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Binary search trees

In a binary search tree (BST), every node is 
greater than all its left descendants, and 
less than all its right descendants
(recall that this
is an invariant) owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster



  

Searching in a BST

Finding an element in a BST is easy, 
because by looking at the root you can 
tell which subtree the element is in

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

lemur must be
in left subtree
of owl

lemur must be
in right subtree
of hamster



  

Searching in a binary search tree

To search for target in a BST:
● If the target matches the root node's data, we've 
found it

● If the target is less than the root node's data, 
recursively search the left subtree

● If the target is greater than the root node's data, 
recursively search the right subtree

● If the tree is empty, fail
A BST can be used to implement a set, or 
a map from keys to values



  

Inserting into a BST

To insert a value into a BST:
● Start by searching for the value
● But when you get to null (the empty tree), make a 
node for the value and place it there



  

Deleting a node with one child

Deleting “is”, which has one child, “in” – 
we connect “in” to is's parent “jack”



  

Deleting from a BST

To delete a value from a BST:
● Find the node and its parent
● If it has no children, just remove it from the tree 
(by disconnecting it from its parent)

● If it has one child, replace the node with its child 
(by making the node's parent point at the child) 

● If it has two children...?



  

Deleting a node with two children

Find the node to delete
Find the biggest value in the left subtree and 
put that value in the deleted node
●Using the biggest value preserves the 
invariant (check you understand why)

●Biggest node = rightmost node
Finally, delete the biggest value from the left 
subtree
●/is node can't have two children (no right 
child), so deleting it is much easier



  

Deleting a node with two children

Replace the deleted value with the biggest 
value from its left subtree (or the smallest 
from the right subtree) [why this one?]

Delete house
by replacing it
with horn

Remove
horn



  

A bigger example

What happens if we delete
is? cow? rat?



  

Deleting a node with two children

Deleting rat, we replace it with priest; 
now we have to delete priest which has a 
child, morn



  

Complexity of BST operations

All our operations are O(height of tree)
/is means O(log n) if the tree is 
balanced, but O(n) if it's unbalanced (like 
the tree on the right)
● how might we get
this tree?
Balanced BSTs add an
extra invariant that makes
sure the tree is balanced
● then all operations are O(log n)



  

Summary of BSTs

Binary trees with BST invariant
Can be used to implement sets and maps
● lookup: can easily 4nd a value in the tree
● insert: perform a lookup, then put the new value at the 
place where the lookup would terminate

● delete: 4nd the value, then several cases depending on how 
many children the node has
Complexity:
● all operations O(height of tree)
● that is, O(log n) if tree is balanced, O(n) if unbalanced
● inserting random data tends to give balanced trees, 
sequential data gives unbalanced ones



  

Tree traversal

Traversing a tree means visiting all its 
nodes in some order
A traversal is a particular order that we 
visit the nodes in
Four common traversals: preorder, 
inorder, postorder, level-order
For each traversal, you can de4ne an 
iterator that traverses the nodes in that 
order (see 17.4)

Alex Gerdes
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Preorder traversal

hamsterhamster
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Visit root node, then left child, then right
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Postorder traversal

hamsterhamster
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Visit left child, then right, then root node
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Inorder traversal

hamsterhamster
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Visit left child, then root node, then right
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Level-order traversal

hamsterhamster
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2
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3

6

Visit nodes left to right, top to bottom



  

In-order traversal – printing

void inorder(Node<E> node) {
  if (node == null) return;
  inorder(node.left);
  System.out.println(node.value);
  inorder(node.value);
}
But nicer to de4ne an iterator!
Iterator<Node<E>> inorder(Node<E> 
node);
Level-order traversal is slightly trickier, and 
uses a queue – see 17.4.4

Alex Gerdes




  

Sorting a binary search tree

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

5

3

2

1

4

6

7

If we do an inorder traversal of a BST, we 
get its elements in sorted order!



AVL trees
(chapter 18.4)

Alex Gerdes




  

Balanced BSTs: the problem

/e BST operations take O(height of tree), so 
for unbalanced trees can take O(n) time



  

Balanced BSTs: the solution

Take BSTs and add an extra invariant 
that makes sure that the tree is balanced
● Height of tree must be O(log n)
● /en all operations will take O(log n) time
One possible idea for an invariant:
● Height of left child = height of right child
(for all nodes in the tree)

● Tree would be sort of “perfectly balanced”
What's wrong with this idea?



  

A too restrictive invariant

Perfect balance is too restrictive!
Number of nodes can only be 1, 3, 7, 15, 
31, ... owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

hamsterhamster

pandapanda



  

AVL trees – a less restrictive invariant

/e AVL tree is the 4rst balanced BST 
discovered (from 1962) – it's named after 
Adelson-Velsky and Landis
It's a BST with the following invariant:
● /e di⇢erence in heights between the left and 
right children of any node is at most 1
/is makes the tree's height O(log n), so 
it's balanced



  

AVL trees

We call the quantity right height – left 
height of a node its balance
/us the AVL invariant is: the balance of 
every node is -1, 0, or 1
Whenever a node gets out of balance, we 
4x it with so-called tree rotations (next)
(Implementation: store the balance of 
each node as a 4eld in the node, and 
remember to update it when updating 
the tree)



  

Why are these not AVL trees?



  

Why are these not AVL trees?

Left child height -1
Right child height 7



  

Why are these not AVL trees?

Left child height 0
Right child height 2



  

Rotation

Rotation rearranges a BST by moving a 
diGerent node to the root, without 
changing the BST's contents

(pic from Wikipedia)



  

Rotation

We can use rotations to adjust the 
relative height of the left and right 
branches of a tree

Height of 4

Height of 3



  

AVL insertion

Start by doing a BST insertion
● /is might break the AVL (balance) invariant
/en go upwards from the newly-inserted 
node, looking for nodes that break the 
invariant (unbalanced nodes)
Whenever you 4nd one, rotate it
● /en continue upwards in the tree
/ere are several cases depending on how 
the node is unbalanced



  

Case 1: a left-left tree

50

c

25

ba

Each pink triangle
represents an
AVL tree
with height k

/e purple represents
an insertion that has
increased the height
of tree a to k+1



  

Case 1: a left-left tree

50

c

25

ba

Height kHeight k+2

/e tree as a whole
has a balance of -2:
invariant broken!



  

Case 1: a left-left tree

50

c

25

ba

/is is called a
left-left tree

because both the root and
the left child are deeper

on the left

To 4x it we do a
right rotation



  

Balancing a left-left tree, afterwards

50

c

25

b

a

Height k+1 Height k+1



  

Balancing a left-left tree, afterwards

50

c

25

b

a

Invariant restored!
Notice that now
the insertion didn't
change the height
of the tree



  

Case 2: a right-right tree

25

a

50

b c

Mirror image of left-left tree
Can be 4xed with
left rotation



  

Case 3: a left-right tree

50

c

25

ba

Height kHeight k+2

/e tree as a whole
has a balance of -2:
invariant broken!



  

Case 3: a left-right tree

50

c

25

ba We can't 4x this with
one rotation
Let's look at b's
subtrees b

L
 and b

R



  

Case 3: a left-right tree

50

c

25

a

Rotate 25-subtree to the left

40

bRbL



  

Case 3: a left-right tree

50

c

25

a

We now have a left-left tree!
So we can 4x it by

rotating the whole tree
to the right

40

bR

bL

Height k+2 Height kHeight k+2

Height k+1



  

Case 3: a left-right tree

50

c

25

a

40

bRbL

Balanced!
Notice it works whichever
of b

L
 and b

R
 has the

extra height



  

Case 4: a right-left tree

25

a

50

b c

Mirror image of
left-right tree



  

Four sorts of unbalanced trees

Left-left (root's balance is -2, left child's balance J 0)
● Rotate the whole tree to the right
Left-right (root's balance is -2, left child's balance > 0)
● First rotate the left child to the left
● /en rotate the whole tree to the right
Right-left (root's balance is 2, right child's balance < 0)
● First rotate the right child to the right
● /en rotate the whole tree to the left
Right-right (root's balance is 2, right child's balance M 
0)
● Rotate the whole tree to the left



  

The four cases

(picture from
Wikipedia)
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A bigger example
(slides from Peter Ljunglöf)

Let's build an AVL tree for the words in

”#e quick brown fox jumps over the lazy 
dog”
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The quick brown…

The

quick

brown

+2

-1

0

The overall tree is right-
heavy (Right-Left)

parent balance = +2
right child balance = -1
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The quick brown…

The

quick

brown

+2

-1

0

1. Rotate right around 
the child
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The quick brown…

The

brown

quick

+2

+1

0

1. Rotate right around 
the child
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The quick brown…

The

brown

quick

+2

+1

0

1. Rotate right around 
the child

2. Rotate left around the 
parent
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The quick brown…

brown

quickThe

0

00

1. Rotate right around 
the child

2. Rotate left around the 
parent
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The quick brown fox…

brown

quickThe

0

00

Insert fox
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The quick brown fox…

brown

quickThe

+1

-10

Insert fox

fox 0
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The quick brown fox jumps…

brown

quickThe

+1

-10

Insert 
jumps

fox 0
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The quick brown fox jumps…

brown

quickThe

+2

-20

Insert 
jumps

fox +1

jumps 0



53

The quick brown fox jumps…

brown

quickThe

+2

-20

fox +1

jumps 0

The tree is now left-
heavy about quick (Left-

Right case)
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The quick brown fox jumps…

brown

quickThe

+2

-20

fox +1

jumps 0

1. Rotate left around the 
child
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The quick brown fox jumps…

brown

quickThe

+2

-20

jumps -1

fox 0

1. Rotate left around the 
child
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The quick brown fox jumps…

brown

quickThe

+2

-20

jumps -1

fox 0

1. Rotate left around the 
child

2. Rotate right around 
the parent
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The quick brown fox jumps…

brown

jumpsThe

+1

00

fox 0 quick 0

1. Rotate left around the 
child

2. Rotate right around 
the parent
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The quick brown fox jumps over…

brown

jumpsThe

+1

00

fox 0 quick 0

Insert over
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The quick brown fox jumps over…

brown

jumpsThe

+2

+10

fox 0 quick -1

Insert over

over 0
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The quick brown fox jumps over…

brown

jumpsThe

+2

+10

fox 0 quick -1

over 0

We now have a Right-
Right imbalance
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The quick brown fox jumps over…

brown

jumpsThe

+2

+10

fox 0 quick -1

over 0

1. Rotate left around the 
parent
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The quick brown fox jumps over…

jumps

quickbrown

0

-10

The 0 fox 0 over 0

1. Rotate left around the 
parent
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The quick brown fox jumps over the…

jumps

quickbrown

0

-10

The 0 fox 0 over 0

Insert the
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The quick brown fox jumps over the…

jumps

quickbrown

0

00

The 0 fox 0 over 0

Insert the

the 0
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The quick brown fox jumps over the lazy…

jumps

quickbrown

0

00

The 0 fox 0 over 0

Insert lazy

the 0
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The quick brown fox jumps over the lazy…

jumps

quickbrown

+1

-10

The 0 fox 0 over -1

Insert lazy

the 0

lazy 0
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The quick brown fox jumps over the lazy dog

jumps

quickbrown

+1

-10

The 0 fox 0 over -1

Insert dog

the 0

lazy 0



68

The quick brown fox jumps over the lazy dog!

jumps

quickbrown

0

-1+1

The 0 fox -1 over -1

Insert dog

the 0

lazy 0dog 0



  

AVL deletion

AVL deletion is similar to insertion.
● First do a standard BST deletion.
● ,en look for unbalanced nodes starting from the
node that was deleted. Not that this might not be
the node where the value to delete was found.

● If a node’s height is unchanged then the traversing
can stop.

● If an unbalanced node is found then rebalance. Just
as for insertion there are the four cases left-left, left-
right, right-right, right-left.



  

AVL trees

A balanced BST that maintains balance by rotating the 
tree
● Insertion: insert as in a BST and move upwards from the 
inserted node, rotating unbalanced nodes

● Deletion (in book if you're interested): delete as in a BST and 
move upwards from the node that disappeared, rotating 
unbalanced nodes
Worst-case (it turns out) 1.44log n, typical log n 
comparisons for any operation – very balanced. /is 
means lookups are quick.
● Insertion and deletion can be slower than in a naïve BST, 
because you have to do a bit of work to repair the invariant
Look in Haskell compendium (course website) for 
implementation
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