
41

Proving properties of programs by structural induction

By R. M. Burstall*

This paper discusses the technique of structural induction for proving theorems about programs.
This technique is closely related to recursion induction but makes use of the inductive definition
of the data structures handled by the programs. It treats programs with recursion but without
assignments or jumps. Some syntactic extensions to Landin's functional programming language
ISWIM are suggested which make it easier to program the manipulation of data structures and
to develop proofs about such programs. Two sample proofs are given to demonstrate the technique,
one for a tree sorting algorithm and one for a simple compiler for expressions.
(First received April 1968 and in revised form August 1968)

Since the problem of proving that computer programs
really do what their inventors allege them to do was dis-
cussed by McCarthy (1963), there has been considerable
progress and proofs have been produced for non-trivial
programs such as a simple compiler (Painter, 1967;
Kaplan, 1967).

Three distinct methods of proof have been used.

(i) Recursion induction (McCarthy, 1963; Cooper,
1966; Kaplan, 1967).

(ii) Structural induction (McCarthy and Painter, 1967;
Painter, 1967; Burstall, 1967).

(iii) Interpretation of flowcharts (Floyd, 1967).

The first two methods apply to programs where
repetition is accomplished by recursion, and jumps and
assignment are avoided. The third applies to programs
using jumps and assignment but not recursion.

Recursion induction and structural induction are
closely related. This paper discusses the latter. It
contains the substance of a talk given at the conference
on 'Mathematical Theory of Computation' at IBM
Yorktown Heights. After that talk Professor McCarthy
pointed out to me just how close is the parallel between
these two methods, and produced an informal but con-
vincing argument that any proof by structural induction
can be turned into one by recursion induction. Thus in
a sense structural induction is merely a special case of
recursion induction, presented in a rather different
manner.

I hope that the presentation of structural induction
here will be of interest because

(i) structural induction is a very powerful tool,
(ii) it can be justified quite easily in terms of the

ordering properties of the data structures denoted
by the programs, using a well-known induction
principle of algebra,

(iii) it is easy to use and seems to give a clear explana-
tion in ordinary mathematical terms of why a
program works as it does.

The proofs presented as examples will be mathe-
matically rigorous but not formalised to the point where
each inference is presented as a mechanical application
of elementary rules of symbol manipulation. This is
deliberate since I feel that our first aim should be to
devise methods of proof which will prove the validity of

non-trivial programs in a natural and intelligible manner.
Obviously we will wish at some stage to formalise the
reasoning to a point where it can be performed by a
computer to give a mechanised debugging service. But
we also need a method and notation which will make
program proofs no more difficult to devise or read than
other parts of mathematics, and which will give the
same degree of insight into the reasoning involved.
This is particularly important if we wish to communicate
the hitherto intuitive reasoning processes of accom-
plished programmers to novices. The reasoning must
be made explicit and rigorous but not necessarily
mechanical. Although mechanised debugging is cer-
tainly very desirable, attempts to restrict the nature of
the proofs devised to enable a computer to check them
may delay the discovery of the variety of mathematical
techniques which are applicable.

The main aim of this paper is to suggest some syn-
tactic devices for writing programs in a way which
makes it easier to derive proofs by structural induction.
By cutting down some of the trivial but tedious mani-
pulation involved the shape of the proof becomes easier
to grasp. A pleasing property is that the form of the
proofs is then very similar to that of the programs to
which they refer. As a preliminary to this I have tried
to clarify the principles on which structural induction
rests and relate them to a well-known induction principle
of algebra. The techniques are demonstrated by
applying them to the proofs of correctness of a tree
sorting algorithm and to the proof of correctness of a
simple compiler for expressions.

If I have succeeded at all in simplifying the presenta-
tion and discovery of proof procedures I hope that a
wider circle of programmers will become interested. I
am convinced that the discipline of stating theorems and
devising proofs will have a very beneficial effect on
programming education and programming practice.

Structures and induction
The induction method which we will use in our proofs

depends on the structure of the data objects which are
manipulated by the program. We must prove not just
that the program will work for specimen input data (the
traditional method of debugging) but that it will work
in general for any input data. To prove that it works
for arbitrarily complex data it is natural to define the

* Department of Machine Intelligence and Perception, University of Edinburgh

42 Burstall

data objects inductively. We then show that it works
for the most elementary data, and that it will work for
data of any degree of complexity provided that it works
for all data of lesser complexity. We may then induce
that it works for all data.

The programs will be written in a simple functional
programming language; I have chosen to use and extend
Landin's ISWIM (Landin, 1966). Before we discuss
the language or notation, however, we must consider
the kind of data object which will be denoted by expres-
sions in the language, and specify the induction prin-
ciples which may be used. In languages such as ALGOL
60 these objects are restricted to integers, reals, truth
values and arrays of these. We will consider here some
unspecified set of atomic objects and structures (often
called 'records' or 'plexes') built out of these.

Thus any expression in the language will denote an
object which will be either an atom or a structure. The
atoms may be any set, finite or infinite. We will include
functions amongst the atoms.

To define the structures we need a finite set of con-
struction operations each of which takes a fixed number
of objects as arguments. A structure is obtained by
taking a sequence of objects (atoms or structures) and
combining them with a construction operation. Thus
each structure is built up from atoms by using a finite
number of construction operations. For example if ay,
a2, etc., are atoms, toy is a 2-place construction operation
and OJ2 a 1-place construction operation, then ay,
a>! (au a{), a)2(coy(a2, oj2(ai))), etc., are structures.

We assume that there are some primitive functions
given among the atoms and that we are able to define
new ones in terms of them. Corresponding to each
construction operation there are to be three functions.

(i) a constructor function, which given the com-
ponents produces the structure as a result,

(ii) a destructor function, which given the structure
produces the components as results, i.e. it pro-
duces an ordered w-tuple whose elements are the
components,

(iii) a predicate function, which recognises whether
an object has been made by using the given con-
struction operation, producing a truth value as its
result.

We assume an identity relation over the atoms and
extend this to the structures as follows:

Two objects are identical if and only if they are
identical atoms or they are obtained from identical
components using the same construction operation.

This is a recursive definition of the extended identity
in terms of the identity for atoms and the destructor and
predicate functions. It may be convenient to define
other equivalence operations but this is the basic identity.
It implies that each structure has a unique set of com-
ponents; in algebraic terms the structures are a word
algebra.

As an example the natural numbers can be defined in
our system by introducing an atom (or alternatively a
construction operation with no arguments) called 0,
and a construction operation with one argument called
successor. We will then have functions to find the
successor of a number (the constructor) to find its pre-
decessor (the destructor) and to recognise a non-zero
number (the predicate). In terms of those we define

identity of numbers and then functions like addition
and multiplication. Another example of structures
would be lists in pure LISP (i.e. LISP without assign-
ment). Circular lists (rings) would, however, be excluded.

What kind of induction principle can be employ in
such a system ?

We define a relation 'constituent' between objects as
follows.

A is a constituent of B if A is identical with B or if A
is a constituent of a component of B.

Thus the constituents of ai2(<*>i(a2> W2(fli))) are Q\, a2,
o>2(tfi), <^\(a2, oj2(fli))) and 0^2(^,(02, <"2(tfi)))- We may
call a constituent of an object which is not identical to
it a proper constituent, i.e. all except the last are proper
constituents.

Now we may state an induction principle:

If for some set of structures a structure has a certain
property whenever all its proper constituents have that
property then all the structures in the set have the
property.

Tn the special case of an atomic structure which has
no proper constituents the clause 'all its proper con-
stituents have that property' is trivially true and we just
have to show that the atomic structure has the required
property. For example, to prove that all lists have a
certain property we show that a list has the property
provided that all its sublists have the property, and in
particular that the null list (which has no sublists) has
the property. This is the induction principle used by
McCarthy and Painter (1966). Curry and Feys (1958)
call it 'structural induction'. It has been used widely by
logicians, e.g. to prove the deduction theorem for
propositional calculus by induction on the structure of
formulas of that calculus.

We can make use of a rather more general principle
to do a wider variety of inductions which has the above
as a special case. The generalisation is not essential for
the understanding of the notation and examples which
follow, and some readers may prefer to omit it at first
reading.

We first note that the constituent relation is a (partial)
ordering. Now if < is a (partial) ordering over a set A,
a is said to be a minimal element of A if there is no a'
in A such that a' < a. We say that A satisfies the
minimum condition if every non-empty subset has a
minimal element. I have taken these definitions from
Cohn (1965) who states the following principle:

1Generalisedprinciple of induction (Noetherian induction}

Let A be an ordered set with minimum condition and
B a subset of A which contains any element a e A
whenever it contains all the elements x e A such that
x < a. Then B = A."

This is the principle which we need to prove theorems
about structures using the relation 'constituent', which
is an ordering which ensures that any set of objects
satisfies the minimum condition. This follows since
each structure has a finite number of components and
is built up by a finite number of construction operations,,
and no structure is identical to a constituent of itself.

We can apply the generalised induction principle to
our objects using the constituent relation itself or indeed
using any other relation defined in terms of it which
satisfies the minimum condition. For example, it may

Properties of programs 43

also be convenient to do induction on «-tuples of objects
by defining an ordering on «-tuples in terms of the
constituent relation.

The generalised induction principle differs in two
respects from the usual 'course of values' induction: it
allows for partial ordering, not just total ordering, and
it allows induction over the transfinite steps. Only the
first of these will be used here.

Before passing on to the question of a convenient
language for programs about structures which will be
easy to validate programs, it is worth making a remark
about assignment. Assignment is a feature of pro-
gramming languages which is not reflected in our dis-
cussion. Data structures in a system with assignment
are quite different from the structures described above;
for example, they may share components or even be
circular, and there are two interesting equivalences on
them (identity of address and isomorphism). They can
be represented in our system by a method which I have
discussed elsewhere (Burstall, 1968). One hopes also
that it may be possible to combine Floyd's method of
obtaining proofs for programs with assignment with the
methods of structural induction or recursion induction.

Some language devices for manipulating structures
In what follows I will take the simple functional

language ISWIM (Landin, 1966) as a basis and suggest
some syntactic extensions for the convenient mani-
pulation of the structures described in the last section.
A principal aim of these extensions is to make it easier
to prove theorems about the programs. In fact the
notation so arranges the programs that the proof can
mirror the program layout very closely. It also gets
rid of extraneous names and the necessity of appealing
to a set of axioms which are used purely to specify the
interrelationship of the names.

ISWIM is based on LISP but is more regular and in
some ways more convenient. It may best be regarded
as a palatable syntactic dress for Church's lambda cal-
culus, and the conversion rules carry over from that
calculus. This close relationship to a calculus with
known logical properties makes it suitable for us here.
I will not give a description of ISWIM or its conversion
rules, referring the reader to Landin's paper. In another
paper (Burstall, 1968) I give an informal description of
ISWIM with some examples. Here T am concerned to
extend the language and the conversion rules to deal
more conveniently with data structures.

An example will serve to introduce the ISWIM
notation, a function to concatenate lists, e.g. concat
((1, 2, 3), (4, 5)) = (1,2, 3, 4, 5)

let rec concat(xsl, xs2) = if null (xsl) then xs2
else let x = car(xs\) and xs3 = cdr(xs\)

cons(x, concat(xs3, xs2))

Here let introduces the definition of a variable or a
function. Simultaneous definition is accomplished by
le t . . . and A recursive definition is indicated by
rec.

ISWIM also allows a sequence of identifiers on the
left of a definition provided that the expression on the
right produces an w-tuple of values rather than just one,
e.g.

let (*, y) = splitup(l)

It even allows nested expressions such as (x,(y, z))
on the left of a definition, but I will not use this facility,
precisely because I wish to generalise it to handle arbit-
rary data structures as well as simple n-tuples.

In proving theorems we wish to convert expressions
in an ISWIM program into other equivalent expressions,
e-g-

let .v = u + 3
X2 + Z

or
let x = u + 3

x2 + z

In general we have

into

into

let y = u + 3

(u + 3)'- + z

(Rule a) let x = £1 1 converts (let j> = £1
£2 / to \ substitute y for x in £2

(Rule iS) let OJ = El
£2 to

substituted forxin£2

(A technicality: we demand that the substitution does
not cause y (in rule a) or a variable of El (in rule [3)
to become bound in £2.)

The rules for the manipulation of conditionals are
almost self-evident; for formal details see McCarthy
(1963), e.g. given El = true we have

if El then E2 else £3 } converts to { £2.

Let us now turn to the extensions for conveniently
manipulating data structures. Consider, for example,
the treatment of lists in LISP and languages derived from
LISP. There is an object

nil
and 5 functions

cons
car, cdr
atom
null

We might use instead of cons, car, cdr and atom, the
3 functions

cons the constructor, to make a list
decons the destructor, to produce the car and the

cdr of the list
compound the predicate, not atom.

I propose further that a single identifier, say cons,
should serve for them all, which one of the three, or
whether all three at once are meant being determined by
context. Thus

Extended ISWIM ISWIM
let x = cons (a, y) means let x = cons(a, y)
let cons (a, y) = x means let (a, y) = decons(x)
x is cons means compound{x)
f{cons) means f(cons, decons, compound)

In the last example cons denotes a single entity which
comprises all three functions, i.e. a special kind of
3-component structure. This is what is passed on as an
actual parameter.

For example, the concatenation of lists (the function

J

44 Burstall

concat defined above) would be defined in our extended
ISWIM

let rec concat(xsl, xs2) = if xsl is cons
then let cons{x, xs3) — xsl

cons (x, concat(xs3,xs2))
else xsl

Similarly we may treat the empty list as a structure
with no components and denote all three functions
involved by nil. Thus

let x = «//()
let nil() = x
x is nil
Anil)

(a declaration of no variables!)

Turning to theorem proving we now see that instead
of the 4 axioms

(i) cons(car(x), cdr(x)) = x
(ii) car(cons{x, y)) = x

(iii) cdr{cons{x, y)) = y
(iv) atom[cons{x, y)) = false

we have the substitution rules (using ->- for 'converts
into')

(i) let cons(xu x2) = cons(eu e2)\ ,{ •,
<f>[xux2] J '

(ii) cons(ei, e2) is cons -> true

Here the x, are variables, the e, are any expressions and
</>[<x(, . . ., o^] is any expression involving alt . . ., <xk.

What is important is that these rules can be stated
quite generally for any construction operation c. The
set of substitution rules needed for dealing with con-
structs is:

(i) let c(x1; . . ., xk) =
<f>[xu . . ., xk]

(ii) c'(ex, . . ., ek) is c

(iii) a is c

> <f>[eu . . ., ek]

> true ifc' = c
else false

false if a is an
atom.

Thus we can apply simplifying transformations to an
extended ISWIM expression by looking at its structure
without reference to any external axioms, provided only
that we know which identifiers correspond to con-
struction operations.

There is no reason why we should not allow more
complex left-hand sides of definitions, e.g.

let cons(x\, cons(x2, xs2)) = xsl
Rule (/) must be extended accordingly

(i) .,xk,c

<f>[xu . . ., xk]
<f>[eu . . ., en]

where ifi is any expression formed entirely from the
xi, . . ., xk and the construction operations cu . . ., cn.

This idea of complex left-hand sides for definitions is
an extension of the ISWIM device for n-tuples (lists),
but it is much more powerful if allowed for any
structures. Brooker (1966) has an analogous device for
resolving structures into components, based on his
compiler compiler notation.

A further extension gives added simplicity. R. J.
Popplestone (private communication) pointed out to
me that in a case such as the definition of concat above
there is some redundancy in writing

if xsl is cons then let cons(x, xs3) = xsl ; . . .

and it could well be replaced by some form mentioning
cons and x?l only once.

I propose that we abbreviate

if e is cx then let cx{xu

else if e is c2 then let c2{xu

. . ., xkl) = e;
. ., xk2) — e;

., xkl)

else if e is cn then let cn(x{, .. ., xkn) = e; (f>n(xu . .., xki)
to

cases e:
ci(xu . . ., xky. <f>i(xi, . . ., xkl)
c2(xu . . .,xk2): <f>2(xh. . .,xk2)

cn(xu. . . , x k t) : <£„(*!,. . .,xkn)

The definition of concat now reads

let rec concat(xsl, xsl) = cases xsl:
cons (x, xs3): cons (x, concat (xs3, xs2))
nil{) : xs2

These cases expressions were partly suggested by a
case switch on type introduced into CPL by M. Richards
(1967).

The conversion rules stated above carry over to cases
expressions. Thus in the above cases expression if e is
Cj(ei, ..., ekl) where c,- is in the set c\, . . ., cn then the
whole expression converts to <f>i(e\, . . ., ek^.

A small point remains to be specified before giving an
example of a proof using these techniques: the means of
introducing construction operations into a program. I
suggest that each construction operation introduce a
new type and that disjunctions of these types should
also be types, e.g. (roughly following Landin 1964)

a cons has an atom and a list
a nil has no components
a list is a cons or a nil.

Two lemmas
In the next two sections I will prove a simple theorem

about compiling expressions, and a theorem about a
sorting program. But before doing so it will be con-
venient first to define two list processing functions and
prove two lemmas about them. We will consider lists
of as where a is any type of object.

An a-list is either a cons or a nil.
A cons has an a and a list.
A nil has no components.

We will use an infixed :: instead of cons, writing x :: xs
for cons(x, xs). (This is not to be confused with the :
used in the layout of cases expressions.)

First we repeat the definition of concat and then
define lit, a function to apply a two-argument function
to all elements of a list with a given starting value
(Barron and Strachey, 1966).

Properties of programs 45

let rec concat(xsl, xsl) = cases xsl:
x :: xsl: x :: concat(xsl, xsl)
nil() : xsl

Note that xsl has been used in the second line instead
of the xs3 used previously. This causes no confusion
with the parameter xsl since this new xsl is a local
variable with scope confined to the expression x ::
concat (xsl, xs2). Such puns emphasise the structure
of the recursion and I shall use them freely.

let rec lit(f, xs, y) — cases xs:
x :: xs: f(x, lit(f, xs, y))
«//(): y

Example ///(+, (2, 3, 4), 1) = (2+ (3+ (4 + 1))) = 10

Lemma lit (f, concat(xsl, xs2), v) = lit(f, xs 1, lit(f, xsl, y))
Proof by structural induction on lists

cases xsl:
x :: xsl:

LHS = lit (f,x:: concat
(xsl, xsl), y)

= f(x, lit(f, concat
(xsl, xsl),y))

RHS = f(x, lit (f,xsl, lit
(f,xsl,y)))

= f(x, lit(f, concat
(xsl, xsl) ,y))

by defn. of concat

by defn. of lit

by defn. of lit

by Induction
Hypothesis

()
LHS = lit(f, xsl, y)
RHS = lit (f, xsl, y)

by defn. of concat
by defn. of lit

Lemma
Suppose xs is an a-list and P a property.
If P(yo), and P(y) implies P(f(x, y)) for any x e a.

then P(lit(f, xs,y0))

Proof P(lit(f,xs, y0)) =
cases xs:

x :: xs : f(x, lit(f, xs, y0)) — true by induction hyp.
These proofs have a general layout very similar to a

function which deals with lists. I have not given any
formal rules for this layout, nor do I wish to do so. We
see, however, that as well as the display of a sequence of
cases the use of local variables in the proof can be very
convenient. Thus when we say x :: xsl, as in the first
case, we mean 'suppose that x is of the form x :: xsV
here the new xsl is a local variable to that case, and it
is convenient to re-use the name xsl for it. Although
it should be possible to formalise the rules for this style
of proof I think that a little more informal exploration
should be done first.

Proof of a tree sort program
As an example of the use of these techniques I will

prove the correctness of a program which sorts a list by
converting it into an ordered tree and then back to a
list. First we need data definitions.

Data definitions
A list is a cons

or nil

A cons has an item
and a list

nil has no components
An item is atomic
A tree is a node

or a tip
or niltree

A node has a tree
and an item
and a tree

A tip has an item
niltree has no components.

The items have an ordering < defined over them.
The item held at a node of the tree is chosen so that the
left subtree has items not greater than it and the right
subtree has items not less than it.

Program
The function sort sorts a list of items into the order

defined by < . It does so by constructing an ordered
tree and then flattening it into a list. A node of the
tree contains two subtrees and an item. All the items
in the left subtree are < the items and the item is < all
items in the right subtree. An example is shown in
Fig. 1.

The function totree adds an item to a tree.

5

1
1 (

3

1 1
1 1
2 I *

Fig. 1. Tree obtained in sorting the list (3, 5, 2, 1, 4) into
the list (1, 2, 3, 4, 5)

let rec totree(i, t) =
cases /:

niltree(): tip(i)
tip(i\) : if /I < i

then node (t, i, tip(i))
else node(tip(i), /I, /)

node(tl,il, tl): if /I < i
then node (tl, i\, totree (i, tl))
else node(totree(i, tl), il, tl)

The function maketree converts a list to a tree.
let maketree (is) = lit(totree, is, niltreeQ)

The function flatten converts a tree to a list.
let rec flatten(t) =

cases t:
niltree() : nil()
tip (i) : i :: nil()
node(tl, il, tl): concat(flatten(tl), flatten(tl))

let sort(is) = flatten(maketree(is))

46 Burstall

Definitions
Before stating formally the theorem about sort we

need some definitions. We define analogues of < for
lists and trees and defined the property of being ordered
for lists and trees. We shall not scruple to use the same
identifier for a family of analogous predicates, e.g. < or
ord, relying on the type of the arguments to make clear
the meaning. The statement of the theorem only requires
the definitions for lists; we give those for trees as well
for use later in the proof.

let rec i < is = cases is:
nil{) : true
il :: is : i < i\ andi < is

let

let

let

rec

rec

rec

isi < isi

ord{is)

i< t

= cases isi:
nil{) :
il :: isi :

= cases is :
nil{) :
i :: is :

= cases t :
niltree{)

true
il < isi and isi < isi

true
i < is and ord{is)

: true
p{) <

node{tl, il, tl) : i < tl and / < tl

let rec tl < tl = cases tl :
niltree{) : true

node{t\l, i, til) : t i l < tl and
tl< til

let rec ord(t 1) = cases t :
niltree{) : true
tip{i) : true
node {tl, i, tl) : ord{tl) and ord{tl)

and rl < / and / < tl

(Note. The relation < between lists is only an ordering
if nil is excluded, similarly for trees. This is untidy but
will not cause trouble.)

Theorem ord{sort{isj). This states that sort produces an
ordered list.

Proof
Lemma If t is ordered then totree{i, t) is ordered
Proof ord{totree{i, t)) =

cases t:
niltree{) : ord{tip{i)) by def. of totree

= true by def. of ord
tip{il) : ordQ&il < /then node{t, i, tip{i))

else node{tip{i), i\, t))
by def. of totree

= true in either case
by def. of ord

node{t\, i\, tl): ord(\iil < i then node {tl, il,
totree{i, tl))

else node{totree{i, t\)
n, ti)

by def. of totree
= true in either case, since / is ordered

and using def. of ord.

Lemma ord{maketree{is))
Proof maketree{is) = lit{totree, is, niltree{)),

and ord {niltree{))

we use the lemma about totree and the lemma about
lit (in the last section)

Lemma if ord{is\) and ord{isl) and isi < isi then
ord{concat{is\, isi))

Proof ord{concat{is\, isi)) = cases isi:
nil{): ord{isl) by def. of concat

= true
i\ :: isi: ord{il :: concat{is\, is2)) by def. of concat

= true since ord{concat{isl, isi)) by ind. hyp.
and by hypothesis il < isi and isi < is2.

Lemma if ord{t) then ord{flatten{t))
Proof ord{flatten{t)) = cases t:

niltree{): ord{nil{)) = true
tip{i) : ord{i :: «//()) = true
node{tl, i, tl) = ord{concat{flatten{t\),flatten{tl))

= true by lemma on concat and ind. hyp.

We now prove the theorem immediately since
ord{maketree{is)) and hence ord{flatten{maketree(is))),
i.e. ord{sort{is)).

Proof of correctness of a compiler for expressions
To demonstrate the use of the devices which we have

suggested for manipulating structures I will now prove
that expressions can be evaluated by executing a sequence
of instructions which act upon a stack. This will be a
simple exercise in the same vein as the proof of the
correctness of a compiler for expressions by McCarthy
and Painter (1966).

The atoms and constructs which we require (in addition
to lists as previously defined) will be as follows:

Source language

An expression is a compound or an identexpr or a
constexpr.

A compound has an operator and an expression and an
expression.

An identexpr has an identifier.
A constexpr has a constant.
Constants, identifiers and operators are atoms.

Semantics

The expressions will denote 'items', as will the con-
stants. The operators will denote functions of items
(we consider only 2-argument functions for simplicity).
The nature of the items and the particular functions
need not be specified. The identifiers will denote
'variables' and we are given a function which associates
each variable with an item (this is the so-called 'state
vector')

items are atoms

There are the following functions (we use xu ... xn => y
to denote the set of all functions from ,v, x . . . x xn to y):

itemofe const => item
varof e identifier => variable
funcofe operator => {item, item => item)
varvalue e variable => item (Note. This is the 'state

vector' or 'environment'.)

Machine language

There are three instructions: to perform a binary
operation on the top of the stack, to load the value of a

Properties of programs 47

variable onto the stack, to load (literally) the value of a
constant onto the stack.

An instruction is an operate or a loadident or a loadconst.
An operate has an operation.
A loadident has an identifier.
A loadconst has a constant.
An mprogram is a //s/ of instructions.

Semantics

A stacA: is a //jf of items.
We first define the value of a source language expres-

sion, then the value of a machine program in terms of a
function to execute an individual instruction and produce
a new stack. Thus

val e expression => item
do e instruction, stack => stack
mpval e mprogram => (stack => stack)

We assume a fixed function varval throughout and do
not include it as a parameter.

let rec val (e) = cases e:
compound(op, e\, el) :

funcof(op
identexpr(id)

constexpr{c)
let do(in, st) = cases in:

(val(el),val(e2))
: varvalue
(varoftfd))

: itemof(c)

operate(pp): let/I :: il :: st = st;

loadident{id)
loadconst(c)

let mpval(mp) — \st.lit(do, mp,

funcof(op)(i\, il) :: st
: varvalue\yarof{id)) :: st
: itemof(c) :: st
st)

We compile an expression into a list of instructions
using

comp e expression => mprogram
let rec comp(e) = cases e:

compound(op, el, e2):
operate(op) :: concat{comp[e\), comp(e2))
identexpr{id) : loadident(id) :: nil()
constexpr(c) : loadconst(c) :: nil()

Theorem The compilation establishes the correct corre-
spondence between val and mpval, i.e.

mpval(comp(e))(s) = val(e) :: s

Thus running a compiled expression on the machine
causes its value to be loaded onto the stack (see Fig. 2).

comp

mpval

load

Fig. 2. Correctness of compilation. The condition is that this
diagram commutes. The function load is loadii) = "ks.i :: s

Although the theorems are rather easy ones I hope
that they will suffice to show the extra perspicuity
obtained by using only one identifier to refer to each
construction operation and by the cases notation as an
extension to ISWIM.

Proof by structural induction on e
cases e:

compound(op, e\,el):
LHS = lit(do, comp(e), s)

= lit(do, operate(pp) :: concat(comp{e\), comp(e2)), s)
= do{operate(op), lit(do, concai(comp(e\), comp(e2)), s))
= do(operate(op), lit(do, comp(e\), lit(do, comp(e2), s)))
= do(pperate(pp), mpval(e\)(mpval(e2)(s)))
= do(pperate(pp), val(e\) :: valiel) :: s)
= funcof(op)(val(e\), val(e2)) :: s

RHS = funcof(op){yal(e\), val(e2)) :: s
identexpr{id):
LHS = lit(do, comp(e), s)

= lit(do, loadident{id) :: nil() , s)
= do{loadident(id), s)
= varvalue{yarof(id)) :: s

RHS = varvalue(varof(id)) :: s
constexpr(c):

LHS = lit(do, comp(e), s)
= lit(do, loadconst{c) :: «//(), s)
= do(loadconst{c), s)
= itemof(c) :: s

RHS = itemoflc) :: s
This completes the proof.

by defn. of mpval
by defn. of comp
by defn. of lit
by the lemma in 'Two lemmas'
by defn. of mpval
by Induction Hyp.
by def. of do
by defn. of val

by defn. of mpval
by defn. of comp
by defn. of lit, twice
by defn. of do
by defn. of val

by defn. of mpval
by defn. of comp
by defn. of /;/, twice
by defn. of do
by defn. of val

48 Burstall

Acknowledgements
I am grateful to P. J. Landin and C. Strachey for

many illuminating discussions about the theory of pro-
gramming, and to Professor J. A. Robinson for helping
me to clarify the ideas presented here. The ideas are

based on the work of Professor J. McCarthy. I would
also like to thank IBM Corporation for making it
possible for me to attend the conference on the Mathe-
matical Theory of Computation and give the talk from
which this paper is derived.

References

BARRON, D. W., and STRACHEY, C. (1966). Programming, Advances in Programming and Non-numerical Computation (ed. L. Fox)
pp. 49-82.

BROOKER, R. A., and ROHL, J. S. (1967). Simply partitioned data structures: the compiler-compiler re-examined, Machine
Intelligence 1 (eds. N. L. Collins and D. Michie). Edinburgh: Oliver and Boyd, pp. 229-239.

BURSTALL, R. M. (1968). Semantics of assignment, Machine Intelligence 2 (eds. E. Dale and D. Michie). Edinburgh: Oliver and
Boyd, pp. 3-20.

COOPER, D. C. (1966). The equivalence of certain computations, Computer Journal, Vol. 9, pp. 45-52.
COHN, P. M. (1965). Universal algebra, New York and London: Harper and Row.
CURRY, H. B., and FEYS, R. (1958). Combinatory logic, Amsterdam: North Holland.
FLOYD, R. W. (1967). Assigning meanings to program, Mathematical Aspects of Computer Science. Amer. Math. Soc. Provi-

dence, Rhode Island, pp. 19-32.
KAPLAN, D. M. (1967). Correctness of a compiler for Algol-like programs, Stanford Artificial Intelligence Memo. No. 48,

Department of Computer Science, Stanford University.
LANDIN, P. J. (1964). The mechanical evaluation of expressions, Computer Journal, Vol. 6, pp. 308-320.
LANDIN, P. J. (1966). The next 700 programming languages, Comm. Ass. Comp. Mach., Vol. 9, pp. 157-166.
MCCARTHY, J. (1963). A basis for a mathematical theory of computation, Computer Programming and Formal Systems (eds.

Braffort and Hirschberg), Amsterdam: North Holland, pp. 33-70.
MCCARTHY, J., and PAINTER, J. A. (1967). Correctness of a compiler for arithmetic expressions, Mathematical Aspects of

Computer Science. Amer. Math. Soc. Providence, Rhode Island, pp. 33-41.
PAINTER, J. A. (1967). Semantic correctness of a compiler for an Algol-like language, Stanford Artificial Intelligence Memo. No. 44

(March 1967), Department of Computer Science, Stanford University.
RICHARDS, M. (1967), Basic CPL reference manual, Memo. M-352, Project MAC, M.I.T.

Note added in proof. Some further work on the topic of this paper is reported in:
LANDIN, P. J., and BURSTALL, R. M. (1969). Programs and their proofs: an algebraic approach. To appear in Machine Intel-

ligence 4 (eds. B. Meltzer and D. Michie). Edinburgh: University Press.

A program for solving word sum puzzles

By R. M. Burstall*
This paper describes a program for solving a class of 'word sum' or 'cryptarithm' puzzles by a
heuristic tree searching method. Formally the problem is to solve a set of simultaneous linear
inequalities with the variables taking integer values.
(First received October 1967 and in revised form May 1968)

1. Introduction

This paper describes a heuristic program for solving a
class of 'word sum' problems sometimes called
'cryptarithms' (Brookes, 1964), which have attracted
some attention as a simple example of problems which
can be solved by brute enumeration but which can better
be tackled with heuristic search reducing strategies. An
example (with acknowledgements to English Electric) is

K D F 9
K D N 2
K D F 6

K D P 1 0

CAREER

Each letter is to be replaced by a different digit to
form a correct addition sum.

Enumeration means scanning 10! possibilities. Can
the computer adopt a more humane method?

2. Mathematical formulation
We can express the problem thus (adding variables for

carries)

9 + 2 + 6 = R+\0v
v + 2F + N + 1 = E + 10w
w + 3D +P = E + lOy
y + 3K + D = R + lOz
z + K = A + 10C

* Department of Machine Intelligence and Perception, University of Edinburgh

