Examination, Models of Computation (DIT310/TDA183/TDA184)

- Date and time: 2018-04-05, 14:00-18:00.
- Author/examiner: Nils Anders Danielsson.
- Responsible during the examination: Fredrik Lindblad. Telephone number: 2038. Visits to the examination rooms: $\sim 15: 15$ and $\sim 16: 45$.
- Authorised aids (except for aids that are always permitted): None.
- The GU grades Pass (G) and Pass with Distinction (VG) correspond to the Chalmers grades 3 and 5 , respectively.
- To get grade n on the exam you have to be awarded grade n or higher on at least n exercises.
- A completely correct solution of one exercise is awarded the grade 5. Solutions with minor mistakes might get the grade 5, and solutions with larger mistakes might get lower grades.
- Exercises can contain parts and/or requirements that are only required for a certain grade. To get grade n on such an exercise you have to get grade n or higher on every part marked with grade n or lower (and every unmarked part), and you have to fulfil every requirement marked with grade n or lower (as well as every unmarked requirement).
- Do not hand in solutions for several exercises on the same sheet.
- Write your examination code on each sheet.
- Solutions can be rejected if they are hard to read, unstructured, or poorly motivated.
- After correction the graded exams are available in the student office in room 4482 of the EDIT building. If you want to discuss the grading you can, within three weeks after the result has been reported, contact the examiner and set up a time for a meeting (in which case you should not remove the exam from the student office).

1. (a) For grade 3: Give an example of a set A for which $A \rightarrow \mathbb{N}$ is countable, and give an example of a set B for which $B \rightarrow \mathbb{N}$ is not countable. You do not need to provide proofs.
(b) For grade 4: Either prove that the set

$$
(\mathbb{N} \rightarrow\{0\}) \rightarrow(\mathbb{N} \rightarrow\{0\})
$$

is countable, or that it is not countable. You can use theorems from the lecture slides without providing proofs for them.
2. Give concrete syntax for the χ expression e for which the standard χ encoding (as presented in the lectures), given using concrete syntax, is

$$
\left\ulcorner e^{\urcorner}=\operatorname{Rec}(\operatorname{Zero}(), \operatorname{Const}(\operatorname{Suc}(\operatorname{Zero}()), \operatorname{Cons}(\operatorname{Var}(\operatorname{Zero}()), \operatorname{Nil}()))) .\right.
$$

Assume that the number 0 corresponds to the variable x, and that the number 1 corresponds to the constructor True.
3. Is the following partial function χ-computable?

$$
\begin{aligned}
& f \in C E x p \times \mathbb{N} \rightharpoonup\{*\} \\
& f(e, n)=\text { if } e \text { terminates in exactly } n \text { steps then } * \text { else undefined }
\end{aligned}
$$

Here $C E x p$ is a set containing the abstract syntax of every closed χ expression. The value $*$ is represented by the closed χ expression $\operatorname{Star}()$.
For grade 3: Motivate your answer.
For grade 4: Provide a proof. You are allowed to make use of Rice's theorem, the fact that the halting problem is undecidable, and the fact that the terminates-in function from the lectures (which decides whether an expression terminates in at most a certain number of steps) is decidable, but not other results stating that some function is or is not computable (unless you provide proofs).
For grade 5: You may not use Rice's theorem (unless you provide a proof).
4. Is the following function χ-computable?

$$
\begin{aligned}
& g \in C \operatorname{Exp} \rightarrow \mathbb{N} \cup\{*\} \\
& g e= \\
& \quad \text { if } e \text { terminates in exactly } n \text { steps for some } n \in \mathbb{N} \text { then } n \text { else } *
\end{aligned}
$$

The set $\mathbb{N} \cup\{*\}$ is represented in the following way: natural numbers $n \in \mathbb{N}$ are represented in the usual way, and $*$ is represented by $\operatorname{Star}()$.
The grade criteria of the previous exercise apply to this one as well.
5. Consider the following Turing machine:

- Input alphabet: $\{0,1\}$.
- Tape alphabet: $\{0,1, \sqcup\}$.
- States: $\left\{s_{0}, s_{1}\right\}$.
- Initial state: s_{0}.
- Transition function:

(a) For grade 3: What is the result of running this Turing machine with 1 as the input string? Does it halt? In that case, what is the resulting string?
(b) For grade 4: Let us represent natural numbers ($0,1,2 \ldots$) in the following way: the number $n \in \mathbb{N}$ is represented by a string with n ones followed by one zero $\left(1^{n} 0\right)$. Does this Turing machine witness the Turing-computability of some total function from \mathbb{N} to \mathbb{N} ? In either case you should provide a proof. If the answer is yes, then you should additionally give a simple description of the function that is witnessed, without any reference to Turing machines (no proof is needed for this part).

6. Prove that if suc and rec are removed from PRF, then every PRF-computable function $f \in \mathbb{N} \rightarrow \mathbb{N}$ is decreasing: $f n \leq n$ for every input $n \in \mathbb{N}$.
For reference, here is the abstract syntax of PRF:

$$
\begin{gathered}
\overline{\text { zero } \in P R F_{0}} \quad \overline{\text { suc } \in P R F_{1}} \quad \frac{0 \leq i<n}{\text { proj } i \in P R F_{n}} \\
\frac{f \in P R F_{m} \quad g s \in\left(P R F_{n}\right)^{m}}{\operatorname{comp} f g s \in P R F_{n}} \quad \frac{f \in P R F_{n} \quad g \in P R F_{2+n}}{\operatorname{rec} f g \in P R F_{1+n}}
\end{gathered}
$$

The denotational semantics is also included:

$$
\begin{aligned}
& \begin{array}{ll}
\llbracket-\rrbracket \in P R F_{n} \rightarrow\left(\mathbb{N}^{n} \rightarrow \mathbb{N}\right) \\
\llbracket \text { zero } \rrbracket \text { nil } & =0 \\
\llbracket \text { suc } \rrbracket(\text { nil }, n) & =1+n \\
\llbracket \text { proj } i \rrbracket \rho & =\text { index } \rho i \\
\llbracket \text { comp } f g s \rrbracket \rho & =\llbracket f \rrbracket(\llbracket g s \rrbracket \star \rho) \\
\llbracket \text { rec } f g \rrbracket(\rho, \text { zero }) & =\llbracket f \rrbracket \rho \\
\llbracket \text { rec } f g \rrbracket(\rho, \text { suc } n)=\llbracket g \rrbracket(\rho, \llbracket \text { rec } f g \rrbracket(\rho, n), n) \\
\llbracket-\rrbracket \star \in\left(P R F_{m}\right)^{n} \rightarrow\left(\mathbb{N}^{m} \rightarrow \mathbb{N}^{n}\right) \\
\llbracket \text { nil } \rrbracket \star \rho=\text { nil } & \\
\llbracket f s, f \rrbracket \star \rho=\llbracket f s \rrbracket \star \rho, \llbracket f \rrbracket \rho
\end{array}
\end{aligned}
$$

The index function is defined in the following way (for any set A and natural number n):

$$
\begin{aligned}
& \text { index } \in A^{n} \rightarrow\{i \in \mathbb{N} \mid 0 \leq i<n\} \rightarrow A \\
& \text { index }(x s, x) \text { zero }=x \\
& \text { index }(x s, x)(\text { suc } i)=\text { index xs } i
\end{aligned}
$$

