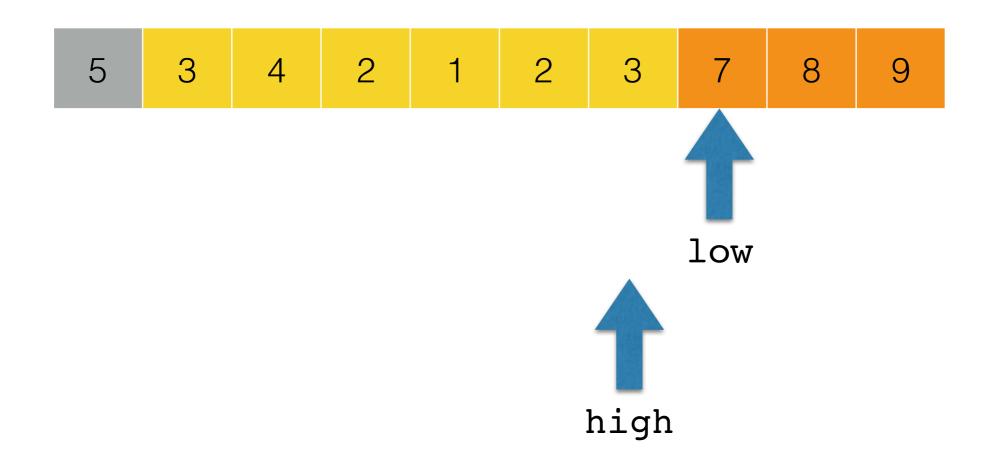
Swap and advance



Move high and low

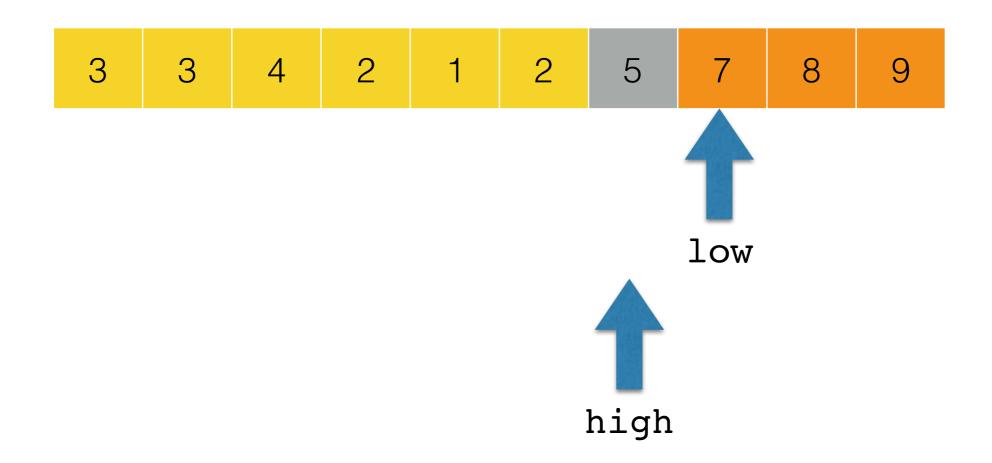


6. When low and high have crossed, we are finished!



But the pivot is in the wrong place...

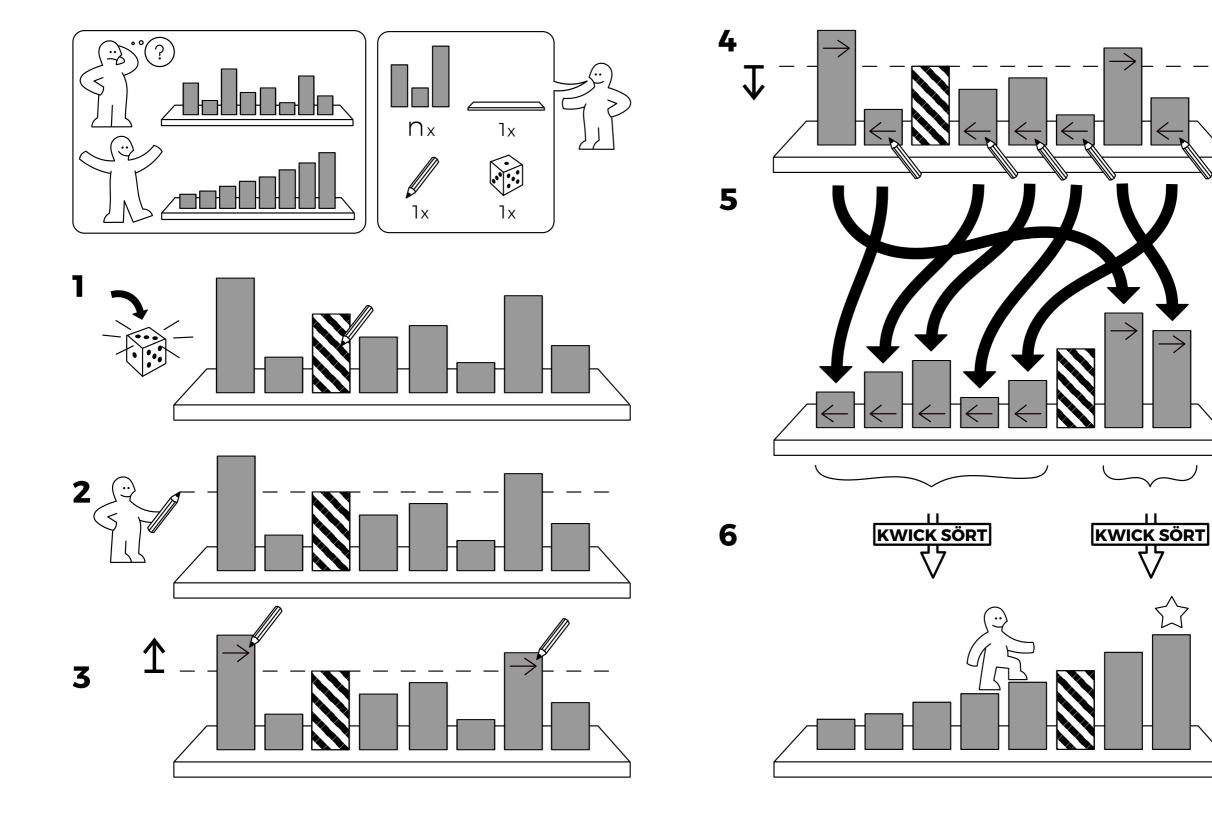
7. Final step: swap pivot with high



But the pivot is in the wrong place...

KWICK SÖRT

idea-instructions.com/quick-sort/ v1.0, CC by-nc-sa 4.0



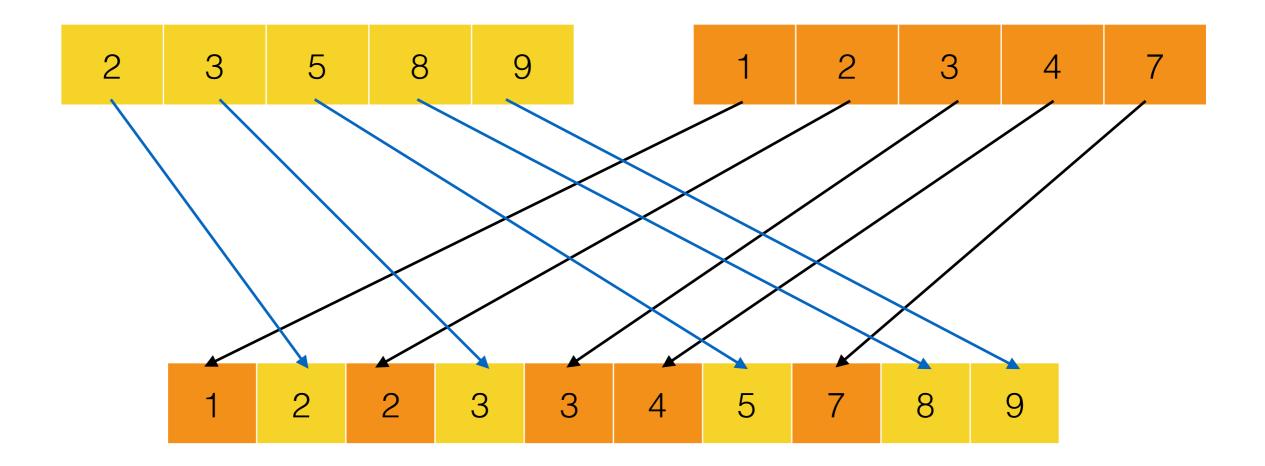
- 1. What to do if the pivot is not the first element?
 - Swap the pivot with the first element before starting partitioning!
- 2. What happens if the array contains many duplicates?
 - Notice that we only advance a [low] as long as a [low] < pivot
 - If a[low] == pivot we stop, same for a[high]
 - If the array contains just one element over and over again, low and high will advance at the same rate
 - Hence we get equal-sized partitions

- Which pivot should we pick?
 - First element: gives $O(n^2)$ behaviour for already- sorted lists
 - Median-of-three: pick first, middle and last element of the array and pick the median of those three
 - Pick pivot at random: gives O(n log n) expected (probabilistic) complexity

- Typically the fastest sorting algorithm...
 ...but very sensitive to details!
 - Must choose a good pivot to avoid $O(n^2)$ case
 - Must take care with duplicates
 - Switch to insertion sort for small arrays to get better constant factors
- If you do all that right, you get an in-place sorting algorithm, with low constant factors and O(n log n) complexity

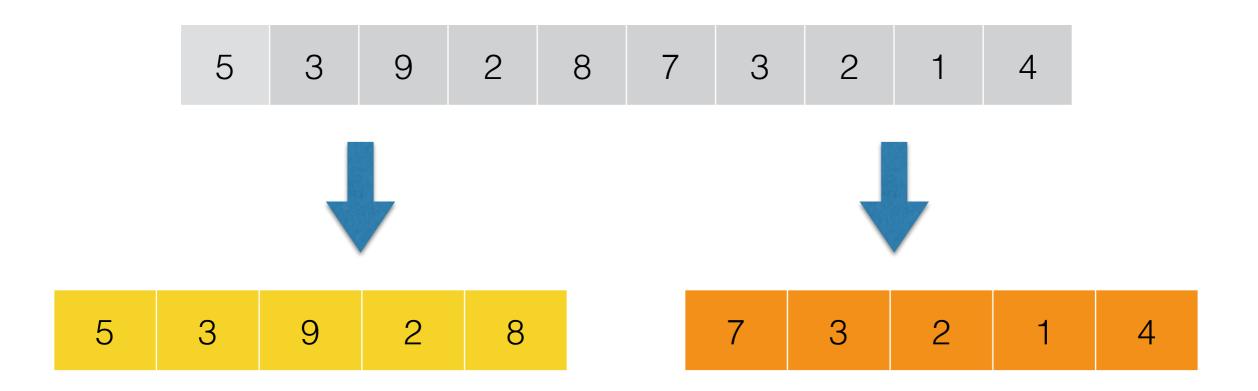
Mergesort

• We can *merge* two sorted lists into one in linear time:

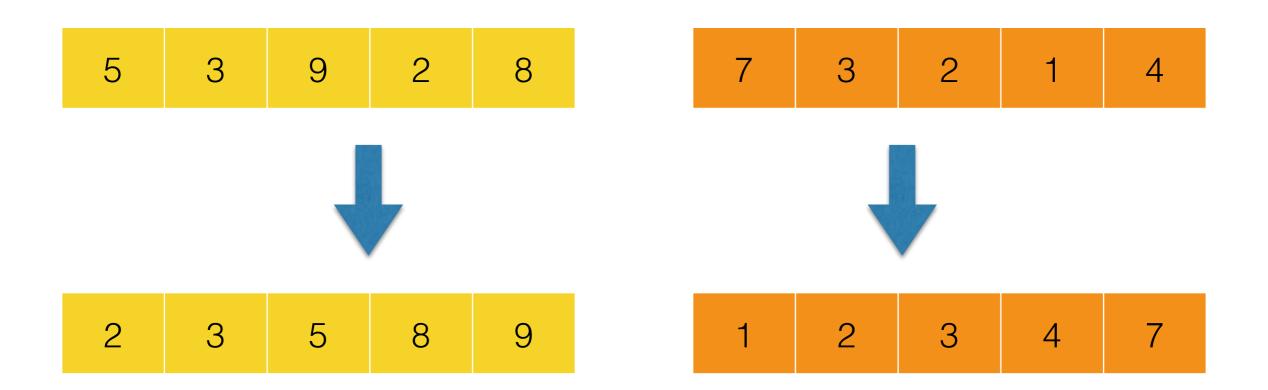


- Another divide-and-conquer algorithm
- To mergesort a list:
 - Split the list into two equal parts
 - *Recursively* mergesort the two parts
 - Merge the two sorted lists together

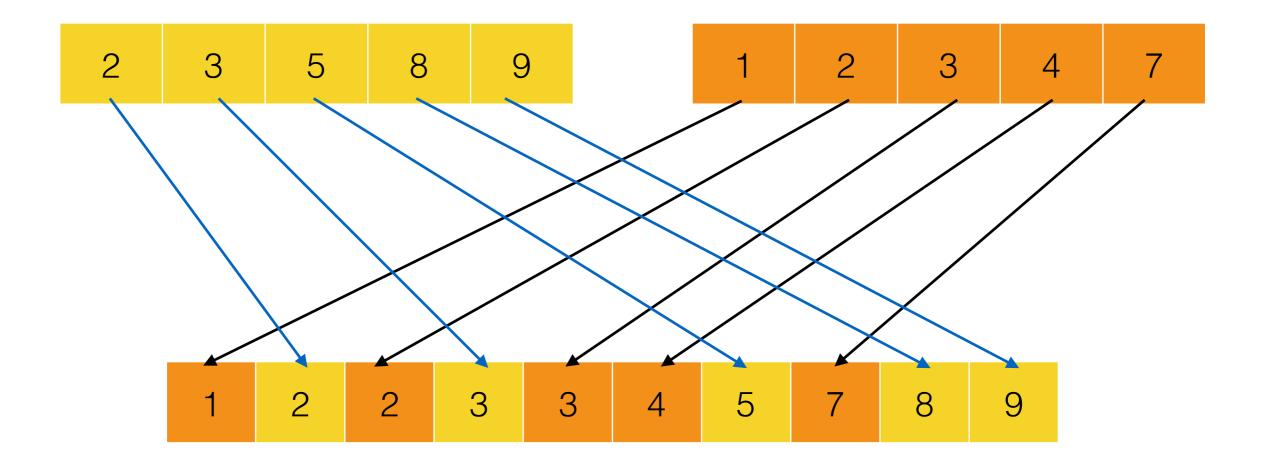
1. Split the list into two equal parts



2. Recursively mergesort the two parts

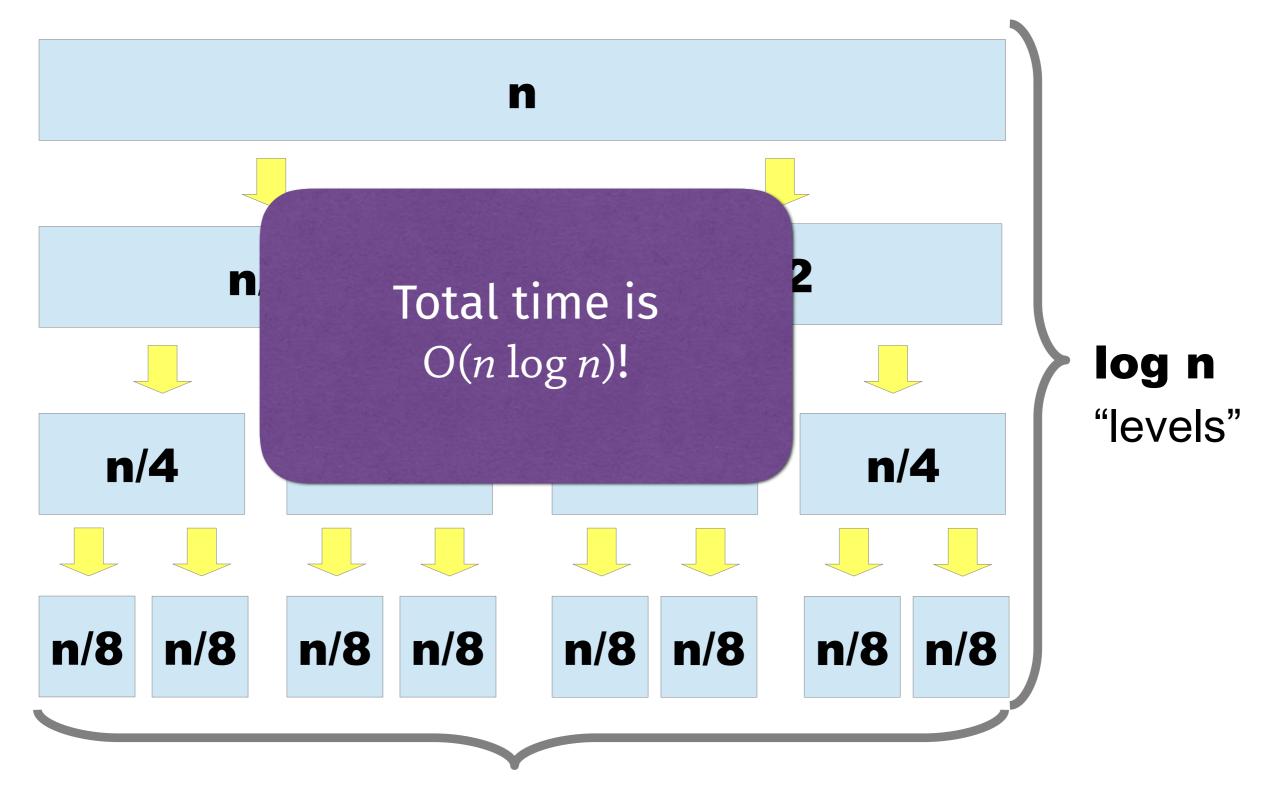


3. Merge the two sorted lists together



- Mergesort's divide-and-conquer approach is similar to quicksort
- But it always splits the list into equally-sized pieces!
- Hence O(n log n), just like the best case for quicksort but this is the worst case for mergesort

Complexity of quick sort



O(n) time per level

Mergesort vs quicksort

CHALMERS

- Mergesort:
 - Not in-place
 - $O(n \log n)$
 - Only requires sequential access to the list this makes it good in functional programming
- Quicksort:
 - In-place
 - $O(n \log n)$ but $O(n^2)$ if you are not careful
 - Works on arrays only (random access)
 - Unstable
- Both the best in their fields!
 - Quicksort best imperative algorithm
 - Mergesort best functional algorithm

- When sorting complex objects, e.g. where each element contains various information about a person, the ordering may only take part of the data in account (via Comparable, Comparator, Ord)
- Then it's sometimes important that objects that are deemed equal by the ordering should appear in the same order as they did in the original list
- A sorting algorithm that does not change the order of equal elements is called stable

Stable sorting

• Let's say that we want to sort

[(5, "a"), (3, "d"), (2, "f"), (3, "b")] and that the ordering of the pairs is defined to be the natural ordering of the first component

- Unstable sorting might result in
 [(2, "f"), (3, "b"), (3, "d"), (5, "a")]
- Stable sorting always gives
 [(2, "f"), (3, "d"), (3, "b"), (5, "a")]
- Insertion sort is stable (provided that the insert inequality check is the right one, so that equal elements are not swapped).