
Lecture 3

Arithmetic expressions

This is in Chapter 8 of Pierce’s book.

We presented the language

e ::= true | false | if e e e | 0 | succ e | pred e | isZero e

with the values

v ::= bv | nv bv ::= true | false nv ::= 0 | succ nv

and the one step evaluation rule

if true e0 e1 → e0 if false e0 e1 → e1

e→ e′

if e e0 e1 → if e′ e0 e1

e→ e′

succ e→ succ e′

isZero 0→ true isZero (succ nv)→ false

e→ e′

isZero e→ isZero e′

pred 0→ 0 pred (succ nv)→ nv

e→ e′

pred e→ pred e′

For this language we have some expressions that are in normal form but are not values, e.g.
isZero true or if 0 0 0.

We write stuck(e) if e is in normal form, i.e. ¬∃e′ e→ e′ and e is not a value.

Types

We introduce types
T ::= Nat | Bool

with the following typing rules. What should be noted is that we use the same formalism of
inference rules to describe the evaluation relation and the typing system.

true : Bool false : Bool

e : Bool e0 : T e1 : T

if e e0 e1 : T

0 : Nat

e : Nat

succ e : Nat

e : Nat

pred e : Nat

e : Nat

isZero e : Bool

Note that e = if true 0 true is not of type Nat but we have e→ 0 and 0 : Nat

1

Theorem 0.1 (progress) If e : T then e is a value or ∃e′ e→ e′

Theorem 0.2 (preservation) If e : T and e→ e′ then e′ : T

Theorem 0.3 If e : T and e→∗ e′ then e′ is not stuck.

This expresses that “well-typed programs cannot go wrong” which was first proved by Milner
1978 using a different method.

Confluence

All the evaluation relations we have seen so far are deterministic. A more general notion is to
be confluent: if e→∗ e1 and e→∗ e2 then there exists e′ such that e1 →∗ e′ and e2 →∗ e′.

Theorem 0.4 If → is deterministic it is confluent.

It is simply because in this case if e →∗ e1 and e →∗ e2 then there we have e1 →∗ e2 (and we
can take e′ = e2) or e2 →∗ e1 (and we can take e′ = e1).

Theorem 0.5 If → is confluent and NF (e, e1) and NF (e, e2) then e1 = e2.

We recall that NF (e, e′) means that e→∗ e′ and e′ is in normal form.

Untyped λ-calculus

This is in Chapter 5 of Pierce’s book and in the Agda book of Kokke and Wadler.

We now introduce a programming language such that the predicate ∃e′ NF (e, e′) (halting
problem) is not decidable. Historically, this was actually the first example of a provably non
decidable problem in mathematics (Church, 1936).

e ::= x | e e | λx e

We define the set of free variables of e as follows.

FV (x) = {x} FV (e0 e1) = FV (e0) ∪ FV (e1) FV (λ x e) = FV (e)− {x}

An expression e is closed if we have FV (e) = ∅.
We define subsitution e(t/x) for t closed. It is by case on e

• if e = x then e(t/x) = t

• if e = y 6= x then e(t/x) = y

• if e = e0 e1 then e(t/x) = e0(t/x) e1(t/x)

• if e = λx e′ then e(t/x) = e

• if e = λy e′ with y 6= x then e(t/x) = λy e′(t/x)

2

We then define a value to be a closed expression of the form λx e.

v ::= λx e

We define the call-by-value evaluation relation e→ e′ for e and e′ closed expressions

e→ e′

e e1 → e′ e1

e1 → e′1
v e1 → v e′1 (λx e) v → e(v/x)

Note that if δ = λx x x then δ is a value and δ δ → δ δ, so we have ¬∃e′ NF (δ δ, e′)

Church (1936) has essentially proved the following result.

Theorem 0.6 The predicate ∃e′ NF (e, e′) is not decidable.

3

