
Linked lists

Linked lists

Inserting and removing elements in the
middle of a dynamic array takes O(n) time
● (though inserting at the end takes O(1) time)
● (and you can also delete from the middle in O(1)
time if you don't care about preserving the order)
A linked list supports inserting and
deleting elements from any position in
constant time
● But it takes O(n) time to access a speci�c
position in the list

Singly-linked lists

A singly-linked list is made up of nodes,
where each node contains:
● some data (the node's value)
● a link (reference) to the next node in the list

class Node<E> {
 E data;
 Node<E> next;
}

Singly-linked lists

Linked-list representation of the list
[“Tom”, “Dick”, “Harry”, “Sam”]:

List itself is
just a reference
to the �rst node

Operations on linked lists

// Insert item at front of list
void addFirst(E item)
// Insert item after another item
void addAfter(Node<E> node, E item)
// Remove first item
void removeFirst()
// Remove item after another item
void removeAfter(Node<E> node)

Example list

 head =

SLList<String>

 next =
 data = "Tom"

Node<String>

 next =
 data = "Dick"

Node<String>

Example of addFirst(E item)

 head =

SLList<String>

 next =
 data = "Tom"

Node<String>

 next =
 data = "Dick"

Node<String>

Calling addFirst(“Ann”):

 next =
 data = "Ann"

Node<String>

item

item.next = head;
head = item;

Example of addAfter

 head =

SLList<String>

 next =
 data = "Tom"

Node<String>

 next =
 data = "Dick"

Node<String>

Calling addAfter(tom, “Ann”):

 next =

 data =

"Ann"

Node<String>

item

 next =
 data = "Ann"

item

node

item.next = node.next;
node.next = item;

Example of removeFirst

 head =

SLList<String>

 next =
 data = "Tom"

Node<String>

 next =
 data = "Dick"

Node<String>

Calling removeFirst():

node to be
removed

head = head.next;

Example of removeAfter

 head =

SLList<String>

 next =
 data = "Tom"

Node<String>

 next =
 data = "Dick"

Node<String>

Calling removeAfter(tom):

 next =
 data = "Ann"

Node<String>

node to be
removed

node

node.next = node.next.next;

A problem

It's bad API design to need both addFirst and
addAfter (likewise removeFirst and
removeAfter):
● Twice as much code to write – twice as many places to
introduce bugs!

● Users of the list library will need special cases in their
code for dealing with the �rst node
Idea: add a header node, a fake node that sits at
the front of the list but doesn't contain any data
Instead of addFirst(x), we can do
addAfter(headerNode, x)

List with header node (16.1.1)

If we want to add “Ann” before “Tom”, we
can do addAfter(head, “Ann”)

 head =

SLList<String>

 next =
 data = "Tom"

Node<String>

 next = null
 data = "Dick"

Node<String>

 next =
 data =

Node<String>

4e header node!

Doubly-linked lists

In a singly-linked list you can only go forwards
through the list:
● If you're at a node, and want to �nd the previous node, too
bad! Only way is to search forward from the beginning of
the list
In a doubly-linked list, each node has a link to the
next and the previous nodes
You can in O(1) time:
● go forwards and backwards through the list
● insert a node before or after the current one
● modify or delete the current node
4e “classic” data structure for sequential access

A doubly-linked list
Each node links to
the next and the
previous node

4e list itself
links to the �rst
and last nodes

Insertion and deletion in doubly-
linked lists

Similar to singly-linked lists, but you
have to update the prev pointer too.
To delete the current node the idea is:
node.next.prev = node.prev;
node.prev.next = node.next;

 next =
 prev =
 data = "Dick"

Node<String>

 next =
 prev =
 data = "Ann"

Node<String>

 next =
 prev =
 data = “Tom”

Node<String>

Insertion and deletion in doubly-
linked lists, continued

To delete the current node the idea is:
node.next.prev = node.prev;
node.prev.next = node.next;

But this CRASHES if we try to delete the �rst
node, since then node.prev == null! Also, if
we delete the �rst node, we need to update the
list object's head.
Lots and lots of special cases for all operations:
● What if the node is the �rst node?
● What if the node is the last node?
● What if the list only has one element so the node is both
the �rst and the last node?

Getting rid of the special cases

How can we get rid of these special cases?
One idea (see book): use a header node like
for singly-linked lists, but also a footer node.
● head and tail will point at the header and footer
node

● No data node will have null as its next or prev
● All special cases gone!
● Small problem: allocates two extra nodes per list
A cute solution: circularly-linked list with
header node

Alex Gerdes

Circularly-linked list with header node

 head =

LinkedList
<String>

 next =
 prev =
 data = "Tom"

Node<String>

 next =
 prev =
 data = "Dick"

Node<String>

 next =
 prev =
 data =

Node<String>

 next =
 prev =
 data = "Harry"

Node<String>
Here is the
header node
(“prev” links
not shown)

Circularly-linked list with header node

Works out quite nicely!
● head.next is the �rst element in the list
● head.prev is the last element
● you never need to update head
● no node's next or prev is ever null
● so no special cases!
You can even make do without the header
node – then you have one special case,
when you need to update head

Stacks and lists using linked lists

You can implement a stack using a linked
list:
● push: add to front of list
● pop: remove from front of list
You can also implement a queue:
● enqueue: add to rear of list
● dequeue: remove from front of list

A queue as a singly-linked list

We can implement a queue as a singly-
linked list with an extra rear pointer:

We enqueue elements by adding them to
the back of the list:
● Set rear.next to the new node
● Update rear so it points to the new node

Linked lists vs dynamic arrays

Dynamic arrays:
● have O(1) random access (get and set)
● have amortised O(1) insertion at end
● have O(n) insertion and deletion in middle
Linked lists:
● have O(n) random access
● have O(1) sequential access
● have O(1) insertion in an arbitrary place
(but you have to �nd that place �rst)
Complement each other!

What's the problem with this?

int sum(LinkedList<Integer> list) {
 int total = 0;
 for (int i = 0; i < list.size(); i++)
 total += list.get(i);
 return total;
}

list.get is O(n) –
so the whole thing is

O(n2)!

Better!

int sum(LinkedList<Integer> list) {
 int total = 0;
 for (int i: list)
 total += i;
 return total;
} Remember –

linked lists are for
sequential access only

Linked lists – summary

Provide sequential access to a list
● Singly-linked – can only go forwards
● Doubly-linked – can go forwards or backwards
Many variations – header nodes, circular
lists – but they all implement the same
abstract data type (interface)
Can insert or delete or modify a node in
O(1) time
But unlike arrays, random access is O(n)
Java: LinkedList<E> class

Iterators in Java

java.util.Iterator

● Iterator<E> is an interface which provides
a uniform way to enumerate all elements in a
Collection<E>, e.g. aList<E> or a
Set<E>.

●Minimal implementation is:
● boolean hasNext() – is there another element?
● E next() – give me next element

●⇡ere is also an optional method for
removing the last element returned bynext.
● void remove()

java.util.Iterator

● Collections can provide a default iterator by
implementing the Iterable<E> interface with this
method:
● Iterator<E> iterator()

● Classes that implement Iterable can be looped over
using the enhanced for-loop, just like arrays.
● void printAll(Iterable<E> s) {
 for (E e : s) {
 System.out.println(e.toString());
 }
}

● See lecture code for an example of an
implementation of an iterator over a binary tree.

Tail recursion
(not on exam)

How is recursion implemented?

When you call function B from function
A, the processor stops executing A and
starts executing B (obviously)
But when B returns, how does it know
how to go back to A?
Answer: the call stack
● Before A calls B, it will push a record of what it
was doing: the next instruction to be executed,
plus the values of all local variables

● When B returns, it will pop that record and see it
should return to A

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 3

Next
line

Value
of n

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 3

Next
line

Value
of n

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 3
Printed: 3

Next
line

Value
of n

Prints 3

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 3
Printed: 3

Next
line

Value
of n

Push state onto
call stack

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 2
Printed: 3

Next
line

Value
of n

5 3

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 2
Printed: 3 2

Next
line

Value
of n

5 3

Prints 2

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 2
Printed: 3 2

Next
line

Value
of n

5 3

Push state onto
call stack

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 1
Printed: 3 2

Next
line

Value
of n

5 3
5 2

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 1
Printed: 3 2 1

Next
line

Value
of n

5 3
5 2

Prints 1

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 1
Printed: 3 2 1

Next
line

Value
of n

5 3
5 2

Push state onto
call stack

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 0
Printed: 3 2 1

Next
line

Value
of n

5 3
5 2
5 1

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 0
Printed: 3 2 1

Next
line

Value
of n

5 3
5 2
5 1

Pop state from
call stack

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 1
Printed: 3 2 1

Next
line

Value
of n

5 3
5 2

Push state onto
call stack

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 0
Printed: 3 2 1

Next
line

Value
of n

5 3
5 2
6 1

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 0
Printed: 3 2 1

Next
line

Value
of n

5 3
5 2
6 1

Pop state from
call stack

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 1
Printed: 3 2 1

Next
line

Value
of n

5 3
5 2

Pop state from
call stack

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 2
Printed: 3 2 1

Next
line

Value
of n

5 3

Push state onto
call stack

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 1
Printed: 3 2 1

Next
line

Value
of n

5 3
6 2

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }

rec(3);

n = 1
Printed: 3 2 1 1

Next
line

Value
of n

5 3
6 2

Prints 1

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }
How much memory does this function
use?
Don't forget to include the call stack!

A recursive function

1 void rec(int n) {
2 if (n > 0) {
3 System.out.println(n);
4 rec(n-1);
5 rec(n-1);
6 }
7 }
How much memory does this function
use?
Don't forget to include the call stack!

n levels of recursion
n items on call stack
O(n) memory use!

Memory use of recursive functions

Calling a function pushes information on
the call stack
Hence recursive functions use memory in
the form of the call stack!
Total memory use from call stack:
O(maximum recursion depth)

Another recursive function

void hello() {
 System.out.println(“hello world”);
 hello();
}

What is this program supposed to do?
What does it actually do?

Another recursive function

void hello() {
 System.out.println(“hello world”);
 hello();
}

What is this program supposed to do?
● Print “hello world” over and over again

What does it actually do?
● Exception in thread "main"
java.lang.StackOverflowError

-e recursive call to hello .lls the call
stack!

Tail calls

void hello() {
 System.out.println(“hello world”);
 hello();
}

-e recursive call is the last thing hello does
before it returns
-is is called a tail call, and hello is tail recursive
Idea: don't bother pushing anything on the call
stack when making a tail call
●Since the function is going to do nothing
afterwards except return again

Tail call optimisation

In languages with tail call optimisation:
●Tail calls don't push anything onto the call stack so
don't use any stack space

●Hence tail recursion acts just like a loop
●-is allows you to choose between using loops or
recursion, whichever is more natural for the
problem at hand
Most functional languages have TCO, since you're
supposed to use tail recursion instead of looping:
●e.g. Haskell, ML, Scala, Erlang, Scheme
●but also some other civilised languages e.g. Lua
Unfortunately many languages (e.g. Java) don't :(

Is this a tail call?

void hello(int n) {
 if (n > 0) {
 System.out.println(“hello world”);
 hello(n-1);
 }
}

Is this a tail call?

void hello(int n) {
 if (n > 0) {
 System.out.println(“hello world”);
 hello(n-1);
 }
}

Yes! - nothing more happens after the
recursive call to hello

Is this a tail call?

int fac(int n) {
 if (n == 0) return 1;
 else return n * fac(n-1);
}

Is this a tail call?

int fac(int n) {
 if (n == 0) return 1;
 else return n * fac(n-1);
}

No! - after the recursive call fac(n-1)
returns, you have to multiply by n

Tail recursion using a loop

You can always write a tail-recursive
function using a while(true)-loop instead:
void hello(int n) {
 while(true) {
 if (n > 0) {
 System.out.println(“hello world”);
 hello(n-1); n = n-1;
 } else return;
 }
}

Instead of making
a tail-recursive call,

go through the loop againExplicitly return
when the recursion
is .nished

Tail recursion using a loop

Tidied up a bit:
void hello(int n) {
 while (n > 0) {
 System.out.println(“hello world”);
 n = n-1;
 }
}

Searching in a binary tree

Node<E> search(Node<E> node, int value) {
 if (node == null) return null;
 if (value == node.value) return node;
 else if (value < node.value)
 return search(node.left);
 else
 return search(node.right);
}

The same, tail-recursive

Node<E> search(Node<E> node, int value) {
 while(true) {
 if (node == null) return null;
 if (value == node.value) return node;
 else if (value < node.value)
 node = node.left;
 else
 node = node.right;
 }
}

When programming in languages like
Java that don't have TCO, you might
need to do this transformation yourself!

Tail calls

Remember that the total amount of extra
memory used by a recursive function is
O(maximum recursion depth)
If the language supports TCO, the
amount is instead O(maximum depth
of non-tail recursive calls) – better!
In languages without TCO, you can
transform tail recursion into a loop to
save stack space (memory)

A bigger example: quicksort

485 3 9 2 7 3 2 1

3 3 2 2 1 4 5 9 8 7

1 2 2 3 3 4 5 7 8 9

Quicksort Quicksort

Partition

Quicksort

We said that quicksort was in-place, but
it makes two recursive calls!
void sort(int[] a, int low, int high) {
 if (low >= high) return;
 int pivot = partition(a, low, high);
 sort(a, low, pivot-1);
 sort(a, pivot+1, high);
}

How much memory does this use in the
worst case, including the call stack?

Quicksort

We said that quicksort was in-place, but
it makes two recursive calls!
void sort(int[] a, int low, int high) {
 if (low >= high) return;
 int pivot = partition(a, low, high);
 sort(a, low, pivot-1);
 sort(a, pivot+1, high);
}

How much memory does this use in the
worst case, including the call stack?

O(n),
including the
call stack!

Quicksort

Let's make a version of quicksort that
uses O(log n) stack space.
void sort(int[] a, int low, int high) {
 if (low >= high) return;
 int pivot = partition(a, low, high);
 sort(a, low, pivot-1);
 sort(a, pivot+1, high);
}

Quicksort in O(log n) space

Idea: if we are using a language with TCO,
the second recursive call uses no stack space
(it's a tail call)!
Hence, the total memory use is O(recursion
depth of �rst recursive call)
So: sort the smaller partition with the .rst
recursive call, and the bigger one with the
second recursive call
If the array has size n, the smaller partition
has size at most n/2, so the recursion depth
is at most O(log n).

Sorting the smaller partition 1rst

In languages with TCO (i.e. not Java), this uses O(log n)
space.
void sort(int[] a, int low, int high) {
 if (low >= high) return;
 int pivot = partition(a, low, high);
 if (pivot low < high pivot) {– –
 sort(a, low, pivot-1);
 sort(a, pivot+1, high);
 } else {
 sort(a, pivot+1, high);
 sort(a, low, pivot-1);
 }
}

Sort the smaller
partition .rst

Sorting the smaller partition 1rst

In Java, we must transform the tail recursion into a while(true)-
loop.
void sort(int[] a, int low, int high) {
 while(true) {
 if (low >= high) return;
 int pivot = partition(a, low, high);
 if (pivot low < high pivot) {– –
 sort(a, low, pivot-1);
 sort(a, pivot+1, high); low = pivot+1;
 } else {
 sort(a, pivot+1, high);
 sort(a, low, pivot-1); high = pivot-1;
 }
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

