
Models of Computation

Bengt Nordström, January 17, 2014

Department of Computing Science,

Chalmers and University of Göteborg,

Göteborg, Sweden

Contents

1 The primitive recursive functions
1.1 Intuitive syntax and semantics

1.2 Some programming examples

1.2.1 The predecessor function in PRF

1.2.2 The factorial function.

1.3 A more precise syntax .

1.4 Operational semantics .

1.5 Denotational semantics .

1.6 Termination of primitive recursive functions

2 Fast growing functions and big numbers

3 The set RF of all partial recursive functions

4 Historical remarks

1 The primitive recursive functions

1.1 Intuitive syntax and semantics

In informal mathematical notation we often define the addition function in the

following way:

0+ n = n

m ′ + n = (m+ n) ′

Models of Computation

We have used the notation m ′ for the successor of the number m. In a functional

language we can use a similar definition:

add 0 n = n

add (s m) n = s (add m n)

We know that this is a meaningful definition since the addition function for the

argument s n is defined using the value of the function for the argument n. This

kind of recursion is well defined since n is smaller than s n. The recursion scheme

is called primitive recursion.

In the simple case that the function being defined has only one argument the

scheme looks like:
f(0) = g

f(y+ 1) = h(y, f(y))

where g is a natural number and h is a given primitive recursive function of two

arguments. We notice that in order to define what a primitive recursive function

of one argument is, we have to know what a primitive recursive function of two

arguments is. We therefore have to generalize and define what a primitive function

of n+ 1 arguments (for all n) is:

f(x1, . . . , xn, 0) = g(x1, . . . , xn)

f(x1, . . . , xn, y+ 1) = h(x1, . . . , xn, y, f(y, x1, . . . , xn))

where the functions g and h are given primitive recursive functions (of n and n+2

arguments, respectively.

This class of functions is an early example of a computation model, a math-

ematical model of a computing device (a programming language or a computer).

We will give the model by giving a precise description of the syntax and semantics

of the primitive recursive functions.

Let PRFn express the set of all primitive recursive functions of arity n (i.e.

with n arguments). We assume that n ∈ N, i.e. we allow the number of arguments

to be 0. The intutition is that each program p ∈ PRFn denotes a primitive recursive

function f in the set Nn → N. We will construct the class by using the five

simple program forming operations showed in figure 1. The simple programs

Models of Computation

z ∈ PRF0

s ∈ PRF1

pn
i ∈ PRFn+1 if i ≤ n

g{f1, . . . , fm} ∈ PRFn if g ∈ PRFm, fi ∈ PRFn, 1 ≤ i ≤ m

rec(g, h) ∈ PRFn+1 if g ∈ PRFn, h ∈ PRFn+2

Figure 1: Informal syntax

are z, s och pn
i and the composite programs are f{g1, . . . gn} and rec(f, g), where

f, g, g1, . . . gn are programs.

• The program z (which takes no argument) computes always to 0.

• The program s stands for the successor function, it is computed by adding 1

to its only argument.

• The program pn
i takes n arguments and computes to its i-th argument.

• The program g{f1, . . . , fn} is a generalization of the usual functional com-

position g ◦ f.

• Finally, the program rec(g, h) expresses the scheme for primitive recursion.

The intuitive semantics is shown in figure 7. We are using the notation x̄ for

the n arguments x1, . . . , xn. We notice that the semantics is given by telling what

value the programs will output when we apply them to their arguments (which in

this case always is a list of natural numbers).

Notice that there are no variables and no function application in this model.

Instead, projections and compositions are used. It takes some time to get used to

write programs without variables, we will show some examples in the following

section. It can be skipped in the first reading of this chapter.

Models of Computation

z[] = 0

s[x] = x+ 1

pn
i [x1, . . . , xn] = xi

g{f1, . . . , fm}[x̄] = g[f1[x̄], . . . , fm[x̄]]

rec(g, h)[x̄, 0] = g[x̄]

rec(g, h)[x̄, y+ 1] = h[x̄, y, rec(g, h)[y, x̄]]

Figure 2: Informal semantics

1.2 Some programming examples

1.2.1 The predecessor function in PRF

The predecessor function pred is defined by the following equations:

pred[0] = 0

pred[n+ 1] = n

How can we express this in PRF? It seems natural to guess that the general shape

of pred is

pred =def rec(g, h)

where g and h are placeholders for unknown programs. We know that the arity of

pred is 1, this means that g must have arity 0 and h arity 2. From the first equation

for pred it follows that we can define

g =def z

From the second clause it follows that pred[n + 1] = h[n, p(n)], which is

equal to n if use a projection function to pick the first argument:

h =def p2
1

Hence we can define

pred =def rec(z, p2
1)

Models of Computation

1.2.2 The factorial function.

The factorial function is the function fac[n] = 1 ∗ 2 ∗ · · ·n, or if we put it on

primitive recursive form:

fac[0] = 1

fac[n+ 1] = (n+ 1) ∗ fac[n]

This uses the primitive recursion scheme, so we can try with

fac =def rec(g, h)

where g ∈ PRF0 and h ∈ PRF2. We must have that g[] = 1, which is satisfied if

g =def s{z}.

We know that the following holds for the program h:

fac[n+ 1] = rec(g, h)[n+ 1]

= h[n, fac[n]]

= (n+ 1) ∗ fac[n]

Hence, we want to construct a program h in PRF2 such that

h[n, fac[n]] = (n+ 1) ∗ fac[n]

This is fulfilled if h satisfies h[n,m] = mul[n + 1,m], where mul is a program

for multiplication (this can also be expressed in PRF).

Let us try to define h as a composition

h = mul{e1, e2}

for some (yet unknown) programs e1 and e2. We know that the following must

hold:
mul{e1, e2}[n,m] = mul[e1[n,m], e2[n,m]]

= mul[n+ 1,m].

Models of Computation

This holds if
e1[n,m] = n+ 1

e2[n,m] = m.

which is satisfied if e2 is a projection

e2 =def p2
2

and e1 is a composition:

e1 =def s{p2
1}

since s{p2
1}[n,m] = s[p2

1[n,m]] = n+ 1

To conclude, we can define the factorial function by

fac =def rec(s{z},

mul{s{p2
1}, p2

2})

A more experienced person can write this immediately from the defining equa-

tions for the function. It is even possible to write a compiler which translates the

defining equations to a program in PRF.

1.3 A more precise syntax

The syntax and semantics which was given before were not very precise. We

have to remove the three dots which we have in the description of the syntax and

semantics. It is always a sign of imprecision to have the dots, different people

interpret them in different ways.

Let us first define the set Am of vectors of length m by the following inductive

definition:
nil ∈ A0

as.a ∈ An+1 if a ∈ A and as ∈ An

Notice that we are using so called snoc-lists, the list a1, a2, . . . , an is analyzed as

(a1, a2, . . .), an.

Now, we can give a more precise definition (in figure 3) of the abstract syntax

of PRFn.

Models of Computation

z ∈ PRF0

s ∈ PRF1

proj(n, i) ∈ PRFn if 1 ≤ i ≤ n

comp(g, f̄) ∈ PRFn if g ∈ PRFm, f̄ ∈ (PRFn)
m

rec(g, h) ∈ PRFn+1 if g ∈ PRFn, h ∈ PRFn+2

Figure 3: Abstract syntax of PRF

1.4 Operational semantics

We will give an inductive definition of the computation relation p −→ q, the

program p computes to the value q. We have to decide what kind of things are

computed and what a value is. When we gave the intuitive semantics of what

a program is we expressed this by saying what it means to apply a program to

its input. So, the thing which is computed is an object in PRFn together with

its input. What is then a value? An obvious choice is that we let the values be

a natural number. Hence, in the computation relation p −→ q, p is always a

program together with its input and q is always a natural number.

Let us define the set PRFI, of programs together with its input, by the follow-

ing inductive definition (with only one clause):

p[ȳ] ∈ PRFI if p ∈ PRFn and ȳ ∈ Nn

We can also express it in the following way:

p ∈ PRFn ȳ ∈ Nn

p[ȳ] ∈ PRFI

We will interpret the definition as that the set PRF has one binary constructor �[�]

whose arguments are a primitive recursive program and a list of numbers.

Now, we can give the operational semantics. We will define the computation

relation p −→ q over the sets PRF and N as an inductive definition in figure 8. In

Models of Computation

order to explain the semantics, it is necessary to define another computation rela-

tion ps =⇒ ns, which expresses that a vector ps of primitive recursive functions

applied to a common input-vector is computed to a vector of natural numbers.

This is done in the obvious way, each primitive recursive function in the list is

applied to the same input list. The function th(n, i, ȳ) is equal to the i:th element

z[] −→ 0 s[nil.n] −→ n+ 1

th(n, i, ȳ) = v

proj(n, i)[ȳ] −→ v

f̄[ȳ] =⇒ n̄ g[n̄] −→ v

comp(g, f̄)[ȳ] −→ v

g[ȳ] −→ v

rec(g, h)[ȳ.0] −→ v

rec(g, h)[ȳ.n] −→ i h[ȳ.i.n] −→ v

rec(g, h)[ȳ.(n+ 1)] −→ v

where the relation =⇒ is defined by

nil[ȳ] =⇒ nil

f[ȳ] −→ k f̄[ȳ] =⇒ ks

(f̄.f)[ȳ] =⇒ ks.k

Figure 4: Operational semantics

of ȳ, if ȳ ∈ An and is defined for 1 ≤ i ≤ n.

1.5 Denotational semantics

As an alternative way of defining the semantics for a computation model, we can

give the denotational semantics of the programs in it. This is a function which

maps an arbitrary program to its “meaning”, a mathematical object. The idea is

that you understand a program when you understand what mathematical object it

denotes.

Models of Computation

In this case, we will give a function

[[p]] ∈ Nn → N if p ∈ PRFn

by structural recursion over the abstract syntax of p. This is done in figure 5.

[[z]](nil) = 0

[[s]](nil.j) = j+ 1

[[pn
i]](ȳ) = th(n, i, ȳ)

[[g{f̄}]](ȳ) = [[g]]([[f̄]]∗(ȳ))

[[rec(g, h)]](ȳ.0) = [[g]](ȳ)

[[rec(g, h)]](ȳ.(y+ 1)) = [[h]](ȳ.y.([[rec(g, h)]](y.ȳ)))

where the semantical function [[f̄]]∗ ∈ (PRFn)
m → Nm is defined by

[[nil]]∗(t) = nil

[[f̄.f]]∗(t) = ([[f̄]]∗(t)).([[f]](t))

Figure 5: Denotational semantics

1.6 Termination of primitive recursive functions

Now, when we have a precise descripton of the set PRF we can formulate and

prove that all programs in PRF terminate.

We want to show that all programs terminate for all their inputs:

∀i ∈ N.∀p ∈ PRFi.Term(p)

where the predicate Term is defined by

Term(p) ≡ ∀ȳ ∈ Ni.∃m ∈ N.p[ȳ] −→ m

The proof is by induction over the abstract syntax, we get one case for each clause

in the inductive defintion of the set PRFi:

Models of Computation

• We want to prove that Term(z). But the program z[] always terminates

according to the first clause in the operational semantics.

• We want to prove that Term(s). This is true according to the second clause

in the operational semantics.

• We want to prove Term(proj(n, i)), for n ∈ N, i ≤ n. This follows from

the third clause.

• We want to prove Term(comp(g, f̄)), if g terminates and all programs in f̄

terminates. We compute the program comp(g, f̄)[ȳ] by first computing the

program f̄[ȳ]. According to the induction hypothesis this terminates with

a value n̄, n̄ ∈ Nm. Finally, we compute the program g[n̄], which also

terminates (according to the induction assumption).

• We want to prove Term(rec(g, h)) if g terminates and h terminates. We

know that rec(g, h) ∈ PRFn+1, g ∈ PRFn and h ∈ PRFn+2. We want to

show that rec(g, h)[ȳ.m] always terminates (we can ignore the case when

the input list is empty since rec(g, h) ∈ PRFn+1.) We will show this by

induction over the natural number m.

We have two cases:

– The base case, when m = 0. The program rec(g, h)[ȳ.0] terminates

with the value of g[ȳ], according to one of the clauses in the opera-

tional semantics.

– The induction step. Suppose that rec(g, h)[ȳ.m] terminates with the

value i. The program rec(g, h)[ȳ.(m + 1)] then terminates with the

value of the program h(ȳ.m.i). This value always exists, since h is a

program which always terminates (according to the induction assump-

tion).

Models of Computation

2 Fast growing functions and big numbers

Since all primitive recursive functions terminate we can use a diagonalization ar-

gument to show that there exists a computable total function which is not primitive

recursive1. There is, however, a more concrete example.

We get multiplication by iterating the addition function:

m ∗ n = m+ · · ·+m︸ ︷︷ ︸
n terms

We use the following primitive recursive definition of multiplication:

mul(m, 0) = 0

mul(m, s(n)) = add(m,mul(m,n))

Similarly, we get exponentiation by iterating multiplication:

m ↑ n = m ∗ · · · ∗m︸ ︷︷ ︸
n terms

which corresponds to the following primitive recursive definition:

↑(m, 0) = 1↑(m, s(n)) = mul(m, ↑(m,n))

We can continue this process, we get the tower-operation by iterating exponentia-

tion:

m ↑↑ n = m ↑ · · · ↑ m︸ ︷︷ ︸
n terms

which corresponds to the following primitive recursive definition:

↑↑(m, 0) = 1↑↑(m, s(n)) =↑(m, ↑↑(m,n))

We continue to define the ↑↑↑-operation by iterating the ↑↑ operation.

1Exercise: Explain this in detail!

Models of Computation

Notice that these operations are increasing very fast, for instance already the

number 3 ↑↑ 3 is around one million times the number of Swedish inhabitants:

3 ↑↑ 3 = 3 ↑ 3 ↑ 3

= 3 ↑ 27

= 7 625 597 484 987

The number denoted by 3 ↑↑↑ 3 becomes difficult to grasp:

3 ↑↑↑ 3 = 3 ↑↑ 3 ↑↑ 3

= 3 ↑↑ 7625597484987

= 3 ↑ 3 · · · 3 ↑ 3 (with 7 625 597 484 987 terms)

= 33
33

33
···

(with 7 625 597 484 987 exponentiations)

Notice that already 33
33 is much bigger than the number of atoms in the universe

(since 33
33

= 37 625 597 484 987 > 1010
12
= 101 000 000 000 000≫ 1070).

Now, if 3 ↑↑↑ 3 is difficult to grasp, what about 3 ↑↑↑↑ 3?

3 ↑↑↑↑ 3 = 3 ↑↑↑ (3 ↑↑↑ 3)

= 3 ↑↑ · · · ↑↑ 3 with 33
33

33
···

terms

where we have 7 625 597 484 987 exponentiations in the number of terms.

So if we had 4 (instead of 7 625 597 484 987) number of exponentiations in

the number of terms we could not even write down the expression in the form

3 ↑↑ · · · ↑↑ 3 if we used one term for each atom in the universe. And we know

that already 3 ↑↑ 3 ↑↑ 3 (which is 3 ↑↑↑ 3) was enormous! But – as we all know–

most numbers are much bigger than 3 ↑↑↑↑ 3.

We can continue this process and define a whole series of operations ↑, ↑↑, ↑↑↑
, ↑↑↑↑, We can now introduce an arbitrary number of operations, one for each

natural number n. We let for instance ↑5 stand for ↑↑↑↑↑, so for each k we use

the notation ↑k for the operation with k arrows. Notice that ↑k is not a function

applied to the argument k ! It is only a schematic notation for k repetitions of the

symbol ↑.

Models of Computation

We have that

m ↑k+1 n = m ↑k · · · ↑k m︸ ︷︷ ︸
n terms

It is clear that all these operations are primitive recursive functions. If we have a

definition of the ↑k-operation then we can express the ↑k+1-operation by primitive

recursion:

↑k+1(m, 0) = 1↑k+1(m, s(n)) =↑k(m, ↑k+1(m,n))

Notice here that we have a number of operations ↑1, ↑2, ↑3, ↑4, ↑5, ↑6, . . . which all

have a uniform definition. One operation is defined from the previous operation

by using primitive recursion. What happens if we try to look at k as an argument

to the k-th operation? So we will try to look at ↑k as a function ↑ applied to the

number k yielding the k-th operation. Let us consider the ternary function ↑ which

is defined such that ↑(k,m,n) is equal to the value of ↑k(m,n), for each k, m

and n:

↑(0,m,n) = mul(m,n)↑(k+ 1,m, 0) = 1↑(k+ 1,m, s(n)) =↑(k,m, ↑(k+ 1,m,n))

Now something happens. This function is not primitive recursive! A version of

this function is called Ackermann’s function after the person who defined it around

70 years ago. It is possible to show that the ternary ↑-function grows faster than

any primitive recursive function. On the other hand it is clear that the function

is computable: If we want to compute ↑(k,m,n) we first compute the value of

the argument k and then construct the operation ↑k. This construction process

is computable, we can use the method above. Then we just compute ↑k(m,n),

which is primitive recursive and hence computable.

Models of Computation

3 The set RF of all partial recursive functions

If we want to extend PRF to the class of all recursive functions we extend it with

an operator min which expresses linear search. We define a new class of func-

tions RFn, the set of all recursive functions of arity n by extending the inductive

definition of the abstract syntax of PRF with one clause:

z ∈ RF0

s ∈ RF1

proj(n, i) ∈ RFn if 1 ≤ i ≤ n

comp(g, f̄) ∈ RFn if g ∈ RFm, f̄ ∈ (RFn)
m

rec(g, h) ∈ RFn+1 if g ∈ RFn, h ∈ RFn+2

min(f) ∈ RFn if f ∈ RFn+1

Figure 6: Abstract syntax of RF

The informal semantics of the min-function is that min(f) computes the mini-

mal number k for which f[x̄.k] = 0.

min(f)[x̄] = min{k ∈ N | f[x̄.k] = 0}

Figure 7: Informal semantics

Intuitively, the function application min(f)[x̄] is computed by linear search.

We first compute f[x̄.0]. If the result is 0, the value of the function application is

0. Otherwise, we continue to compute f[x̄.1]. If this result is 0 we return 1. If

it is nonzero, we continue to increase the last argument until we reach a function

value which is 0. This computation does not have to terminate, since there is not

necessarily a value of the last argument for which the function is 0. Another cause

for nontermination is that the computation of f applied to some value does not

terminate. So, the informal definition is not completely correct. We can be sure

Models of Computation

that min(f)[x̄ computes the least k for which f[x̄.k] = 0 only in the case there is

such a k and that f terminates for all arguments less than k. This can be achieved

if we for instance require that f is primitive recursive. But this is not the approach

we take here. Instead, we will define the computation using a linear search, or

more precisely by adding two clauses to the operational semantics of PRF:

f[ȳ.0] −→ 0

min(f)[ȳ] −→ 0

min(shiftf)[ȳ] −→ i

min(f)[ȳ] −→ i+ 1

Figure 8: Additional rules for the operational semantics of RF

In the rules above, the function shift(f) is defined by

(shift f)[ȳ.a] = f[ȳ.(a+ 1)]

It is clear that min is computable:

In a functional language, we could define the min-function by:

min f ys = g f 0

where g f i = if (f ys.i) = 0 then i else g f (i+1)

and in an imperative language:

min f ys =

i = -1;

repeat i = i+1 until f ys.i = 0

return i

4 Historical remarks

The first to write the ordinary primitive recursive definitions of addition and mul-

tiplication was probably Hermann Grassmann [3] . It was later rediscovered by

Dedekind [2]. The class of primitive recursive functions were known by Hilbert

[4] in 1926. At that time his student Wilhelm Ackermann had defined the ternary

Models of Computation

↑-function and showed that it is not primitive recursive. This result was not pub-

lished until 1928 [1].

The founder of the theory of primitive recursive functions was Rózsa Péter

[6], who also coined the term “primitive recursive”. She simplified Ackermann’s

formulation (together with Raphael Robinson) to a function of two arguments:

A(0, y) = y+ 1

A(x+ 1, 0) = A(x, 1)

A(x+ 1, y+ 1) = A(x,A(x+ 1, y))

which is now the traditional formulation in modern textbooks. This is formally

simpler than the original, but the connection with the arithmetical operations is

lost.

The notation ↑ originates from Knuth in 1976 [5].

References

[1] W. Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Mathematical

Annals, 99:118–133, 1928.

[2] Richard Dedekind. Was sind und was sollen die Zahlen? F. Vieweg, Braun-

schweig, 1888. Translated by W.W. Beman and W. Ewald in Ewald (1996):

787–832.

[3] Hermann Grassmann. Lehrbuch der Mathematik für höhere Lehranstalten.

Enslin, 1861.

[4] David Hilbert. ‘Über das unendliche’. Mathematische Annalen, 95:161–90,

1926. Translated by Stefan Bauer-Mengelberg and Dagfinn Føllesdal in van

Heijenoort (1967): 367–92.

[5] D.E. Knuth. Selected Papers in Computer Science, chapter Mathematics and

computer science: coping with finiteness. Cambridge University Press, 1996.

also published in Science 194, 1235–1242.

Models of Computation

[6] Rozsa Peter. Recursive Functions. Academic Press, 1967.

[7] Jean van Heijenoort. From Frege to Gödel: A source book in mathematical

logic 1879–1931. Harvard University Press, Cambridge MA, 1967.

