
Binary search trees
(chapters 18.1 – 18.3)

Alex Gerdes

Binary search trees

In a binary search tree (BST), every node is
greater than all its left descendants, and
less than all its right descendants
(recall that this
is an invariant) owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

Searching in a BST

Finding an element in a BST is easy,
because by looking at the root you can
tell which subtree the element is in

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

lemur must be
in left subtree
of owl

lemur must be
in right subtree
of hamster

Searching in a binary search tree

To search for target in a BST:
● If the target matches the root node's data, we've
found it

● If the target is less than the root node's data,
recursively search the left subtree

● If the target is greater than the root node's data,
recursively search the right subtree

● If the tree is empty, fail
A BST can be used to implement a set, or
a map from keys to values

Inserting into a BST

To insert a value into a BST:
● Start by searching for the value
● But when you get to null (the empty tree), make a
node for the value and place it there

Deleting a node with one child

Deleting “is”, which has one child, “in” –
we connect “in” to is's parent “jack”

Deleting from a BST

To delete a value from a BST:
● Find the node and its parent
● If it has no children, just remove it from the tree
(by disconnecting it from its parent)

● If it has one child, replace the node with its child
(by making the node's parent point at the child)

● If it has two children...?

Deleting a node with two children

Find the node to delete
Find the biggest value in the left subtree and
put that value in the deleted node
●Using the biggest value preserves the
invariant (check you understand why)

●Biggest node = rightmost node
Finally, delete the biggest value from the left
subtree
●/is node can't have two children (no right
child), so deleting it is much easier

Deleting a node with two children

Replace the deleted value with the biggest
value from its left subtree (or the smallest
from the right subtree) [why this one?]

Delete house
by replacing it
with horn

Remove
horn

A bigger example

What happens if we delete
is? cow? rat?

Deleting a node with two children

Deleting rat, we replace it with priest;
now we have to delete priest which has a
child, morn

Complexity of BST operations

All our operations are O(height of tree)
/is means O(log n) if the tree is
balanced, but O(n) if it's unbalanced (like
the tree on the right)
● how might we get
this tree?
Balanced BSTs add an
extra invariant that makes
sure the tree is balanced
● then all operations are O(log n)

Summary of BSTs

Binary trees with BST invariant
Can be used to implement sets and maps
● lookup: can easily 4nd a value in the tree
● insert: perform a lookup, then put the new value at the
place where the lookup would terminate

● delete: 4nd the value, then several cases depending on how
many children the node has
Complexity:
● all operations O(height of tree)
● that is, O(log n) if tree is balanced, O(n) if unbalanced
● inserting random data tends to give balanced trees,
sequential data gives unbalanced ones

Tree traversal

Traversing a tree means visiting all its
nodes in some order
A traversal is a particular order that we
visit the nodes in
Four common traversals: preorder,
inorder, postorder, level-order
For each traversal, you can de4ne an
iterator that traverses the nodes in that
order (see 17.4)

Alex Gerdes

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

Preorder traversal

hamsterhamster

1

2

3

4

5

6

7

Visit root node, then left child, then right

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

Postorder traversal

hamsterhamster

7

4

2

1

3

6

5

Visit left child, then right, then root node

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

Inorder traversal

hamsterhamster

5

3

2

1

4

6

7

Visit left child, then root node, then right

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

Level-order traversal

hamsterhamster

1

2

4

7

5

3

6

Visit nodes left to right, top to bottom

In-order traversal – printing

void inorder(Node<E> node) {
 if (node == null) return;
 inorder(node.left);
 System.out.println(node.value);
 inorder(node.value);
}
But nicer to de4ne an iterator!
Iterator<Node<E>> inorder(Node<E>
node);
Level-order traversal is slightly trickier, and
uses a queue – see 17.4.4

Alex Gerdes

Sorting a binary search tree

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

5

3

2

1

4

6

7

If we do an inorder traversal of a BST, we
get its elements in sorted order!

AVL trees
(chapter 18.4)

Alex Gerdes

Balanced BSTs: the problem

/e BST operations take O(height of tree), so
for unbalanced trees can take O(n) time

Balanced BSTs: the solution

Take BSTs and add an extra invariant
that makes sure that the tree is balanced
● Height of tree must be O(log n)
● /en all operations will take O(log n) time
One possible idea for an invariant:
● Height of left child = height of right child
(for all nodes in the tree)

● Tree would be sort of “perfectly balanced”
What's wrong with this idea?

A too restrictive invariant

Perfect balance is too restrictive!
Number of nodes can only be 1, 3, 7, 15,
31, ... owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

hamsterhamster

pandapanda

AVL trees – a less restrictive invariant

/e AVL tree is the 4rst balanced BST
discovered (from 1962) – it's named after
Adelson-Velsky and Landis
It's a BST with the following invariant:
● /e di⇢erence in heights between the left and
right children of any node is at most 1
/is makes the tree's height O(log n), so
it's balanced

AVL trees

We call the quantity right height – left
height of a node its balance
/us the AVL invariant is: the balance of
every node is -1, 0, or 1
Whenever a node gets out of balance, we
4x it with so-called tree rotations (next)
(Implementation: store the balance of
each node as a 4eld in the node, and
remember to update it when updating
the tree)

Why are these not AVL trees?

Why are these not AVL trees?

Left child height -1
Right child height 7

Why are these not AVL trees?

Left child height 0
Right child height 2

Rotation

Rotation rearranges a BST by moving a
diGerent node to the root, without
changing the BST's contents

(pic from Wikipedia)

Rotation

We can use rotations to adjust the
relative height of the left and right
branches of a tree

Height of 4

Height of 3

AVL insertion

Start by doing a BST insertion
● /is might break the AVL (balance) invariant
/en go upwards from the newly-inserted
node, looking for nodes that break the
invariant (unbalanced nodes)
Whenever you 4nd one, rotate it
● /en continue upwards in the tree
/ere are several cases depending on how
the node is unbalanced

Case 1: a left-left tree

50

c

25

ba

Each pink triangle
represents an
AVL tree
with height k

/e purple represents
an insertion that has
increased the height
of tree a to k+1

Case 1: a left-left tree

50

c

25

ba

Height kHeight k+2

/e tree as a whole
has a balance of -2:
invariant broken!

Case 1: a left-left tree

50

c

25

ba

/is is called a
left-left tree

because both the root and
the left child are deeper

on the left

To 4x it we do a
right rotation

Balancing a left-left tree, afterwards

50

c

25

b

a

Height k+1 Height k+1

Balancing a left-left tree, afterwards

50

c

25

b

a

Invariant restored!
Notice that now
the insertion didn't
change the height
of the tree

Case 2: a right-right tree

25

a

50

b c

Mirror image of left-left tree
Can be 4xed with
left rotation

Case 3: a left-right tree

50

c

25

ba

Height kHeight k+2

/e tree as a whole
has a balance of -2:
invariant broken!

Case 3: a left-right tree

50

c

25

ba We can't 4x this with
one rotation
Let's look at b's
subtrees b

L
 and b

R

Case 3: a left-right tree

50

c

25

a

Rotate 25-subtree to the left

40

bRbL

Case 3: a left-right tree

50

c

25

a

We now have a left-left tree!
So we can 4x it by

rotating the whole tree
to the right

40

bR

bL

Height k+2 Height kHeight k+2

Height k+1

Case 3: a left-right tree

50

c

25

a

40

bRbL

Balanced!
Notice it works whichever
of b

L
 and b

R
 has the

extra height

Case 4: a right-left tree

25

a

50

b c

Mirror image of
left-right tree

Four sorts of unbalanced trees

Left-left (root's balance is -2, left child's balance J 0)
● Rotate the whole tree to the right
Left-right (root's balance is -2, left child's balance > 0)
● First rotate the left child to the left
● /en rotate the whole tree to the right
Right-left (root's balance is 2, right child's balance < 0)
● First rotate the right child to the right
● /en rotate the whole tree to the left
Right-right (root's balance is 2, right child's balance M
0)
● Rotate the whole tree to the left

The four cases

(picture from
Wikipedia)

5

D

3

A

4

CB

Left Right Case Right Left Case

3

A

4

5

C D

B

Right Right Case

5

D

4

3

BA

C

Left Left Case

4

5

C D

Balanced

3

A B

4

5

C D

Balanced

3

A B

3

A

5

D

4

B C

-22

1-1

2 -2

1/0 -1/0

-1/0 1/0

43

A bigger example
(slides from Peter Ljunglöf)

Let's build an AVL tree for the words in

”#e quick brown fox jumps over the lazy
dog”

44

The quick brown…

The

quick

brown

+2

-1

0

The overall tree is right-
heavy (Right-Left)

parent balance = +2
right child balance = -1

45

The quick brown…

The

quick

brown

+2

-1

0

1. Rotate right around
the child

46

The quick brown…

The

brown

quick

+2

+1

0

1. Rotate right around
the child

47

The quick brown…

The

brown

quick

+2

+1

0

1. Rotate right around
the child

2. Rotate left around the
parent

48

The quick brown…

brown

quickThe

0

00

1. Rotate right around
the child

2. Rotate left around the
parent

49

The quick brown fox…

brown

quickThe

0

00

Insert fox

50

The quick brown fox…

brown

quickThe

+1

-10

Insert fox

fox 0

51

The quick brown fox jumps…

brown

quickThe

+1

-10

Insert
jumps

fox 0

52

The quick brown fox jumps…

brown

quickThe

+2

-20

Insert
jumps

fox +1

jumps 0

53

The quick brown fox jumps…

brown

quickThe

+2

-20

fox +1

jumps 0

The tree is now left-
heavy about quick (Left-

Right case)

54

The quick brown fox jumps…

brown

quickThe

+2

-20

fox +1

jumps 0

1. Rotate left around the
child

55

The quick brown fox jumps…

brown

quickThe

+2

-20

jumps -1

fox 0

1. Rotate left around the
child

56

The quick brown fox jumps…

brown

quickThe

+2

-20

jumps -1

fox 0

1. Rotate left around the
child

2. Rotate right around
the parent

57

The quick brown fox jumps…

brown

jumpsThe

+1

00

fox 0 quick 0

1. Rotate left around the
child

2. Rotate right around
the parent

58

The quick brown fox jumps over…

brown

jumpsThe

+1

00

fox 0 quick 0

Insert over

59

The quick brown fox jumps over…

brown

jumpsThe

+2

+10

fox 0 quick -1

Insert over

over 0

60

The quick brown fox jumps over…

brown

jumpsThe

+2

+10

fox 0 quick -1

over 0

We now have a Right-
Right imbalance

61

The quick brown fox jumps over…

brown

jumpsThe

+2

+10

fox 0 quick -1

over 0

1. Rotate left around the
parent

62

The quick brown fox jumps over…

jumps

quickbrown

0

-10

The 0 fox 0 over 0

1. Rotate left around the
parent

63

The quick brown fox jumps over the…

jumps

quickbrown

0

-10

The 0 fox 0 over 0

Insert the

64

The quick brown fox jumps over the…

jumps

quickbrown

0

00

The 0 fox 0 over 0

Insert the

the 0

65

The quick brown fox jumps over the lazy…

jumps

quickbrown

0

00

The 0 fox 0 over 0

Insert lazy

the 0

66

The quick brown fox jumps over the lazy…

jumps

quickbrown

+1

-10

The 0 fox 0 over -1

Insert lazy

the 0

lazy 0

67

The quick brown fox jumps over the lazy dog

jumps

quickbrown

+1

-10

The 0 fox 0 over -1

Insert dog

the 0

lazy 0

68

The quick brown fox jumps over the lazy dog!

jumps

quickbrown

0

-1+1

The 0 fox -1 over -1

Insert dog

the 0

lazy 0dog 0

AVL deletion

AVL deletion is similar to insertion.
● First do a standard BST deletion.
● ,en look for unbalanced nodes starting from the
node that was deleted. Not that this might not be
the node where the value to delete was found.

● If a node’s height is unchanged then the traversing
can stop.

● If an unbalanced node is found then rebalance. Just
as for insertion there are the four cases left-left, left-
right, right-right, right-left.

AVL trees

A balanced BST that maintains balance by rotating the
tree
● Insertion: insert as in a BST and move upwards from the
inserted node, rotating unbalanced nodes

● Deletion (in book if you're interested): delete as in a BST and
move upwards from the node that disappeared, rotating
unbalanced nodes
Worst-case (it turns out) 1.44log n, typical log n
comparisons for any operation – very balanced. /is
means lookups are quick.
● Insertion and deletion can be slower than in a naïve BST,
because you have to do a bit of work to repair the invariant
Look in Haskell compendium (course website) for
implementation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

