
Brief sample solutions for the examination of
Models of Computation

(DIT310/TDA183/TDA184)
from 2018-04-05

Nils Anders Danielsson

1. (a) A = ∅, B = ℕ.
(b) It is countable.

Note first that, for any set 𝐴, any two functions 𝑓 , 𝑔 ∈ 𝐴 → { 0 } are
equal, because we have ∀𝑥 ∈ 𝐴.f x = 0 = g x. Thus there is exactly
one element in 𝐴 → { 0 }, the function that maps every input to 0.
We get that ℕ → { 0 } is in bijective correspondence with { 0 }, and
that (ℕ → { 0 }) → (ℕ → { 0 }) is in bijective correspondence with
(ℕ → { 0 }) → { 0 }. The argument used above implies that there
is exactly one element in (ℕ → { 0 }) → { 0 } as well, so this set is
countable.
We can conclude that (ℕ → { 0 }) → (ℕ → { 0 }) is countable,
because if a countable set 𝐴 is in bijective correspondence with a set
𝐵, then 𝐵 is also countable.

2. rec x = True(x).
3. Yes. Given an implementation of terminates‐in it is easy to implement:

• Given the pair ⌜ (e, 0) ⌝, use terminates‐in to check if e terminates in
(at most) 0 steps.

• Given the pair ⌜ (e, n) ⌝, with 𝑛 > 0, use terminates‐in to check if e
terminates in exactly n steps by checking if it terminates in at most
n steps but not in at most n − 1 steps.

• In either case, if the answer is affirmative, return ⌜ ∗ ⌝, and otherwise
go into an infinite loop.

4. No. We can prove this by reducing the halting problem (which is not
𝜒-decidable) to g.
If g is 𝜒-computable, then there is a closed 𝜒 expression g witnessing the
computability of g. We can use this expression to construct a closed 𝜒

1



expression halts (written using a mixture of concrete syntax and meta-
level notation):

halts = 𝜆e. case g e of
{ Star() → False()
; Zero() → True()
; Suc(n) → True()
}.

Note that if a closed expression 𝑒 ∈ Exp terminates, then it terminates
in n steps for some 𝑛 ∈ ℕ. Thus halts witnesses the decidability of the
halting problem.

5. (a) If the machine is run with 1 as the input string, then it will move to
the right forever (reading 1 once and then ␣) and never halt.

(b) Yes, the machine implements the successor function: For every input
of the form 1𝑛0 the machine will move to the right past all the ones,
replace the zero with a one, add a new zero at the end, and halt with
the head above the final one. The final string is 11+𝑛0.

6. This follows from the following lemma (where PRF−
n is the variant of PRFn

obtained by removing suc and rec, and Fin n = { 𝑖 ∈ ℕ | 0 ≤ 𝑖 < 𝑛 }):

Lemma. For any 𝑛 ∈ ℕ, 𝑓 ∈ PRF−
n , and 𝜌 ∈ ℕn, we either have that

⟦f ⟧ 𝜌 = 0, or there is some index 𝑖 ∈ Fin n such that ⟦f ⟧ 𝜌 ≤ index 𝜌 i.
Similarly, for any 𝑚, 𝑛 ∈ ℕ, fs ∈ (PRF−

m)n, 𝜌 ∈ ℕm, and 𝑖 ∈ Fin n, we
either have that index (⟦fs⟧⋆ 𝜌) i = 0, or there is some index 𝑗 ∈ Fin m
such that index (⟦fs⟧⋆ 𝜌) i ≤ index 𝜌 j.

Proof. The two statements can be proved simultaneously, using induction
on the structure of f and fs. I only include one case here, that in which f
is comp g fs (where 𝑔 ∈ PRF−

m and fs ∈ (PRF−
n )m for some 𝑚 ∈ ℕ). The

inductive hypothesis for g and ⟦fs⟧⋆ 𝜌 leads to one of the following cases:

• ⟦g ⟧ (⟦fs⟧⋆ 𝜌) = 0. We get that

⟦comp g fs ⟧ 𝜌 =
⟦g ⟧ (⟦fs⟧⋆ 𝜌) =
0.

• There is some 𝑖 ∈ Fin m such that ⟦g ⟧ (⟦fs⟧⋆ 𝜌) ≤ index (⟦fs⟧⋆ 𝜌) i.
Now we can use the inductive hypothesis for fs, 𝜌 and i. Again we
have two cases:

– index (⟦fs⟧⋆ 𝜌) i = 0. This implies that

⟦comp g fs ⟧ 𝜌 =
⟦g ⟧ (⟦fs⟧⋆ 𝜌) ≤

2



index (⟦fs⟧⋆ 𝜌) i =
0.

– There is some 𝑗 ∈ Fin n such that index (⟦fs⟧⋆ 𝜌) i ≤ index 𝜌 j.
We get that

⟦comp g fs ⟧ 𝜌 =
⟦g ⟧ (⟦fs⟧⋆ 𝜌) ≤
index (⟦fs⟧⋆ 𝜌) i ≤
index 𝜌 j.

As an aside the lemma above holds also for the variant of PRF obtained
by removing only suc.

3


