Brief sample solutions for the examination of Models of Computation (DIT310/TDA183/TDA184) from 2018-04-05

Nils Anders Danielsson

1. (a) $A=\emptyset, B=\mathbb{N}$.
(b) It is countable.

Note first that, for any set A, any two functions $f, g \in A \rightarrow\{0\}$ are equal, because we have $\forall x \in A$.f $x=0=g x$. Thus there is exactly one element in $A \rightarrow\{0\}$, the function that maps every input to 0 .
We get that $\mathbb{N} \rightarrow\{0\}$ is in bijective correspondence with $\{0\}$, and that $(\mathbb{N} \rightarrow\{0\}) \rightarrow(\mathbb{N} \rightarrow\{0\})$ is in bijective correspondence with $(\mathbb{N} \rightarrow\{0\}) \rightarrow\{0\}$. The argument used above implies that there is exactly one element in $(\mathbb{N} \rightarrow\{0\}) \rightarrow\{0\}$ as well, so this set is countable.
We can conclude that $(\mathbb{N} \rightarrow\{0\}) \rightarrow(\mathbb{N} \rightarrow\{0\})$ is countable, because if a countable set A is in bijective correspondence with a set B, then B is also countable.
2. rec $x=\operatorname{True}(x)$.
3. Yes. Given an implementation of terminates-in it is easy to implement:

- Given the pair ${ }(e, 0){ }^{\urcorner}$, use terminates-in to check if e terminates in (at most) 0 steps.
- Given the pair ${ }^{\ulcorner }(e, n)^{\urcorner}$, with $n>0$, use terminates-in to check if e terminates in exactly n steps by checking if it terminates in at most n steps but not in at most $n-1$ steps.
- In either case, if the answer is affirmative, return ${ }^{*} *^{\urcorner}$, and otherwise go into an infinite loop.

4. No. We can prove this by reducing the halting problem (which is not χ-decidable) to g.
If g is χ-computable, then there is a closed χ expression g witnessing the computability of g. We can use this expression to construct a closed χ
expression halts (written using a mixture of concrete syntax and metalevel notation):

$$
\begin{gathered}
\text { halts }=\lambda e . \text { case } g e \text { of } \\
\{\operatorname{Star}() \rightarrow \text { False }() \\
; \operatorname{Zero}() \rightarrow \text { True }() \\
; \operatorname{Suc}(n) \rightarrow \text { True }() \\
\} .
\end{gathered}
$$

Note that if a closed expression $e \in \operatorname{Exp}$ terminates, then it terminates in n steps for some $n \in \mathbb{N}$. Thus halts witnesses the decidability of the halting problem.
5. (a) If the machine is run with 1 as the input string, then it will move to the right forever (reading 1 once and then \sqcup) and never halt.
(b) Yes, the machine implements the successor function: For every input of the form $1^{n} 0$ the machine will move to the right past all the ones, replace the zero with a one, add a new zero at the end, and halt with the head above the final one. The final string is $1^{1+n} 0$.
6. This follows from the following lemma (where $P R F_{n}^{-}$is the variant of $P R F_{n}$ obtained by removing suc and rec, and Fin $n=\{i \in \mathbb{N} \mid 0 \leq i<n\})$:

Lemma. For any $n \in \mathbb{N}, f \in P R F_{n}^{-}$, and $\rho \in \mathbb{N}^{n}$, we either have that $\llbracket f \rrbracket \rho=0$, or there is some index $i \in$ Fin n such that $\llbracket f \rrbracket \rho \leq$ index ρi.
Similarly, for any $m, n \in \mathbb{N}, f s \in\left(P R F_{m}^{-}\right)^{n}, \rho \in \mathbb{N}^{m}$, and $i \in$ Fin n, we either have that index $(\llbracket f s \rrbracket \star \rho) i=0$, or there is some index $j \in$ Fin m such that index $(\llbracket f s \rrbracket \star \rho) i \leq \operatorname{index} \rho j$.

Proof. The two statements can be proved simultaneously, using induction on the structure of f and $f s$. I only include one case here, that in which f is comp $g f s$ (where $g \in P R F_{m}^{-}$and $f s \in\left(P R F_{n}^{-}\right)^{m}$ for some $m \in \mathbb{N}$). The inductive hypothesis for g and $\llbracket f s \rrbracket \star \rho$ leads to one of the following cases:

- $\llbracket g \rrbracket(\llbracket f s \rrbracket \star \rho)=0$. We get that
$\llbracket c o m p g f s \rrbracket \rho=$
$\llbracket g \rrbracket(\llbracket f s \rrbracket \star \rho)=$

0.

- There is some $i \in$ Fin m such that $\llbracket g \rrbracket(\llbracket f s \rrbracket \star \rho) \leq \operatorname{index}(\llbracket f s \rrbracket \star \rho) i$. Now we can use the inductive hypothesis for $f s, \rho$ and i. Again we have two cases:
- index $(\llbracket f s \rrbracket \star \rho) i=0$. This implies that

$$
\begin{array}{ll}
\llbracket \operatorname{comp} g f s \rrbracket \rho & = \\
\llbracket g \rrbracket(\llbracket f s \rrbracket \star \rho) & \leq
\end{array}
$$

$$
\text { index }(\llbracket f s \rrbracket \star \rho) i=
$$

0 .

- There is some $j \in$ Fin n such that $\operatorname{index}(\llbracket f s \rrbracket \star \rho) i \leq \operatorname{index} \rho j$. We get that

$$
\begin{aligned}
& \llbracket \operatorname{comp} g f s \rrbracket \rho= \\
& \llbracket g \rrbracket(\llbracket f s \rrbracket \star \rho) \quad \\
& \text { index }(\llbracket f s \rrbracket \star \rho) i \leq \\
& \text { index } \rho j .
\end{aligned}
$$

As an aside the lemma above holds also for the variant of PRF obtained by removing only suc.

