
Lecture 1

Arithmetic expression

This lecture closely followed Software foundations, Vol. 2, on Small Step Operational Semantics.

The expressions are
e ::= const n | add e e

where
n ::= 0 | succ n

We can define the value as a function from expressions to natural numbers

[[const n]] = n [[add e0 e1]] = [[e0]] + [[e1]]

But we also can define function that refers to the syntactic form of an expression, for instance

depth (constn) = 0 depth (add e0 e1) = 1 + max (depth e0) (depth e1)

We describe leftmost evaluation by the rules

add (const n0) (const n1) → const (n0 + n1)
(C)

e0 → e′0
add e0 e1 → add e′0 e1

(A0)
e1 → e′1

add (const n) e1 → add (const n) e′1
(A1)

We say that e → e′ if it is the conclusion of a derivation tree using these primitive inference
rules.

This defines a one step evaluation relation.
This defines a binary relation on expressions
A binary relation R is said to be deterministic iff we have

∀ e e′ e′′ (R e e′ ∧ R e e′′) ⇒ e′ = e′′

Theorem 0.1 The relation defined by the rule C,A0, A1 is deterministic.

The first exercise is to do the complete proof of this Theorem.
Another way to state this result is that the rule

e → e′ e → e′′

e′ = e′′

is admissible.
We define a predicate on expressions: e is a value iff e is of the form const n. We can describe

the expressions as follows

e ::= v | add e e v ::= const n

and the rule (A1) can be rewritten as

e1 → e′1
add v e1 → add v e′1

(A1)

1



Theorem 0.2 (strong progress) For all e we have that either e is a value or ∃ e′ e → e′.

We say that e is in normal form iff we have ¬∃e′ e → e′. It is direct to see that if e is a value
then e is in normal form. The second exercise is to use strong progress to prove the following.

Theorem 0.3 An expression is a value iff it is in normal form.

2


