Lecture 3

Arithmetic expressions

This is in Chapter 8 of Pierce’s book.
We presented the language

e == true | false | if ee e | 0| succe | pred e | isZero e
with the values
v o= bu | nv buv = true | false nv = 0 | succ nv

and the one step evaluation rule

e— e

if true eg e1 — eg if false eg e1 — €1 if eegep —if e eyer
e—¢e
succ e — succ €/

e— e

isZero 0 — true isZero (succ nv) — false isZero e — isZero e’
e—¢é
pred 0 — 0 pred (succ nv) — nv pred e — pred ¢/

For this language we have some expressions that are in normal form but are not values, e.g.

isZero true or if 0 0 0.
We write stuck(e) if e is in normal form, i.e. =3¢’ e — €’ and e is not a value.

Types

We introduce types
T := Nat | Bool

with the following typing rules. What should be noted is that we use the same formalism of
inference rules to describe the evaluation relation and the typing system.

e:Bool ey:T e :T

true : Bool false : Bool ifeege: T
e : Nat e : Nat e : Nat
0 : Nat succ e : Nat pred e : Nat isZero e : Bool

Note that e = if true 0 true is not of type Nat but we have e — 0 and 0 : Nat

Theorem 0.1 (progress) If e : T then e is a value or 3¢’ e — €’
Theorem 0.2 (preservation) If e : T and e — €’ then e’ : T

Theorem 0.3 Ife: T and e —* ¢’ then €' is not stuck.

This expresses that “well-typed programs cannot go wrong” which was first proved by Milner
1978 using a different method.

Confluence

All the evaluation relations we have seen so far are deterministic. A more general notion is to
be confluent: if e —* e; and e —* eg then there exists ¢/ such that e; —* ¢ and es —* €’

Theorem 0.4 If — is deterministic it is confluent.

It is simply because in this case if e —* e; and e —* es then there we have e; —* es (and we
can take ¢/ = eg) or ea —* €1 (and we can take ¢/ = e1).

Theorem 0.5 If — is confluent and NF(e,e1) and NF (e, ey) then ey = es.

We recall that NF'(e,e’) means that e —* ¢’ and € is in normal form.

Untyped A-calculus

This is in Chapter 5 of Pierce’s book and in the Agda book of Kokke and Wadler.

We now introduce a programming language such that the predicate 3¢’ NF(e,e’) (halting
problem) is not decidable. Historically, this was actually the first example of a provably non
decidable problem in mathematics (Church, 1936).

e i=x|lee| e
We define the set of free variables of e as follows.
FV(z) = {x} FV(ege1) = FV(eg) UFV(ey) FV(Axze)=FV(e) —{z}

An expression e is closed if we have F'V (e) = ().
We define subsitution e(t/x) for ¢ closed. It is by case on e

o if e = x then e(t/x) =1t

o ife=y#xthene(t/z) =y

o if e =eg ey then e(t/z) = ep(t/x) e1(t/x)
o if e=)z ¢ then e(t/z) =¢

o if e = \y ¢ with y # x then e(t/z) = Ay €'(t/x)

We then define a wvalue to be a closed expression of the form Ax e.
v o= Are
We define the call-by-value evaluation relation e — €’ for e and €’ closed expressions

e— e e1 — e}
eel — e e ve —ve) (Ax e) v—e(v/x)

Note that if § = Az « x then § is a value and 6 6 — ¢ d, so we have =3¢’ NF(4 d,¢’)

Church (1936) has essentially proved the following result.

Theorem 0.6 The predicate ¢’ NF (e, ¢€’) is not decidable.

