MasterClass on Data-driven Support for Cyber-physical systems DAT300, DIT615

Introduction:

Distributed Cyberphysical systems with Electricilty Networks as example & Course Outline

Networks and Systems Division
Computer Science and Engineering Department
Chalmers University of Technology & Gothenburg University

Briefly on research + education area of the supporting team

Magnus Almgren

M. Papatriantafilou

Babis (Charalampos) Stylianopoulos

Wissam Aoudi

Karl Bäckström

Distributed systems & IoT

(e.g. distributed, locality-based resource management, distributed applications, locality-related topics)

Parallel & stream processing

Efficient
data&computationintensive systems,
multicore processing,
cloud & fog computing

Security, reliability

Survive failures, prevent/detect/ mitigate attacks, secure selforganization, ...

Application domains: energy & other infrastructure systems, production & vehicular systems, networks

Examples Cyber-Physical Systems (CPS)

www.energy-daily.com/images/

http://www.kapsch.net/se/

Cyberphysical systems as layered systems

CPS/IoT => **big** numbers of devices and/or big data rates => **big volumes of events/data**!

e.g., in the traditional El Grid...

Zooming into an el-network

The traditional Electrical Grid

From centralized to distributed generation

One of the enabling components: Smart Meter (Advanced Metering Infrastructure)

A "Smart" Meter:

- □ is a small embedded system
- automates (consumption) index readings
- instantaneous consumption
- in-door display
- time of use tariffs
- the base for the AdvancedMetering Infrastructure

In the CPS cyber-layer

In the CPS cyber-layer

Adaptiveness: eg Demand-side management

household/neighborhood-scale and more

Problem: Fine-grained align supply & consumption; continuous decisions based on info on load, availability, constraints, possibilities ((non)shiftable load, thermal or other storage...) (recall also power island, aka microgrid)

In the CPS cyber-layer

Info needed in near-real-time

[Jonathan Ballon, Chief Strategy Officer, General Electric]

Is store&process (DB) a feasible option?

high-rate sensors, high-speed networks, soc. media, financial records: up to Mmsg/sec; sometimes decisions must be taken **really fast** e.g., fractions of msec, even µsecs.

Data Stream Processing:

- In memory, in-network, distributed
- Locality, use of available resources
- Efficient one-pass analysis & filter

real-time)"

... system: Big! ... data: Big! but: locality!

i.e. BIG! Volume: terabytes – peta/exa/zetabytes

Good! Process on-the fly can eq filter peta+bytes to megabytes Velocity: streams

with various relevance domains; locality: good! Variety: various types of data ...

... and one D": Distribution

Not always necessary to centralize => allow multiple actors, data-streaming, scaling, privacy, ...

Data gathering&processing in Sensor Networks

- nodes produce relevant information about their vicinity periodically.
- Data is conveyed to an information sink for further processing.

• • • •

Processing/streaming/aggregation

Work with routing, streaming, coding, processing schemes to deliver needed info to the sink

In the Power Grid cyber-layer

Imperative to address cyber security from the start

Cybersecurity aspects

□ **E.g.**

- Possible to destabilize parts of the system (-> blackouts) by inappropriate access to e.g. remote on/off possibilities
- Avoid the Internet examples of de facto standards
 - info-security from the start
 - Distributed/collaborative security methods can help to deal with scale

Reflecting

Cyberphysical systems: possibilities and challenges shake hands

@NS division (approx 25 pers): Cyberphysical systems research

Energy, buildings, production

- data-drivendistributedmonitoring,resource planning
- Microgrids demo work

On-the-fly data processing & analysis

- -Data validation, monitoring (ML, LiDAR) ...
- -Security, privacy

Energy/efficient computation

- streaming , parallel/multicore computing, incl. on embedded processors

Vehicular systems

- data-driven situationawareness
- communication
- &coordination, e.g. crossings
- Gulliver testbed

Other examples cyber-physical systems

Example CPS data-processing ++: Distributed monitoring

Fig: SSF FiC project

Recent¤t related research project support @NS

CHALMERS AoA Building Futures, Energy, ICT, Transport

Magnus Almgren

Vincenzo Gulisano

Olaf Landsiedel

Tomas Olovsson

Marina Papatriantafilou

Elad Schiller

Philippas Tsigas

In this course:

Topics:

- System perspective: eg adaptiveness, distributed resource management in electricity grids
- Enablers: Communication, Data processing
- Properties: Cyber-security

Structure, todo's:

- Projects
- Lectures by the supporting team + collaborators and industry
- Self-study, projects and presentations

How?

Cf Administrative Details.pptx