Lecture Models of computation (DIT311, TDA184)

Nils Anders Danielsson

2018-11-19

- ${\rm X},$ a small functional language:
 - Concrete and abstract syntax.
 - Operational semantics.
 - Several variants of the halting problem.
 - Representing inductively defined sets.

Concrete syntax

Concrete syntax

$$\begin{array}{ll} e ::= x \\ & \mid \ (e_1 \ e_2) \\ & \mid \ \lambda x. \ e \\ & \mid \ \mathsf{C}(e_1, ..., e_n) \\ & \mid \ \mathbf{case} \ e \ \mathbf{of} \ \{\mathsf{C}_1(x_1, ..., x_n) \to e_1; ... \} \\ & \mid \ \mathbf{rec} \ x = e \end{array}$$

Variables (x) and constructors (C) are assumed to come from two disjoint, countably infinite sets.

Sometimes extra parentheses are used, and sometimes parentheses are omitted around applications: $e_1 \ e_2 \ e_3$ means $((e_1 \ e_2) \ e_3)$.

X	Haskell
λ x. e	\x -> e
True()	True
Suc(n)	Suc n
Cons(x, xs)	x : xs
$\operatorname{rec} x = e$	let $x = e$ in x

Note: Haskell is typed and non-strict, χ is untyped and strict.

X:

case
$$e$$
 of {Zero() $\rightarrow x$; Suc(n) $\rightarrow y$ }

Haskell:

$$\begin{array}{l} \mathbf{rec} \ add = \lambda \, m. \, \lambda \, n. \, \mathbf{case} \ n \ \mathbf{of} \\ \{ \mathsf{Zero}() \ \rightarrow m \\ ; \, \mathsf{Suc}(n) \ \rightarrow \, \mathsf{Suc}(add \ m \ n) \\ \} \end{array}$$

$$\begin{array}{l} \lambda \, m. \, \mathbf{rec} \, \, add = \lambda \, n. \, \mathbf{case} \, n \, \mathbf{of} \\ \{ \mathsf{Zero}() \to m \\ ; \, \mathsf{Suc}(n) \to \mathsf{Suc}(add \, n) \\ \} \end{array}$$

What is the value of the following expression?

 $\begin{array}{l} (\mathbf{rec} \ foo = \lambda \ m. \ \lambda \ n. \ \mathbf{case} \ n \ \mathbf{of} \ \{ \\ \mathsf{Zero}() \ \to \ m; \\ \mathsf{Suc}(n) \ \to \ \mathbf{case} \ m \ \mathbf{of} \ \{ \\ \mathsf{Zero}() \ \to \ \mathsf{Case} \ m \ \mathbf{of} \ \{ \\ \mathsf{Zero}() \ \to \ \mathsf{Zero}(); \\ \mathsf{Suc}(m) \ \to \ foo \ m \ n\} \ \}) \\ \\ \mathsf{Suc}(\mathsf{Suc}(\mathsf{Zero}())) \ \mathsf{Suc}(\mathsf{Zero}()) \end{array}$

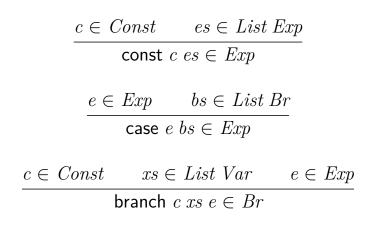
► Zero()
 ► Suc(Suc(Zero()))
 ► Suc(Zero())
 ► Suc(Suc(Suc(Zero())))

Abstract

syntax

$$\frac{x \in Var}{\operatorname{var} x \in Exp} \qquad \frac{e_1 \in Exp}{\operatorname{apply} e_1 e_2 \in Exp}$$
$$\frac{x \in Var \quad e \in Exp}{\operatorname{lambda} x e \in Exp} \qquad \frac{x \in Var \quad e \in Exp}{\operatorname{rec} x e \in Exp}$$

Var: Assumed to be countably infinite.



Const: Assumed to be countably infinite.

Operational semantics

- $e \Downarrow v$: e terminates with the value v.
- The expression e terminates (with a value) if ∃v. e ↓ v.
- Note that a "crash" does not count as termination (with a value).

- ► The binary relation ↓ relates closed expressions.
- An expression is closed if it has no free variables.

Which of the following expressions are closed?

- ► y
- $\blacktriangleright \ \lambda x. \ \lambda y. \ x$
- case x of $\{Cons(x, xs) \rightarrow x\}$
- case Suc(Zero()) of $\{Suc(x) \rightarrow x\}$

•
$$\operatorname{rec} f = \lambda x. f$$

lambda $x \mathrel{e} \Downarrow$ lambda $x \mathrel{e}$

 $\underbrace{ \begin{array}{ccc} \underline{e_1} \Downarrow \mathsf{lambda} \ x \ e & \underline{e_2} \Downarrow v_2 & e \ [x \leftarrow v_2] \Downarrow v \\ & \mathsf{apply} \ \underline{e_1} \ \underline{e_2} \Downarrow v \\ & \\ \underbrace{ \begin{array}{c} e \ [x \leftarrow \mathsf{rec} \ x \ e] \Downarrow v \\ & \mathsf{rec} \ x \ e \Downarrow v \end{array} }_{\mathsf{rec} \ x \ e \Downarrow v }$

- *e* [*x* ← *e'*]: Substitute *e'* for every *free* occurrence of *x* in *e*.
- To keep things simple: e' must be closed.
- If e' is not closed, then this definition is prone to variable capture.

Substitution

var
$$x [x \leftarrow e'] = e'$$

var $y [x \leftarrow e'] =$ var y if $x \neq y$

$$\begin{array}{l} \text{apply } e_1 \ e_2 \ [x \leftarrow e'] = \\ \text{apply } (e_1 \ [x \leftarrow e']) \ (e_2 \ [x \leftarrow e']) \end{array}$$

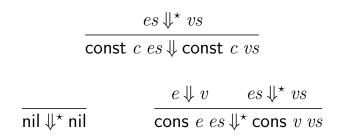
$$\begin{array}{ll} \mathsf{lambda} \ x \ e \ [x \leftarrow e'] = \mathsf{lambda} \ x \ e \\ \mathsf{lambda} \ y \ e \ [x \leftarrow e'] = \\ \mathsf{lambda} \ y \ (e \ [x \leftarrow e']) & \mathsf{if} \ x \neq y \end{array}$$

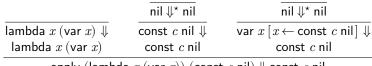
And so on...

What is the result of

(rec $y = case x \text{ of } \{ \mathsf{C}() \to x; \mathsf{D}(x) \to x \}) [x \leftarrow \lambda z, z] ?$

$$\begin{array}{ll} \operatorname{rec} y = \operatorname{case} x & \operatorname{of} \left\{ \mathsf{C}() \to x; & \mathsf{D}(x) \to x \\ \operatorname{rec} y = \operatorname{case} x & \operatorname{of} \left\{ \mathsf{C}() \to \lambda z. z; \mathsf{D}(x) \to x \\ \end{array} \right\} \\ \operatorname{rec} y = \operatorname{case} \lambda z. z & \operatorname{of} \left\{ \mathsf{C}() \to x; & \mathsf{D}(x) \to x \\ \operatorname{rec} y = \operatorname{case} \lambda z. z & \operatorname{of} \left\{ \mathsf{C}() \to \lambda z. z; \mathsf{D}(x) \to x \\ \end{array} \right\} \\ \operatorname{rec} y = \operatorname{case} \lambda z. z & \operatorname{of} \left\{ \mathsf{C}() \to \lambda z. z; \mathsf{D}(x) \to x \\ \operatorname{rec} y = \operatorname{case} \lambda z. z & \operatorname{of} \left\{ \mathsf{C}() \to \lambda z. z; \mathsf{D}(x) \to \lambda z. z \right\} \\ \operatorname{rec} y = \operatorname{case} \lambda z. z & \operatorname{of} \left\{ \mathsf{C}() \to \lambda z. z; \mathsf{D}(x) \to \lambda z. z \right\} \end{array}$$





apply (lambda x (var x)) (const c nil) \Downarrow const c nil

 $\begin{array}{c|c} e \Downarrow \mathsf{const} \ c \ vs & Lookup \ c \ bs \ xs \ e' \\ \hline e' \ [xs \leftarrow vs] \mapsto e'' & e'' \Downarrow v \\ \hline \\ \hline \mathsf{case} \ e \ bs \Downarrow v \end{array}$

$$\frac{e \Downarrow \mathsf{const} \ c \ vs}{e' \ [xs \leftarrow vs] \mapsto e'' \ e'' \Downarrow v} \frac{b \ s \ s \ s \ e''}{\mathsf{case} \ e \ bs \Downarrow v}$$

The first matching branch, if any:

 $Lookup \ c \ ({\tt cons} \ ({\tt branch} \ c \ xs \ e) \ bs) \ xs \ e$

$$\frac{c \neq c' \quad Lookup \ c \ bs \ xs \ e}{Lookup \ c \ (\mathsf{cons} \ (\mathsf{branch} \ c' \ xs' \ e') \ bs) \ xs \ e}$$

$$\frac{e \Downarrow \mathsf{const} \ c \ vs \qquad Lookup \ c \ bs \ xs \ e'}{e' \ [xs \leftarrow vs] \mapsto e'' \qquad e'' \ \Downarrow v} \\ \frac{e' \ [xs \leftarrow vs] \mapsto e'' \qquad e'' \ \Downarrow v}{\mathsf{case} \ e \ bs \ \Downarrow v}$$

 $e [xs \leftarrow vs] \mapsto e' \text{ holds iff}$

$$\begin{array}{cccc} e \Downarrow \mathsf{const} \ c \ vs & Lookup \ c \ bs \ xs \ e' \\ e' \ [xs \leftarrow vs] \mapsto e'' & e'' \Downarrow v \\ \hline \\ \hline \\ \mathsf{case} \ e \ bs \Downarrow v \end{array}$$

$$\overline{e \; [\mathsf{nil} \leftarrow \mathsf{nil}] \mapsto e}$$

$$e \; [xs \leftarrow vs] \mapsto e'$$

$$\overline{e \; [\mathsf{cons} \; x \; xs \leftarrow \mathsf{cons} \; v \; vs] \mapsto e' \; [x \leftarrow v]}$$

Which of the following sets are inhabited?

case C() of {C() \rightarrow D(); C() \rightarrow C() } UC() case C() of {C() \rightarrow D(); C() \rightarrow C() } UC() case C() of {C(x) \rightarrow D(); C() \rightarrow D() } UC() case C(C(), D()) of {C(x, x) \rightarrow x} UC() case Suc(False()) of

 $\{\mathsf{Zero}() \to \mathsf{True}(); \mathsf{Suc}(n) \to n\} \Downarrow \mathsf{False}() \\ \mathbf{case} \ \mathsf{Suc}(\mathsf{False}()) \ \mathbf{of}$

 $\{\mathsf{Zero}() \to \mathsf{True}(); \mathsf{Suc}() \to \mathsf{False}()\} \Downarrow \mathsf{False}()$

Some properties

The semantics is deterministic: $e \Downarrow v_1$ and $e \Downarrow v_2$ imply $v_1 = v_2$.

- An expression e is called a value if $e \Downarrow e$.
- ► Values can be characterised inductively:

Values es

Value (lambda x e)

Value (const c es)

Values nilValue eValues esValues nilValues (cons e es)

- Value e holds iff $e \Downarrow e$.
- If $e \Downarrow v$, then Value v.

There is a non-terminating expression

- The program rec x (var x) does not terminate with a value.
- Recall the rule for rec: $\frac{e \left[x \leftarrow \operatorname{rec} x \ e \right] \Downarrow v}{\operatorname{rec} x \ e \Downarrow v}.$
- Note that var x [x ← rec x (var x)] = rec x (var x).
 Idea:

$$\begin{array}{ll} \operatorname{rec} x \; (\operatorname{var} \; x) & \to \\ \operatorname{var} \; x \; [x \leftarrow \operatorname{rec} \; x \; (\operatorname{var} \; x)] = \\ \operatorname{rec} \; x \; (\operatorname{var} \; x) & \to \\ \vdots \end{array}$$

There is a non-terminating expression

If the program did terminate, then there would be a *finite* derivation of the following form:

$$rec x (var x) \Downarrow v$$

rec x (var x) \le v
rec x (var x) \le v

 Exercise: Prove more formally that this is impossible, using induction on the structure of the semantics.

The halting problem

The extensional halting problem

There is no closed expression halts such that, for every closed expression p,

- ► $halts (\lambda x. p) \Downarrow True()$, if p terminates, and
- ► $halts (\lambda x. p) \Downarrow False()$, otherwise.

Note the abuse of notation:

- The variables *halts* and *p* are not χ variables.
- Meta-variables standing for χ expressions.
- An alternative is to use abstract syntax:

apply *halts* (lambda $\underline{x} p$) \Downarrow const \underline{True} nil apply *halts* (lambda $\underline{x} p$) \Downarrow const \underline{False} nil

(For *distinct* <u>True</u>, <u>False</u> ∈ Const.)
More verbose.

The extensional halting problem

- Assume that *halts* can be defined.
- Define $terminv \in Exp \rightarrow Exp$:

$$\begin{array}{l} terminv \ p = \mathbf{case} \ halts \ (\lambda \ x. \ p) \ \mathbf{of} \\ \{ \mathsf{True}() \rightarrow \mathbf{rec} \ x = x \\ ; \mathsf{False}() \rightarrow \mathsf{Zero}() \\ \} \end{array}$$

 For any closed expression p: terminv p terminates iff p does not terminate.

The extensional halting problem

- ► Now consider the closed expression strange defined by rec p = terminv p (where p ≠ x).
- We get a contradiction:

- Note that we apply *halts* to a program, not to the source code of a program.
- How can source code be represented?

Representing inductively defined sets

Natural numbers

One method:

- Notation: $\lceil n \rceil \in Exp$ represents $n \in \mathbb{N}$.
- Representation:

$$\begin{bmatrix} \text{zero}^{n} &= \text{Zero}() \\ \end{bmatrix}$$
 suc $n^{n} = \text{Suc}(\begin{bmatrix} n \\ n \end{bmatrix})$

Natural numbers

One method:

- Notation: $\lceil n \rceil \in Exp$ represents $n \in \mathbb{N}$.
- Representation:

$$\begin{bmatrix} \text{zero} \end{bmatrix} = \text{Zero}()$$

 $\begin{bmatrix} \text{suc} \ n \end{bmatrix} = \text{Suc}(\begin{bmatrix} n \end{bmatrix})$

Note that the concrete syntax should be interpreted as abstract syntax:

$$\lceil \text{zero} \rceil = \text{const } \underline{Zero} \text{ nil}$$

 $\lceil \text{suc } n \rceil = \text{const } \underline{Suc} (\text{cons} \lceil n \rceil \text{ nil})$

(For some distinct $\underline{Zero}, \underline{Suc} \in Const.$)

If elements in A can be represented, then elements in List A can also be represented:

$$\begin{bmatrix} \mathsf{nil} \\ \mathsf{cons} \\ x \\ xs \end{bmatrix} = \mathsf{Cons}(\begin{bmatrix} x \\ \mathsf{x} \end{bmatrix}, \begin{bmatrix} xs \end{bmatrix})$$

Many inductively defined sets can be treated in the same way.

- ► *Var*: Countably infinite.
- ► Thus each variable x ∈ Var can be assigned a unique natural number code x ∈ N.
- Define $\lceil x \rceil = \lceil code x \rceil$.
- Similarly for constants.

- ► *Var*: Countably infinite.
- ► Thus each variable x ∈ Var can be assigned a unique natural number code x ∈ N.
- Define $\lceil x \rceil^{Var} = \lceil code \ x \rceil^{\mathbb{N}}$.
- Similarly for constants.

$\begin{bmatrix} \operatorname{var} x^{\neg} &= \operatorname{Var}(\lceil x^{\neg}) \\ \operatorname{apply} e_{1} e_{2}^{\neg} &= \operatorname{Apply}(\lceil e_{1}^{\neg}, \lceil e_{2}^{\neg}) \\ \operatorname{Iambda} x e^{\neg} &= \operatorname{Lambda}(\lceil x^{\neg}, \lceil e^{\neg}) \\ \operatorname{rec} x e^{\neg} &= \operatorname{Rec}(\lceil x^{\neg}, \lceil e^{\neg}) \\ \operatorname{const} c es^{\neg} &= \operatorname{Const}(\lceil c^{\neg}, \lceil es^{\neg}) \\ \operatorname{case} e bs^{\neg} &= \operatorname{Case}(\lceil e^{\neg}, \lceil bs^{\neg}) \\ \operatorname{branch} c xs e^{\neg} &= \operatorname{Branch}(\lceil c^{\neg}, \lceil xs^{\neg}, \lceil e^{\neg}) \end{bmatrix}$

Example

- Concrete syntax: $\lambda x. Suc(x)$.
- Abstract syntax:

lambda \underline{x} (const \underline{Suc} (cons (var \underline{x}) nil)) (for some $\underline{x} \in Var$ and $\underline{Suc} \in Const$). • Representation (concrete syntax):

 $\begin{array}{c} \mathsf{Lambda}(\lceil \underline{x} \rceil, \\ \mathsf{Const}(\lceil \underline{Suc} \rceil, \mathsf{Cons}(\mathsf{Var}(\lceil \underline{x} \rceil), \mathsf{Nil}()))) \end{array}$

• If \underline{x} and \underline{Suc} both correspond to zero:

 $\begin{array}{c} \mathsf{Lambda}(\mathsf{Zero}(),\\ \mathsf{Const}(\mathsf{Zero}(),\\ \mathsf{Cons}(\mathsf{Var}(\mathsf{Zero}()),\mathsf{Nil}()))) \end{array}$

Example

Representation (abstract syntax):

```
const Lambda (
  cons (const Zero nil) (
  cons (const Const (
     cons (const Zero nil) (
     cons (const Cons (
       cons (const Var (cons (const Zero nil) nil)) (
       cons (const Nil nil)
       nil)))
     nil)))
  nil))
```


How is $\mathbf{rec} \ x = x$ represented? Assume that x corresponds to 1.

- $\blacktriangleright \ \mathsf{Rec}(\mathsf{X}(),\mathsf{X}())$
- $\blacktriangleright \ \mathsf{Rec}(\mathsf{X}(),\mathsf{Var}(\mathsf{X}()))$
- ► Equals(Rec(X()), X())
- $\blacktriangleright \ \mathsf{Rec}(\mathsf{Suc}(\mathsf{Zero}()),\mathsf{Suc}(\mathsf{Zero}()))$
- ► Rec(Suc(Zero()), Var(Suc(Zero())))
- ► Equals(Rec(Suc(Zero())), Suc(Zero()))

The halting problem, take two

The intensional halting problem (with self-application)

There is no closed expression halts such that, for every closed expression p,

- ▶ $halts \lceil p \rceil \Downarrow True()$, if $p \lceil p \rceil$ terminates, and
- ▶ $halts \lceil p \rceil \Downarrow False()$, otherwise.

With self-application

- Assume that *halts* can be defined.
- Define the closed expression *terminv*:

$$terminv = \lambda p. \mathbf{case} \ halts \ p \ \mathbf{of} \\ \{ \mathsf{True}() \to \mathsf{rec} \ x = x \\ ; \mathsf{False}() \to \mathsf{Zero}() \\ \}$$

- For any closed expression p: terminv 「p 」 terminates iff p 「p 」 does not terminate.
- Thus terminv fterminv terminates iff terminv fterminv does not terminate.

There is no closed expression halts such that, for every closed expression p,

- ▶ $halts \lceil p \rceil \Downarrow True()$, if p terminates, and
- ► $halts \lceil p \rceil \Downarrow False()$, otherwise.

- Assume that *halts* can be defined.
- If we can use *halts* to solve the previous variant of the halting problem, then we have found a contradiction.

Exercise: Define a closed expression code satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Exercise: Define a closed expression *code* satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

$$\lceil \lambda x. x \rceil$$

Exercise: Define a closed expression *code* satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

 $\lceil \lceil \mathsf{lambda} \ \underline{x} \ (\mathsf{var} \ \underline{x}) \rceil \rceil \rceil$

Exercise: Define a closed expression *code* satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

$$\lceil \mathsf{Lambda}(\lceil \underline{x} \rceil, \mathsf{Var}(\lceil \underline{x} \rceil)) \rceil$$

Exercise: Define a closed expression *code* satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

 $\ ^{\ulcorner} \mathsf{Lambda}(\mathsf{Zero}(),\mathsf{Var}(\mathsf{Zero}())) \ ^{\urcorner}$

Exercise: Define a closed expression *code* satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

Exercise: Define a closed expression *code* satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

 $\begin{bmatrix} const \ \underline{Lambda} \\ cons \ (const \ \underline{Zero} \\ nil) \\ nil) \end{bmatrix}^{\neg}$

Exercise: Define a closed expression *code* satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

Exercise: Define a closed expression *code* satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

 $\begin{array}{l} \mathsf{Const}(\lceil \underline{Lambda} \rceil,\\ \mathsf{Cons}(\mathsf{Const}(\lceil \underline{Zero} \rceil,\mathsf{Nil}()),\\ \mathsf{Cons}(\mathsf{Const}(\lceil \underline{Var} \rceil,\\ \mathsf{Cons}(\mathsf{Const}(\lceil \underline{Zero} \rceil,\mathsf{Nil}()),\\ \mathsf{Nil}())),\\ \mathsf{Nil}())), \end{array}$

Exercise: Define a closed expression *code* satisfying

 $code \ulcorner p \urcorner \Downarrow \ulcorner \ulcorner \ulcorner p \urcorner \urcorner$

for any closed expression p.

Example:

 $\begin{array}{lll} & \mathsf{Const}(\mathsf{Suc}(\mathsf{Zero}()), \\ & \mathsf{Cons}(\mathsf{Const}(\mathsf{Suc}(\mathsf{Suc}(\mathsf{Zero}())), \mathsf{Nil}()), \\ & \mathsf{Cons}(\mathsf{Const}(\mathsf{Suc}(\mathsf{Suc}(\mathsf{Zero}()))), \\ & \mathsf{Cons}(\mathsf{Const}(\mathsf{Suc}(\mathsf{Suc}(\mathsf{Zero}())), \mathsf{Nil}()), \\ & \mathsf{Nil}())), \\ & \mathsf{Nil}())) \end{array}$

Define the closed expression halts' by

 $\lambda p. halts Apply(p, code p).$

For any closed expression *p*:

 $\begin{array}{ll}p \ulcorner p \urcorner \text{terminates} & \Rightarrow \\ halts \ulcorner p \ulcorner p \urcorner \urcorner & \Downarrow \text{True}() & \Rightarrow \\ halts \operatorname{Apply}(\ulcorner p \urcorner, \ulcorner p \urcorner \urcorner) & \Downarrow \text{True}() & \Rightarrow \\ halts \operatorname{Apply}(\ulcorner p \urcorner, code \ulcorner p \urcorner) & \Downarrow \text{True}() & \Rightarrow \\ halts' \ulcorner p \urcorner & \Downarrow \text{True}() & \end{array}$

Define the closed expression halts' by

 $\lambda p. halts Apply(p, code p).$

For any closed expression *p*:

 $\begin{array}{ll}p \ulcorner p \urcorner \text{does not terminate} & \Rightarrow \\ halts \ulcorner p \ulcorner p \urcorner \urcorner & \Downarrow \text{False}() & \Rightarrow \\ halts \operatorname{Apply}(\ulcorner p \urcorner, \ulcorner p \urcorner \urcorner) & \Downarrow \text{False}() & \Rightarrow \\ halts \operatorname{Apply}(\ulcorner p \urcorner, code \ulcorner p \urcorner) & \Downarrow \text{False}() & \Rightarrow \\ halts' \ulcorner p \urcorner & \Downarrow \text{False}() & \end{array}$

Thus *halts*' solves the previous variant of the halting problem, and we have found a contradiction.

- Concrete and abstract syntax.
- Operational semantics.
- Several variants of the halting problem.
- Representing inductively defined sets.