
Sample solutions for the examination of
Models of Computation

(DIT310/TDA183/TDA184)
from 2018-01-10

Nils Anders Danielsson

1. (a) A = {0}, B = {0, 1}.
(b) It is not countable. This follows because List {0, 1} → List {0, 1} is

in bijective correspondence with ℕ → ℕ, and ℕ → ℕ is not countable.
We established in the lectures that List A is countable for countable
sets A, and {0, 1} is countable. Thus there is an injection from
List {0, 1} to ℕ. There is also an injection bits from ℕ to List {0, 1}
that, for a natural number n, returns the binary number (without
redundant zeros) that represents n, seen as a list of bits (with the
most significant bit first).
The Schröder–Bernstein theorem states that if there are injections
from A to B and from B to A, then there is a bijection from A to B .
Thus we have established that List {0, 1} is in bijective correspon-
dence with ℕ, from which it follows that List {0, 1} → List {0, 1} is
in bijective correspondence with ℕ → ℕ.
However, the Schröder–Bernstein theorem was not covered in the
lectures, so I provide an alternative proof of uncountability, based on
the following two lemmas:
Lemma 1. For any sets A, B and C , if f ∈ B → C is injective, then
there is an injection from A → B to A → C .

Proof. Let us define the function g ∈ (A → B) → (A → C ) by g h x =
f (h x ). This function is injective: Take any h1, h2 ∈ A → B for which
g h1 = g h2. For any x ∈ A we have g h1 x = g h2 x , i.e. f (h1 x ) =
f (h2 x ). Because f is injective this implies that, for any x ∈ A,
h1 x = h2 x . Thus h1 = h2.

Lemma 2. For any sets A, B and C , if f ∈ A → B is surjective,
then there is an injection from B → C to A → C .

Proof. Let us define the function g ∈ (B → C ) → (A → C ) by g h x =
h (f x ). This function is injective: Take any h1, h2 ∈ B → C for

1



which g h1 = g h2. For any x ∈ A we have g h1 x = g h2 x , which
implies that h1 (f x ) = h2 (f x ). Because f is surjective we get that,
for any y ∈ A, h1 y = h2 y . Thus h1 = h2.

As discussed above there is an injection bits from ℕ to List {0, 1}.
Lemma 1 thus gives us an injection f from ℕ → ℕ to ℕ → List {0, 1}.
We can also construct a surjection from List {0, 1} to ℕ, for instance
the function that gives the sum of all elements in the list. Lemma 2
thus gives us an injection g from ℕ → List {0, 1} to List {0, 1} →
List {0, 1}. By composing g and f we get an injection from ℕ → ℕ
to List {0, 1} → List {0, 1}. Now, if List {0, 1} → List {0, 1} were
countable, then ℕ → ℕ would also be countable (because composi-
tions of injections are injective). Thus List {0, 1} → List {0, 1} is
not countable.

2. case x of {True() → x }.

3. No. We can prove this by reducing the halting problem (which is not
𝜒-decidable) to is‐total .
If is‐total is 𝜒-decidable, then there is a closed 𝜒 expression is‐total wit-
nessing the computability of is‐total . We can use this expression to con-
struct a closed 𝜒 expression halts (written using a mixture of concrete
syntax and meta-level notation):

halts = 𝜆e. is‐total ⌜ 𝜆 . (𝜆 . ⌜ 0 ⌝) ⌞ e ⌟ ⌝.

This expression witnesses the decidability of the halting problem: for any
closed expression e ∈ Exp we have

⟦halts ⌜ e ⌝⟧ =
⟦is‐total ⌜ 𝜆 . (𝜆 . ⌜ 0 ⌝) e ⌝⟧ =
⌜ is‐total (𝜆 . (𝜆 . ⌜ 0 ⌝) e) ⌝ =
if ∀ m ∈ ℕ. ∃ n ∈ ℕ. ⟦(𝜆 . (𝜆 . ⌜ 0 ⌝) e) ⌜m ⌝⟧ = ⌜n ⌝
then ⌜ true ⌝ else ⌜ false ⌝ =

if ∃ n ∈ ℕ. ⟦(𝜆 . ⌜ 0 ⌝) e ⟧ = ⌜n ⌝ then ⌜ true ⌝ else ⌜ false ⌝ =
if ⟦(𝜆 . ⌜ 0 ⌝) e ⟧ = ⌜ 0 ⌝ then ⌜ true ⌝ else ⌜ false ⌝ =
if ⟦e ⟧ is defined then ⌜ true ⌝ else ⌜ false ⌝.

4. Yes. The statement ∀m ∈ ℕ. ∃ n ∈ ℕ. ⟦e ⌜m ⌝⟧ = ⌜n ⌝ is vacuously true:
e is assumed to be a witness of computability for f ∈ ℕ → ℕ, so we have
∀m ∈ ℕ. ⟦e ⌜m ⌝⟧ = ⌜ f m ⌝ (and f is total, so ⌜ f m ⌝ is well-defined). Thus
the 𝜒 program 𝜆e.True() witnesses the 𝜒-decidability of is‐total .

5. (a) Denote the argument to the outermost occurrence of min,

rec (proj 0) (comp (min suc) nil),

by q . We have

2



⟦q ⟧ (nil, 0, 0) = ⟦proj 0⟧ (nil, 0) = 0.

Thus, by the semantics of min,

⟦p⟧ (nil, 0) = ⟦min q ⟧ (nil, 0) = 0.

(b) No, this partial function is undefined for 1. If f 1 = ⟦p⟧ (nil, 1) were
defined, then p [nil, 1] ⇓ m would be defined for some m ∈ ℕ. This
would mean that q [nil, 1,n] ⇓ 0 would be defined for some n ∈ ℕ.
However, we can prove that q [nil, 1,n] ⇓ 0 does not hold for any
n ∈ ℕ. Consider the following two exhaustive cases:

• n = 0: In this case we have q [nil, 1,n] ⇓ 1, and because the
semantics is deterministic we cannot also have q [nil, 1,n] ⇓ 0.

• n = 1 + n′ for some n′ ∈ ℕ: If q [nil, 1, 1 + n′] ⇓ 0 holds, then
comp (min suc) nil [nil, 1, k ,n′] ⇓ 0 holds for some k ∈ ℕ, and thus
we have min suc [nil] ⇓ 0. This implies that suc [nil, i ] ⇓ 0 holds
for some i ∈ ℕ. However, zero is not the successor of any natural
number.

6. The (obviously Turing-computable) function f ∈ ℕ → ℕ that maps 1 to 0
and all other natural numbers to 1 cannot be implemented on this kind
of machine.
Let us assume that the machine tm implements this function, and let us
consider what happens when tm is given the input ⌜n ⌝ for some natural
number n ∈ {1, 2}. Note that ⌜ 1 ⌝ = 10 and ⌜ 2 ⌝ = 110 start with the same
symbol, so the machine’s actions are identical for these inputs up to and
including the first action (if any) that moves the head to the right. Note
also that, by the definition of computability, the machine must terminate
for these inputs. Thus, when the machine moves the head away from the
left-most square on the tape (or if this never happens, when the machine
terminates), the symbol present in this square must be the same for these
two inputs. Let us denote this symbol by c. Note that when the machine
terminates the symbol in the left-most square must still be c, because
the head cannot be moved to the left, and consider the following two
exhaustive cases:

• c = 0. In this case we get the wrong result for n = 2, because ⌜ f 2 ⌝ =
⌜ 1 ⌝ = 10.

• c ≠ 0. In this case we get the wrong result for n = 1, because ⌜ f 1 ⌝ =
⌜ 0 ⌝ = 0.

Thus the assumption that tm implements f is incorrect, and we can con-
clude that f cannot be implemented on this kind of machine.

3


