
Data structures
Stacks and queues

Dr. Alex Gerdes
DIT961 - VT 2018

• A stack stores a sequence of values

• Main operations:
- push(x) – add value x to the stack
- pop() – remove the most-recently-pushed value from the

stack

• LIFO: last in first out
- Value removed by pop is always the one that was pushed

most recently

Stacks

• Analogy for LIFO: stack of plates
- Can only add or remove plates at the top!
- You always take o the most recent plate

Stacks

• More stack operations:
- empty() – is there anything on the stack?
- top() – return most-recently-pushed (“top”) value without

removing it

Stacks

• Stacks in Haskell are just lists

Stacks in Haskell

type Stack a = [a]
 
push :: a -> Stack a -> Stack a

pop :: Stack a -> Stack a

top :: Stack a -> a

empty :: Stack a -> Bool

Implementing stacks in Haskell

type Stack a = [a]
 
push :: a -> Stack a -> Stack a
push x xs = x:xs

pop :: Stack a -> Stack a
pop (x:xs) = xs

top :: Stack a -> a
top (x:xs) = x

empty :: Stack a -> Bool
empty [] = True  
empty (x:xs) = False

You don't need a
separate stack type if
you have Haskell-style

lists

• Given a string:
- “hello (hello is a greetng [sic] {“sic” is used when quoting a

text that contains a typo (or archaic [and nowadays wrong]
spelling) to show that the mistake was in the original text
(and not introduced while copying the quote)})”

• Check that all brackets match:
- Every opening bracket has a closing bracket
- Every closing bracket has an opening bracket
- Nested brackets match up: no “([)]”!

Example: balanced brackets

• Maintain a stack of opened brackets
- Initially stack is empty
- Go through string one character at a time
- If we see an opening bracket, push it
- If we see a closing bracket, pop from the stack and check

that it matches
‣ e.g., if we see a “)”, check that the popped value is a “(“

- When we get to the end of the string, check that the stack is
empty

Algorithm

• Maintain a stack of opened brackets
- Initially stack is empty
- Go through string one character at a time
- If we see an opening bracket, push it
- If we see a closing bracket, pop from the stack and check

that it matches
‣ e.g., if we see a “)”, check that the popped value is a “(“

- When we get to the end of the string, check that the stack is
empty

Algorithm

(stack can be
empty)

Check your understanding:  
What has gone wrong if each

of the steps in bold fails?

Live coding

• The call stack, which is used by the processor to handle
function calls
- When you call a function, the processor records what it was

doing by pushing a record onto the call stack
- When a function returns, the processor pops a record off

the call stack to see what it should carry on doing

• Parsing in compilers

• Lots of uses in algorithms!

More uses of stacks

• Idea: use a dynamic array!
- Push: add a new element to the end of the array
- Pop: remove element from the end of the array

• Complexity?

• All operations have amortised O(1) complexity
- Means: n operations take O(n) time
- Although a single operation may take O(n) time, an

“expensive” operation is always balanced out by a lot of
earlier “cheap” operations

Implementing stacks in Java

• You should distinguish between:
- the abstract data type (ADT) (a stack) and
- its implementation (e.g. a dynamic array)

• Why?
- When you use a data structure you don't care how it's

implemented
- Most ADTs have many possible implementations

Abstract data types

Queues

• A queue also stores a sequence of values

• Main operations:
- enqueue(x) – add value x to the queue
- dequeue() – remove earliest-added value

• FIFO: first in first out
- Value dequeued is always the oldest one that's still in the

queue

• Much like a stack – but FIFO, not LIFO

Queues

• Like a queue in real life!
- The first to enter the queue is the first to leave

Queues

• Controlling access to shared resources in an operating
system, e.g. a printer queue

• A queue of requests in a web server

• Also appears in lots of algorithms
- (Stacks and queues both appear when an algorithm has to

remember a list of things to do)

Uses of queues

• What's wrong with this idea?
- Implement the queue as a dynamic array
- enqueue(x): add x to the end of the dynamic array
- dequeue(): remove and return first element of array

Implementing queues in Java

To dequeue, we'd have to
copy the entire rest of the

array down one place...
takes O(n) time

• A queue containing A, B, C:

• Dequeue removes A:

• Moving the rest of the queue
into place takes O(n) time!

Dynamic arrays are no good

A B C

B C

• Let's solve a simpler problem first: bounded queues

• A bounded queue is a queue with a fixed capacity, e.g. 5
- The queue can't contain more than 5 elements at a time
- You typically choose the capacity when you create the

queue

Bounded queues

• An array, plus two indices back and front

• back: where we enqueue the next element

• front: where we dequeue the next element

Bounded queues

A B C

front back

Queue contains:
A, B, C

• After enqueueing D

• array[back] = D; back = back + 1;

Bounded queues

A B C D

front back

Queue contains:
A, B, C, D

• After dequeueing (to get A)

• result = array[front]; front = front + 1;

Bounded queues

B C D

front back

Queue contains:
B, C, D

What is the contents of one of our array-queues?

• Everything from index front to index back-1

If we specify the meaning of the array like this, there is only
one sensible way to implement enqueue and dequeue!

• Before dequeue, contents is: 
array[front], array[front+1], ..., array[back-1]

• After dequeue: array[front] should be gone, contents is
array[front+1], ..., array[back-1]

• Only good way to do this is front = front + 1!

Thinking formally about queues

What is the contents of one of our array-queues?

• Everything from index front to index back-1

If we specify the meaning of the array like this, there is only
one sensible way to implement enqueue and dequeue!

• Before dequeue, contents is: 
array[front], array[front+1], ..., array[back-1]

• After dequeue: array[front] should be gone, contents is
array[front+1], ..., array[back-1]

• Only good way to do this is front = front + 1!

Thinking formally about queues

Data structure design hint:  
don't just think what everything

should do! Work out the meaning of
the data structure too.

• After enqueueing E and dequeueing

• What is the problem here?

Bounded queues

C D E

front back

• Problem: when back reaches the end of the array, we
can't enqueue anything else

• Idea: circular buffer
- When back reaches the end of the array, put the next

element at index 0 – and set back to 0
- Next after that goes at index 1
- front wraps around in the same way

• Use all the freed space that's left in the beginning of
the array after we dequeue!

Queues as circular buffers

• Try again – after enqueueing E

• back wraps around to index 0

Bounded queues

C D E

frontback

• Now after enqueueing F

• Meaning: queue contains everything from front to back-1 still.

• But wrapping around if back < front!

• Exercise: phrase this precisely

Bounded queues

F C D E

frontback

Queue contains:
C, D, E, F

• After dequeueing twice

•

Bounded queues

F E

frontback

Queue contains:
E, F

• After dequeueing again

• front wraps too!

Bounded queues

F

frontback

Queue contains:
F

• Basic idea: an array, plus two indices for the front and
back of the queue
- These indices wrap around when reaching the end of the

array, which is what makes it work

• The best bounded queue implementation!

Circular buffers

• Circular buffers make a fine bounded queue

• To make an unbounded queue, let's be inspired by
dynamic arrays
- Dynamic arrays: fixed-size array, double the size when it

gets full
- Unbounded queues: bounded queue, double the capacity

when it gets full

• Whenever the queue gets full, allocate a new queue of
double the capacity, and copy the old queue to the new
queue

Bounded queues

• What is wrong with resizing like this?

Reallocation, how not to do it

F G C D E

frontback

F G C D E

frontback

Queue contains:
C, D, E,

five mystery elements,
F, G

• Instead, repeatedly dequeue from the old queue and
enqueue into the new queue:

Reallocation

F G C D E

frontback

C D E F G

front back

• Maintain front and back indexes
- Enqueue elements at back, remove from front

• Circular array
- front and back wrap around when they reach the end

• Idea from dynamic arrays
- When the queue gets full, allocate a new one of twice the size
- Don't just resize the array – safer to use the queue operations to

copy from the old queue to the new queue

• Important implementation note!
- To tell when array is full, need an extra variable to hold the

current size of the queue (exercise: why?)

Summary: queues as arrays

better API: dequeue :: Queue a -> Maybe (a, Queue a)

Queues in Haskell

type Queue a = ???
 
enqueue :: a -> Queue a -> Queue a
dequeue :: Queue a -> (a, Queue a)
empty :: Queue a -> Bool

One possibility: using a list

type Queue a = [a]
 
enqueue :: a -> Queue a -> Queue a
enqueue x xs = xs ++ [x]

dequeue :: Queue a -> (a, Queue a)
dequeue (x:xs) = (x, xs)

empty :: Queue a -> Bool
empty [] = True
empty _ = False

But enqueue takes O(n)
time!

• Back to the “stack of plates” analogy!

• I am washing plates, you are putting them away
- You want to put the dishes away in the same order I wash

them – FIFO, a queue of plates

• Idea: we both have a stack of plates
- Me: plates I've washed
- You: plates you're going to put away

• If you run out of plates, you take my stack of washed
plates. But – the oldest plates are at the bottom! So
first turn the stack upside down!

An analogy

• Implement a queue using two lists, the “front part” and
the “back part” 

• Enqueue into the back part, dequeue from the front
part – and move items from the back to the front when
needed

A cunning plan

A B C

Queue contains:
A, B, C, D, E

E D

front

back

• Enqueuing F: 

• Only need to use ’cons’ (:) — constant time

A cunning plan

A B C

Queue contains:
A, B, C, D, E, F

front

back F E D

• Dequeuing A, B: 

• Only need to look at front list — constant time

A cunning plan

C

Queue contains:
C, D, E, F

front

back F E D

• Dequeuing C: 

• What if we want to dequeue again?

A cunning plan

Queue contains:
D, E, F

front

back F E D

• When the front part is empty, reverse the back part and
move it there! 

• Now we can dequeue again!

A cunning plan

Queue contains:
D, E, F

front

back

D E F

• A queue is a pair of lists
- data Queue a = Queue {front :: [a], back ::
[a]}

- To enqueue an element, add it to back
- To dequeue, remove an element from front
- If front is empty, replace it with reverse back

• The queue Queue front back represents the
sequence front ++ reverse back
- For example, Queue [1,2,3] [6,5,4] represents the

queue 1 2 3 4 5 6
- By writing this down, we see why we need to reverse when

moving back to front!

Queues in Haskell

Live coding

• Isn't this slow? reverse takes O(n) time

• No: we get amortised O(1) complexity

• If we enqueue and dequeue n items...
- We spend some time reversing stuff
- But only the stuff we enqueue gets reversed, and each item

is only added to back once, so the lists we reverse contains
n items in total

- So the reversing takes O(n) time for n items
- so O(1) time average per item enqueued

Is this efficient?

• So far we have seen:
- Queues – add elements to one end and remove them from

the other end
- Stacks – add and remove elements from the same end

• In a deque, you can add and remove elements from
both ends
- add to front, add to rear
- remove from front, remove from rear

• Good news – circular arrays support this easily
- For the functional version, have to be a bit careful to get the

right complexity – see exercise

Double-ended queues

• Your favourite programming language should have a
library module for stacks, queues and deques
- Java: use java.util.Deque<E> – provides addFirst/
Last, removeFirst/Last methods

- The Deque<E> interface is implemented by ArrayDeque
(circular, dynamic array) and LinkedList, among others

- Note: Java also provides a Stack class, but this is
deprecated – don't use it

- Haskell: instead of a stack, just use a list
- For queues and deques, use Data.Sequence – a general-

purpose sequence data type

In practice

• All three extremely common
- Stacks: LIFO, queues: FIFO, deques: generalise both
- Often used to maintain a set of tasks to do later
- Imperative language: stacks are dynamic array, queues are circular buffers,

O(1) amortised complexity
- Functional language: stacks are lists, deques can be implemented as a pair

of lists with O(1) amortised complexity

• Data structure design hint: always think about what the
representation of a data structure means!
- e.g. “what queue does this circular buffer represent?”
- This is the main design decision you have to make – it drives everything

else
- This lets you design new data structures systematically
- And also understand existing ones

Stacks, queues, deques – summary

