Brief sample solutions for the examination of Models of Computation (DIT310/TDA183/TDA184) from 2018-04-05

Nils Anders Danielsson

- 1. (a) $A = \emptyset, B = \mathbb{N}$.
 - (b) It is countable.

Note first that, for any set A, any two functions $f, g \in A \to \{0\}$ are equal, because we have $\forall x \in A . f x = 0 = g x$. Thus there is exactly one element in $A \to \{0\}$, the function that maps every input to 0. We get that $\mathbb{N} \to \{0\}$ is in bijective correspondence with $\{0\}$, and that $(\mathbb{N} \to \{0\}) \to (\mathbb{N} \to \{0\})$ is in bijective correspondence with $(\mathbb{N} \to \{0\}) \to \{0\}$. The argument used above implies that there is exactly one element in $(\mathbb{N} \to \{0\}) \to \{0\}) \to \{0\}$ as well, so this set is countable.

We can conclude that $(\mathbb{N} \to \{0\}) \to (\mathbb{N} \to \{0\})$ is countable, because if a countable set A is in bijective correspondence with a set B, then B is also countable.

- 2. rec $x = \mathsf{True}(x)$.
- 3. Yes. Given an implementation of *terminates-in* it is easy to implement:
 - Given the pair $\lceil (e, 0) \rceil$, use *terminates-in* to check if *e* terminates in (at most) 0 steps.
 - Given the pair (e, n), with n > 0, use terminates-in to check if e terminates in exactly n steps by checking if it terminates in at most n steps but not in at most n 1 steps.
 - In either case, if the answer is affirmative, return $\lceil * \rceil$, and otherwise go into an infinite loop.
- 4. No. We can prove this by reducing the halting problem (which is not χ -decidable) to g.

If g is χ -computable, then there is a closed χ expression <u>g</u> witnessing the computability of g. We can use this expression to construct a closed χ

expression <u>halts</u> (written using a mixture of concrete syntax and metalevel notation):

```
 \begin{array}{l} \underline{halts} = \lambda \ e. \ \mathbf{case} \ \underline{g} \ e \ \mathbf{of} \\ \{ \ \mathsf{Star}() \ \rightarrow \mathsf{False}() \\ ; \ \mathsf{Zero}() \ \rightarrow \mathsf{True}() \\ ; \ \mathsf{Suc}(n) \ \rightarrow \mathsf{True}() \\ \}. \end{array}
```

Note that if a closed expression $e \in Exp$ terminates, then it terminates in n steps for some $n \in \mathbb{N}$. Thus <u>halts</u> witnesses the decidability of the halting problem.

- 5. (a) If the machine is run with 1 as the input string, then it will move to the right forever (reading 1 once and then _) and never halt.
 - (b) Yes, the machine implements the successor function: For every input of the form $1^n 0$ the machine will move to the right past all the ones, replace the zero with a one, add a new zero at the end, and halt with the head above the final one. The final string is $1^{1+n} 0$.
- 6. This follows from the following lemma (where PRF_n^- is the variant of PRF_n obtained by removing suc and rec, and Fin $n = \{i \in \mathbb{N} \mid 0 \le i < n\}$):

Lemma. For any $n \in \mathbb{N}$, $f \in PRF_n^-$, and $\rho \in \mathbb{N}^n$, we either have that $[\![f]\!] \rho = 0$, or there is some index $i \in Fin n$ such that $[\![f]\!] \rho \leq index \rho i$.

Similarly, for any $m, n \in \mathbb{N}$, $fs \in (PRF_m^-)^n, \rho \in \mathbb{N}^m$, and $i \in Fin n$, we either have that index ($\llbracket fs \rrbracket \star \rho$) i = 0, or there is some index $j \in Fin m$ such that index ($\llbracket fs \rrbracket \star \rho$) $i \leq index \rho j$.

Proof. The two statements can be proved simultaneously, using induction on the structure of f and fs. I only include one case here, that in which f is comp g fs (where $g \in PRF_m^-$ and $fs \in (PRF_n^-)^m$ for some $m \in \mathbb{N}$). The inductive hypothesis for g and $[[fs]] \star \rho$ leads to one of the following cases:

• $\llbracket g \rrbracket (\llbracket fs \rrbracket \star \rho) = 0$. We get that

 $\begin{bmatrix} \operatorname{comp} g \, fs \end{bmatrix} \rho = \\ \begin{bmatrix} g \end{bmatrix} (\llbracket fs \rrbracket \star \rho) = \\ 0. \end{aligned}$

- There is some $i \in Fin \ m$ such that $\llbracket g \rrbracket (\llbracket fs \rrbracket \star \rho) \leq index (\llbracket fs \rrbracket \star \rho) i$. Now we can use the inductive hypothesis for $fs, \ \rho$ and i. Again we have two cases:
 - index ($[fs] \star \rho$) i = 0. This implies that

$$\begin{bmatrix} \operatorname{comp} g \, fs \end{bmatrix} \rho = \\ \begin{bmatrix} g \end{bmatrix} \left(\llbracket fs \rrbracket \star \rho \right) \leq$$

$$index \left(\llbracket fs \rrbracket \star \rho \right) \, i = 0.$$

− There is some $j \in Fin \ n$ such that $index (\llbracket fs \rrbracket \star \rho) \ i \leq index \ \rho \ j.$ We get that

$$\begin{array}{ll} \left[\operatorname{comp} g \, fs \right] \rho &= \\ \left[g \right] \left(\left[fs \right] \star \rho \right) &\leq \\ index \left(\left[fs \right] \star \rho \right) \, i \leq \\ index \, \rho \, j. \end{array} \right. \qquad \Box$$

As an aside the lemma above holds also for the variant of PRF obtained by removing only $\mathsf{suc.}$