Examination, Models of Computation
(DIT310/DIT311/TDA184)

Date and time: 2019-01-16, 8:30-12:30.

Author/examiner: Nils Anders Danielsson. Telephone number: 1680. Vis-
its to the examination rooms: ~9:30 and ~11:30.

Authorised aids (except for aids that are always permitted): None.

The GU grades Pass (G) and Pass with Distinction (VG) correspond to
the Chalmers grades 3 and 5, respectively.

To get grade n on the exam you have to be awarded grade n or higher on
at least n exercises.

A completely correct solution of one exercise is awarded the grade 5. Solu-
tions with minor mistakes might get the grade 5, and solutions with larger
mistakes might get lower grades.

Exercises can contain parts and/or requirements that are only required
for a certain grade. To get grade n on such an exercise you have to get
grade n or higher on every part marked with grade n or lower (and every
unmarked part), and you have to fulfil every requirement marked with
grade n or lower (as well as every unmarked requirement).

Do not hand in solutions for several exercises on the same sheet.
Write your examination code on each sheet.

Solutions can be rejected if they are hard to read, unstructured, or poorly
motivated.

After correction the graded exams are available in the student office in
room 4482 of the EDIT building. If you want to discuss the grading you
can, within three weeks after the result has been reported, contact the
examiner and set up a time for a meeting (in which case you should not
remove the exam from the student office).



1. (a) For grade 3: Give an example of a set A for which (N— A4) — A is
countable, and give an example of a set B for which (N — B) — Bis
not countable. You do not need to provide proofs.

(b) For grade 4: Either prove that the set
{0}=>N)=({0}—=N)
is countable, or that it is not countable. You can use theorems from

the lecture slides without providing proofs for them.

2. Give concrete syntax for the x expression e for which the standard x
encoding (as presented in the lectures), given using concrete syntax, is

" e = Case(Var(Zero()),
Cons(Branch(Suc(Zero()),
Cons(Zero(), Nil()),
Var(Zero())),

Nil())).

Assume that the number 0 corresponds to the variable z, and that the
number 1 corresponds to the constructor True.

3. Is the following function y-decidable?

is-totaly € CExp — Bool
is-totaly e =
if V b, € Bool. 3by € Bool.[e" by '] =" b, " then true else false
Here CEzxp is a set containing the abstract syntax of every closed x ex-
pression, and " b is the standard encoding of the boolean b.
For grade 3: Motivate your answer.

For grade 4: Provide a proof. You are allowed to make use of Rice’s
theorem, the fact that the halting problem is undecidable, and the fact
that the terminates-in function from the lectures (which decides whether
an expression terminates in at most a certain number of steps) is decidable,
but not other results stating that some function is or is not computable
(unless you provide proofs).

For grade 5: You may not use Rice’s theorem (unless you provide a proof).
4. Is the following function x-decidable?

is-total, € F'un— Bool
is-totaly e =
if Vb, € Bool. 3by, € Bool.[e" b, '] =" b, " then true else false

Here Fun is the following set:

{e € CExp | 3 f € Bool— Bool.
e witnesses the x-computability of f}

The encoding function for CFExp is used also for Fun.

The grade criteria of the previous exercise apply to this one as well.



5. (a) For grade 3: What is the value of [p] (nil,2), where p is an element
of PRF that is defined by

p = rec (comp suc (nil, zero)) (comp suc (nil, proj 1))?

(b) For grade 4: Give a simple description of the function f € N — N
defined by fn = [p] (nil,n). The description should not involve any
reference to the language PRF or the program p.

(c) For grade 5: Prove that your description is correct.

For reference, here is the abstract syntax of PRF:

,meN 0<i<n

zero € PRF) suc € PRF, proj ¢ € PRF,
f € PRF,, gs € (PRF,)™ f € PRF, g € PRF,
comp fgs € PRF, rec fg€ PRF,,

The denotational semantics is defined in the following way (for any m,n €
N):

[-] € PRF, — (N*—=N)

[zero] nil =0
[suc] (nil, n) =14+n
[proj i] p = indezxp i

[comp fgs] p = [f] (Lgsl* p)

[rec fg] (p,zero) =[f] p

[rec f g] (p,suc n) = [g] (p, [rec f g] (p,n),n)
[_]* € (PRF,)™ — (N™ — N™)

[nil]lx p = nil

[[fsaf]]* p= [[fs]]* Ps [[f]] p

The indez function is defined as follows (for any set A and n € N):

inder € A" - {ieN|0<i<n}— A
index (xs, 1) zero =z
index (xs, ) (suc i) = index xs i



6. Consider the variant of Turing machines that we get if the semantics of
the “move left” and “move right” instructions are changed so that they
move two steps at a time. The move function from the lectures is replaced
by the following one (where move is the original function):

move’ € {L,R} — Tape — Tape
move’ L t = move L (move L t)
move’ R t = move R (move R t)

Let us leave all other definitions, including the rest of the semantics, the
definition of computability, and the encoding function for natural numbers,
unchanged.

Is every Turing-computable partial function f € N — N computable using
this kind of machine?

For grade 3: Motivate your answer.

For grade j: Provide a proof.



