Lecture Models of computation (DIT311, TDA184)

Nils Anders Danielsson

$$
2018-11-26
$$

Today

- X-computability.
- A self-interpreter for χ.
- Reductions.
- More problems that are or are not computable.
- More about coding.

computability

X-computable functions

Assume that we have methods for representing members of the sets A and B as closed χ expressions.

A partial function $f \in A \rightharpoonup B$ is χ-computable (with respect to these methods) if there is a closed expression e such that:

- $\forall a \in A$.
if $f a$ is defined then $\left.e^{\ulcorner } a\right\urcorner \Downarrow\ulcorner f a\urcorner$.
- $\forall a \in A, v \in \operatorname{Exp}$.
if $e\ulcorner a\urcorner \Downarrow v$ then $f a$ is defined and

$$
v=\ulcorner f a\urcorner
$$

X-computable functions

A special case:
A (total) function $f \in A \rightarrow B$ is χ-computable if there is a closed expression e such that:

$$
\text { - } \left.\forall a \in A . e^{\ulcorner } a\right\urcorner \Downarrow\ulcorner f a\urcorner .
$$

An alternative characterisation

- Define $C E x p=\{p \in \operatorname{Exp} \mid p$ is closed $\}$.
- The semantics as a partial function:

$$
\begin{aligned}
& \llbracket-\rrbracket \in C E x p \rightharpoonup C E x p \\
& \llbracket p \rrbracket=v \text { if } p \Downarrow v
\end{aligned}
$$

- $f \in A \rightharpoonup B$ is χ-computable iff

$$
\exists e \in C \operatorname{Exp} . \forall a \in A . \llbracket e\ulcorner a\urcorner \rrbracket=\ulcorner f a\urcorner .
$$

Quiz

What would go "wrong" if we decided to represent closed χ expressions in the following way?

A closed χ expression is represented by True() if it terminates, and by False() otherwise.

Representation

- The choice of representation is important.
- In this course (unless otherwise noted or inapplicable): The "standard" representation.
- It might make sense to require that the representation function ${ }^{\ulcorner }$- ${ }^{7}$ is "computable".
- However, how should this be defined?

Examples

- Addition of natural numbers is χ-computable:

$$
\begin{aligned}
& a d d \in \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \\
& \operatorname{add}(m, n)=m+n
\end{aligned}
$$

- The intensional halting problem is not χ-computable:

$$
\begin{aligned}
& \text { halts } \in C E x p \rightarrow \text { Bool } \\
& \text { halts } p=\text { if } p \text { terminates then true else false }
\end{aligned}
$$

- The semantics $\llbracket-\rrbracket$ is computable.

Self-

interpreter

Self-interpreter

Goal: Define eval $\in C E x p$ satisfying:

- $\forall e, v \in C E x p$, if $e \Downarrow v$ then eval $\ulcorner e\urcorner \Downarrow\ulcorner v\urcorner$.
- $\forall e, v^{\prime} \in C E x p$, if eval ${ }^{\ulcorner } e^{\urcorner} \Downarrow v^{\prime}$ then there is some v such that $e \Downarrow v$ and $v^{\prime}=\ulcorner v\urcorner$.

Or: $\forall e \in C E x p . \llbracket e v a l\ulcorner e\urcorner \rrbracket=\ulcorner\llbracket e \rrbracket\urcorner$.

Self-interpreter

rec $e v a l=\lambda e$. case e of \{...

Self-interpreter

lambda $x e \Downarrow$ lambda $x e$
$\operatorname{Lambda}(x, e) \rightarrow \operatorname{Lambda}(x, e)$

Self-interpreter

$$
\frac{e_{1} \Downarrow \text { lambda } x e \quad e_{2} \Downarrow v_{2} \quad e\left[x \leftarrow v_{2}\right] \Downarrow v}{\text { apply } e_{1} e_{2} \Downarrow v}
$$

$\operatorname{Apply}\left(e_{1}, e_{2}\right) \rightarrow$ case eval e_{1} of
$\left\{\operatorname{Lambda}(x, e) \rightarrow \operatorname{eval}\left(\right.\right.$ subst $x\left(\right.$ eval $\left.\left.e_{2}\right) e\right)$ \}

Exercise: Define subst.

Self-interpreter

$$
\frac{e[x \leftarrow \operatorname{rec} x e] \Downarrow v}{\operatorname{rec} x e \Downarrow v}
$$

$\operatorname{Rec}(x, e) \rightarrow \operatorname{eval}($ subst $x \operatorname{Rec}(x, e) e)$

Self-interpreter

$$
\frac{e s \Downarrow^{\star} v s}{\text { const } c e s \Downarrow \text { const } c v s}
$$

Const $(c, e s) \rightarrow$ Const $(c$, map eval es)
Exercise: Define map.

Self-interpreter

$$
\frac{\begin{array}{c}
e \Downarrow \text { const } c \text { vs } \quad \text { Lookup } c \text { bs } x s e^{\prime} \\
e^{\prime}[x s \leftarrow v s] \mapsto e^{\prime \prime} \quad e^{\prime \prime} \Downarrow v \\
\text { case } e b s \Downarrow v
\end{array}}{\frac{2}{2} \downarrow}
$$

Case $(e, b s) \rightarrow$ case eval e of
$\{$ Const $(c, v s) \rightarrow$ case lookup c bs of $\left\{\operatorname{Pair}\left(x s, e^{\prime}\right) \rightarrow\right.$ eval (substs xs vs $\left.e^{\prime}\right)$ \} \}

Exercise: Define lookup and substs.

Self-interpreter

rec eval $=\lambda e$. case e of
$\{\operatorname{Lambda}(x, e) \rightarrow \operatorname{Lambda}(x, e)$
; Apply $\left(e_{1}, e_{2}\right) \rightarrow$ case eval e_{1} of
$\left\{\operatorname{Lambda}(x, e) \rightarrow \operatorname{eval}\left(\right.\right.$ subst $x\left(\right.$ eval $\left.\left.\left.e_{2}\right) e\right)\right\}$
$; \operatorname{Rec}(x, e) \rightarrow$ eval $($ subst $x \operatorname{Rec}(x, e) e)$
; Const $(c$, es $) \rightarrow$ Const $(c$, map eval es)
; Case $(e, b s) \rightarrow$ case eval e of
$\{$ Const $(c, v s) \rightarrow$ case lookup $c b s$ of $\left\{\operatorname{Pair}\left(x s, e^{\prime}\right) \rightarrow \operatorname{eval}\left(\right.\right.$ substs xs vs $\left.\left.e^{\prime}\right)\right\}$ \} \}
Note: subst, map, lookup and substs are meta-variables that stand for (closed) expressions.

Is the following partial function
χ-computable?
halts \in CExp \rightarrow Bool
halts $p=$
if p terminates then true else undefined

X-decidable

A function $f \in A \rightarrow$ Bool is χ-decidable if it is χ-computable. If not, then it is χ-undecidable.

X-semi-decidable

A function $f \in A \rightarrow$ Bool is χ-semi-decidable if there is a closed expression e such that, for all $a \in A$:

- If $f a=$ true then $e^{\ulcorner } a^{\urcorner} \Downarrow\left\ulcorner\right.$ true ${ }^{\urcorner}$.
- If $f a=$ false then $e\ulcorner a\urcorner$ does not terminate.

The halting problem is semi-decidable

The halting problem:
halts $\in C E x p \rightarrow$ Bool
halts $p=$ if p terminates then true else false
A program witnessing the semi-decidability:
$\lambda p .\left(\lambda_{-} . \operatorname{True}()\right)($ eval $p)$

Reductions

Reductions (one variant)

A χ-reduction of $f \in A \rightharpoonup B$ to $g \in C \rightharpoonup D$ consists of a proof showing that, if g is χ-computable, then f is χ-computable.

Reductions (one variant)

A χ-reduction of $f \in A \rightharpoonup B$ to $g \in C \rightharpoonup D$ consists of a proof showing that, if g is χ-computable, then f is χ-computable.

- If f is reducible to g, and f is not computable, then g is not computable.
- Last week we proved that the halting problem is undecidable by reducing another problem to it.

More
 (un)decidable
 problems

Semantic equality

- Are two closed χ expressions semantically equal?

$$
\begin{aligned}
& \text { equal } \in C E x p \times C E x p \rightarrow \text { Bool } \\
& \text { equal }\left(e_{1}, e_{2}\right)= \\
& \quad \text { if } \llbracket e_{1} \rrbracket=\llbracket e_{2} \rrbracket \text { then true else false }
\end{aligned}
$$

- The halting problem reduces to this one:

$$
\text { halts }=\lambda p . \operatorname{not}(e q u a l \operatorname{Pair}(p,\ulcorner\operatorname{rec} x=x\urcorner))
$$

Pointwise equality

- Pointwise equality:

$$
\begin{aligned}
& \text { pointwise-equal } \in C E x p \times C E x p \rightarrow \text { Bool } \\
& \text { pointwise-equal }\left(e_{1}, e_{2}\right)= \\
& \text { if } \forall e \in C E x p . \llbracket e_{1} e \rrbracket=\llbracket e_{2} e \rrbracket \\
& \text { then true else false }
\end{aligned}
$$

- The previous problem reduces to this one:

$$
\begin{aligned}
& \text { equal }=\lambda p \text {. case } p \text { of } \\
& \left\{\operatorname{Pair}\left(e_{1}, e_{2}\right) \rightarrow\right. \\
& \text { pointwise-equal } \\
& \quad \text { Pair }\left(\operatorname{Lambda}\left(\operatorname{Zero}(), e_{1}\right),\right. \\
& \left.\quad \operatorname{Lambda}\left(\operatorname{Zero}(), e_{2}\right)\right)
\end{aligned}
$$

Termination in n steps

- Termination in n steps:

$$
\begin{aligned}
& \text { terminates-in } \in C E x p \times \mathbb{N} \rightarrow \text { Bool } \\
& \text { terminates-in }(e, n)= \\
& \text { if } \exists v . \exists p \in e \Downarrow v .|p| \leq n \\
& \text { then true else false }
\end{aligned}
$$

$|p|$: The number of rules in the derivation tree.

- Decidable: We can define a variant of the self-interpreter that tries to evaluate e but stops if more than n rules are needed.

Representation

- How do we represent a χ-computable function?
- Example:

$$
\{f \in \mathbb{N} \rightarrow \mathbb{N} \mid f \text { is } \chi \text {-computable }\}
$$

- By the representation of one of the closed expressions witnessing the computability of the function. However, which one?
- One solution: Switch to

$$
\{(f, e) \mid f \in \mathbb{N} \rightarrow \mathbb{N}, e \in C E x p, e \text { implements } f\}
$$

and define $\ulcorner(f, e)\urcorner=\ulcorner e\urcorner$.

Quiz

Is the following problem χ-decidable for $A=$ Bool? What if $A=\mathbb{N}$?

$$
\begin{gathered}
\text { let Fun }=\left\{(f, e) \left\lvert\, \begin{array}{l}
f \in A \rightarrow \text { Bool, } e \in C E x p, \\
e \text { implements } f\} \text { in }
\end{array}\right.\right.
\end{gathered}
$$

pointwise-equal' $\in F u n \times$ Fun \rightarrow Bool pointwise-equal $((f,-),(g,-))=$ if $\forall a \in A$. $f a=g a$ then true else false

Hint: Use eval or terminates-in.

Pointwise equality of computable functions in Bool \rightarrow Bool

- The function pointwise-equal' is decidable.
- Implementation:

$$
\begin{aligned}
& \text { pointwise-equal' }=\lambda p \text {. case } p \text { of } \\
& \qquad \begin{array}{r}
\text { Pair }(f, g) \rightarrow \\
\text { and }^{\left(e q u a l_{\text {Bool }}\right.}\left(\text { eval } \operatorname{Apply}\left(f,\left\ulcorner\operatorname{True}()^{\urcorner}\right)\right)\right. \\
\left(\text {eval } \operatorname{Apply}\left(g,\left\ulcorner\operatorname{True}()^{\urcorner}\right)\right)\right) \\
\left(\text {equal }_{\text {Bool }}\right. \\
\left(\text { eval Apply }\left(f,\left\ulcorner\text { False }()^{\urcorner}\right)\right)\right. \\
\left(\text {eval Apply }\left(g,\left\ulcorner\text { False }()^{\urcorner}\right)\right)\right)
\end{array}
\end{aligned}
$$

\}

Pointwise equality of computable functions in Bool \rightarrow Bool

- The function pointwise-equal' is decidable.
- Implementation:

$$
\begin{aligned}
& \text { pointwise-equal }{ }^{\prime}=\lambda p \text {. case } p \text { of } \\
& \{\operatorname{Pair}(f, g) \rightarrow \\
& \text { and }\left(\text { equal } _ { \text { Bool } } \left(\text { eval } \left\ulcorner\left\llcorner f_{\lrcorner} \operatorname{True}()^{\urcorner}\right)\right.\right.\right. \\
& \left.\left(\text {eval }{ }^{\llcorner } \stackrel{\text { g }}{ } \text { 」 } \operatorname{True}()^{\urcorner}\right)\right) \\
& \text {(equal } \left.{ }_{\text {Bool }}\left(\operatorname{eval}^{\ulcorner }{ }^{\llcorner } f_{\lrcorner} \text {False(}\right)^{\urcorner}\right) \\
& \left.\left(\text {eval }{ }^{\ulcorner }\llcorner g\lrcorner \text { False }()^{\urcorner}\right)\right)
\end{aligned}
$$

\}

Pointwise equality of computable functions in $\mathbb{N} \rightarrow$ Bool

- The function pointwise-equal' is undecidable.
- The halting problem reduces to it:

$$
\begin{aligned}
& \text { halts }=\lambda p . \text { not }\left(\text { pointwise-equal }{ }^{\prime}\right. \\
& \quad \text { Pair }\left({ }^{\ulcorner } \lambda_{n} \text { n. terminates-in Pair }(\llcorner\operatorname{code} p\lrcorner, n)\right\urcorner, \\
& \left.\quad\left\ulcorner\lambda_{_} . \text {False }()^{\urcorner}\right)\right)
\end{aligned}
$$

Coding

One way to give a semantics to ${ }_{\llcorner-\lrcorner}$:
${ }_{\llcorner-\lrcorner}$is a constructor of a variant of Exp:

$$
\frac{e \in E x p}{e_{\lrcorner} \in \overline{E x p}} \quad \frac{e_{1} \in \overline{E x p} \quad e_{2} \in \overline{E x p}}{\text { apply } e_{1} e_{2} \in \overline{E x p}}
$$

- This variant is the domain of \ulcorner _ :

$$
\begin{aligned}
\ulcorner-\urcorner \in \overline{\operatorname{Exp}} \rightarrow & \operatorname{Exp} \\
\ulcorner & =e \\
\left\ulcorner _e_{\lrcorner}\right. & \\
\left\ulcorner\text {apply } e_{1} e_{2}\right\urcorner & =\operatorname{Apply}\left(\left\ulcorner e_{1}\right\urcorner,\left\ulcorner e_{2}\right\urcorner\right)
\end{aligned}
$$

- Examples:

$$
\begin{aligned}
\left\ulcorner f_{\lrcorner} \operatorname{True}()\right\urcorner & =\operatorname{Apply}\left(f,\ulcorner\operatorname{True}())^{\urcorner}\right) \\
\ulcorner\text {eval }\llcorner\operatorname{code} e\lrcorner\urcorner & =\operatorname{Apply}(\ulcorner\text { eval }\urcorner \text {, code e })
\end{aligned}
$$

- Note that you do not have to use $\left.{ }_{\llcorner }-\right\lrcorner$.

The reduction used above:

$$
\begin{aligned}
& \text { halts }=\lambda p . \text { not }\left(\text { pointwise-equal }{ }^{\prime}\right. \\
& \quad \text { Pair }\left({ }^{\ulcorner } \lambda_{n} \text { n. terminates-in Pair }\left(\left\llcorner\operatorname{code} p_{\lrcorner}, n\right)\right\urcorner,\right. \\
& \left.\quad\left\ulcorner\lambda_{-} . \text {False }()^{\urcorner}\right)\right)
\end{aligned}
$$

Expanded:

λ p. not (pointwise-equal'
Pair (Lambda ($\ulcorner n\urcorner$,
Apply (\ulcorner terminates-in \urcorner,
Const(${ }^{\ulcorner }$Pair ${ }^{\urcorner}$,
Cons(code p,
$\operatorname{Cons}(\operatorname{Var}(\ulcorner n\urcorner), \operatorname{Nil}())))))$,
$\left.\left\ulcorner\lambda_{-} . \operatorname{False}()^{7}\right)\right)$

Coding

Probably not what you want:

$$
\lambda p .\ulcorner\text { eval } p\urcorner=\lambda p . \operatorname{Apply}(\ulcorner\text { eval }\urcorner, \operatorname{Var}(\ulcorner p\urcorner))
$$

If p corresponds to 0 :

$$
\lambda p . \operatorname{Apply}(\ulcorner\text { eval }\urcorner, \operatorname{Var}(\text { Zero }()))
$$

A constant function.

Coding

Perhaps more useful:

$$
\lambda p .\ulcorner\text { eval }\llcorner\text { code } p\lrcorner\urcorner=\lambda p . \operatorname{Apply}(\ulcorner\text { eval }\urcorner \text {, code } p)
$$

For any expression e :
$\left(\lambda p .\left\ulcorner\right.\right.$ eval $_{\llcorner }$code $\left.\left.\left.p\right\lrcorner\right\urcorner\right)\ulcorner e\urcorner \Downarrow\ulcorner$ eval $\ulcorner e\urcorner\urcorner$

Quiz

What is the result of evaluating $\left(\lambda\right.$ p．eval $\left\ulcorner\right.$ eval \llcorner code $\left.p\lrcorner{ }^{\urcorner}\right)\left\ulcorner\right.$Zero ()${ }^{\urcorner}$？

1．Nothing
2．Zero（）
3．${ }^{\circ}$ Zero（ $\left.)\right\urcorner$
4．${ }^{\ulcorner }$Zero（ $)^{\urcorner\urcorner}$
5．$\left\ulcorner\left\ulcorner\ulcorner\text { Zero（ })^{\urcorner\urcorner\urcorner}\right.\right.$
6．「г「「Zero（ $)^{\urcorner\urcorner\urcorner า ~}$

Types

- The language χ is untyped.
- However, it may be instructive to see certain programs as typed.

Types

- Rep A: Representations of programs of type A.
- Some examples:
True()
: Bool
$\left\ulcorner\right.$ True() ${ }^{7}$
: Rep Bool
「true
: Bool
$\lambda f . \lambda x . f x \quad:(A \rightarrow B) \rightarrow A \rightarrow B$
λf. λx. Apply $(f, x): \operatorname{Rep}(A \rightarrow B) \rightarrow$
Rep $A \rightarrow$ Rep B
eval
: Rep $A \rightarrow$ Rep A
code
$: \operatorname{Rep} A \rightarrow R e p(\operatorname{Rep} A)$
terminates-in
: Rep $A \times \mathbb{N} \rightarrow$ Bool
\ulcorner terminates-in $\urcorner: \operatorname{Rep}($ Rep $A \times \mathbb{N} \rightarrow$ Bool $)$

Types

The reduction used above:

$$
\begin{aligned}
& \text { halts }=\lambda \text { p. not }\left(\text { pointwise-equal }{ }^{\prime}\right. \\
& \quad \text { Pair }\left(\left\ulcorner^{\ulcorner } \lambda_{n} \text {. terminates-in Pair }(\llcorner\text { code } p\lrcorner, n)\right.\right. \text {, } \\
& \left.\quad\left\ulcorner\lambda_{-} \text {. False }()^{\urcorner}\right)\right)
\end{aligned}
$$

If
pointwise-equal' :

$$
\operatorname{Rep}(\mathbb{N} \rightarrow \text { Bool }) \times \operatorname{Rep}(\mathbb{N} \rightarrow \text { Bool }) \rightarrow \text { Bool }
$$

then

$$
\text { halts : Rep } A \rightarrow \text { Bool. }
$$

$$
\begin{gathered}
\text { More } \\
\text { undecidable } \\
\text { problems }
\end{gathered}
$$

Quiz

Is the following function χ-computable?

optimise $\in C E x p \rightarrow C E x p$
optimise $e=$
some optimally small expression with the same semantics as e

Size: The number of constructors in the abstract syntax (Exp, Br, List, not Var or Const).

Full employment theorem
 for compiler writers

- An optimally small non-terminating expression is equal to rec $x=x$ (for some x).
- The halting problem reduces to this one:

$$
\begin{aligned}
& \text { halts }=\lambda p \text {. case optimise } p \text { of } \\
& \qquad\{\operatorname{Rec}(x, e) \rightarrow \text { case } e \text { of } \\
& \quad\{\operatorname{Var}(y) \rightarrow \text { False }() \\
& \quad ; \operatorname{Rec}(x, e) \rightarrow \operatorname{True}() \\
& \quad ; \cdots \\
& \quad\} \\
& ; \cdots \\
& \}
\end{aligned}
$$

Computable real numbers

- Computable reals can be defined in many ways.
- One example, using signed digits:

$$
\begin{aligned}
& \text { Interval }= \\
& \qquad\{(f, e) \mid f \in \mathbb{N} \rightarrow\{-1,0,1\}, e \in C E x p, \\
& \qquad \text { implements } f\} \\
& \llbracket-\rrbracket \in \text { Interval } \rightarrow[-1,1] \\
& \llbracket(f,-) \rrbracket=\sum_{i=0}^{\infty} f i \cdot 2^{-i-1}
\end{aligned}
$$

- Why signed digits? Try computing the first digit of $0.00000 \ldots+0.11111 \ldots$ (in binary notation).

Is a computable real number equal to zero?

- Is a computable real number equal to zero?

$$
\begin{aligned}
& \text { is-zero } \in \text { Interval } \rightarrow \text { Bool } \\
& \text { is-zero } x=\text { if } \llbracket x \rrbracket=0 \text { then true else false }
\end{aligned}
$$

- The halting problem reduces to this one:

$$
\text { halts }=\lambda p . n o t(i s-z e r o\ulcorner\lambda n .
$$

case terminates-in Pair $(\llcorner$ code $p\lrcorner, n)$ of

$$
\{\text { True }() \rightarrow \text { One }()
$$

$$
\text { ; False() } \rightarrow \text { Zero() }
$$

$$
\}^{\urcorner}\right)
$$

Undecidable problems

- A list on Wikipedia.
- A list on MathOverflow.

Summary

- X-computability.
- A self-interpreter for χ.
- Reductions.
- More problems that are or are not computable.
- More about coding.

