
J� Functional Programming � ���� ������ January ���	 c� ���	 Cambridge University Press �

Algorithm � Strategy � Parallelism

P�W� TRINDER

Department of Computing Science� University of Glasgow� Glasgow� UK

K� HAMMOND

Division of Computing Science� University of St Andrews� St Andrews� UK

H��W� LOIDL AND S�L� PEYTON JONES y

Department of Computing Science� University of Glasgow� Glasgow� UK

Abstract

The process of writing large parallel programs is complicated by the need to specify both
the parallel behaviour of the program and the algorithm that is to be used to compute its
result� This paper introduces evaluation strategies� lazy higher�order functions that control
the parallel evaluation of non�strict functional languages� Using evaluation strategies� it
is possible to achieve a clean separation between algorithmic and behavioural code� The
result is enhanced clarity and shorter parallel programs�
Evaluation strategies are a very general concept� this paper shows how they can be

used to model a wide range of commonly used programming paradigms� including divide�
and�conquer� pipeline parallelism� producer�consumer parallelism� and data�oriented par�
allelism� Because they are based on unrestricted higher�order functions� they can also
capture irregular parallel structures�
Evaluation strategies are not just of theoretical interest� they have evolved out of our

experience in parallelising several large�scale parallel applications� where they have proved
invaluable in helping to manage the complexities of parallel behaviour� These applications
are described in detail here� The largest application we have studied to date� Lolita� is
a ������ line natural language parser� Initial results show that for these programs we
can achieve acceptable parallel performance� while incurring minimal overhead for using
evaluation strategies�

� Writing Parallel Programs

While it is hard to write good sequential programs� it can be considerably harder

to write good parallel ones� At Glasgow we have worked on several fairly large

parallel programming projects and have slowly� and sometimes painfully� developed

a methodology for parallelising sequential programs�

The essence of the problem facing the parallel programmer is that� in addition

to specifying what value the program should compute� explicitly parallel programs

y This work is supported by the UK EPSRC 	Engineering and Physical Science Research
Council
 AQUA and Parade grants�

� Trinder and others

must also specify how the machine should organise the computation� There are many

aspects to the parallel execution of a program� threads are created� execute on a

processor� transfer data to and from remote processors� and synchronise with other

threads� Managing all of these aspects on top of constructing a correct and e�cient

algorithm is what makes parallel programming so hard� One extreme is to rely on

the compiler and runtime system to manage the parallel execution without any

programmer input� Unfortunately� this purely implicit approach is not yet fruitful

for the large�scale functional programs we are interested in�

A promising approach that has been adopted by several researchers is to dele�

gate most management tasks to the runtime system� but to allow the programmer

the opportunity to give advice on a few critical aspects� This is the approach we

have adopted for Glasgow Parallel Haskell �GpH	� a simple extension of standard

non�strict functional language Haskell �Peterson et al�� �

�	 to support parallel

execution�

In GpH� the runtime system manages most of the parallel execution� only re�

quiring the programmer to indicate those values that might usefully be evaluated

by parallel threads� and since our basic execution model is a lazy one� perhaps also

the extent to which those values should be evaluated� We term these programmer�

speci�ed aspects the programs dynamic behaviour� Even with such a simple parallel

programming model we �nd that more and more of such code is inserted in order to

obtain better parallel performance� In realistic programs the algorithm can become

entirely obscured by the code describing the dynamic behaviour�

��� Evaluation Strategies

Evaluation strategies use lazy higher�order functions to separate the two concerns

of specifying the algorithm and specifying the programs dynamic behaviour� A

function de�nition is split into two parts� the algorithm and the strategy� with

graph reduction allowing values de�ned in the former to be manipulated in the

latter� The algorithmic code is consequently uncluttered by details relating only to

the parallel behaviour�

The primary bene�ts of the evaluation strategy approach are similar to those

that are obtained by using laziness to separate the di�erent parts of a sequential

algorithm �Hughes� �
��	� the separation of concerns makes both the algorithm and

the dynamic behaviour easier to comprehend and modify�

Because evaluation strategies are written using the same language as the algo�

rithm� they have several other desirable properties�

� Strategies are powerful� simpler strategies can be composed� or passed as

arguments to form more elaborate strategies�
� Strategies can be de�ned over all types in the language�
� Strategies are extensible� the user can de�ne new application�speci�c strate�

gies�
� Strategies are type safe� the normal type system applies to strategic code�
� Strategies have a clear semantics� which is precisely that used by the algo�

rithmic language�

Algorithm � Strategy � Parallelism �

Evaluation strategies have been implemented in GpH and used in a number of

large�scale parallel programs� including data�parallel complex database queries� a

divide�and�conquer linear equation solver� and a pipelined natural�language pro�

cessor� Lolita� Lolita is large� comprising over ��K lines of Haskell� Our experience

shows that strategies facilitate the top�down parallelisation of existing programs�

��� Structure of the Paper

The remainder of this paper is structured as follows� Section � describes parallel

programming in GpH� Section � introduces evaluation strategies� Section � shows

how strategies can be used to specify several common parallel paradigms including

pipelines� producer�consumer and divide�and�conquer parallelism� Section � dis�

cusses the use of strategies in three large�scale applications� Section � discusses

related work� Finally� Section � concludes�

� Introducing Parallelism

Parallelism is introduced in GpH by the par combinator� which takes two argu�

ments that are to be evaluated in parallel� The expression p �par� e �here we use

Haskells in�x operator notation	 has the same value as e� Its dynamic behaviour

is to indicate that p could be evaluated by a new parallel thread� with the parent

thread continuing evaluation of e� We say that p has been sparked� Since the thread

is not necessarily created� p is similar to a lazy future �Mohr et al�� �

�	� Note

that par di�ers from parallel composition in process algebras such as CSP �Hoare�

�
��	 or CCS �Milner� �
�
	 by being an asymmetric operation � at most one new

parallel task will be created�

Since control of sequencing can be important in a parallel language �Roe� �

�	�

we therefore introduce a sequential composition operator� seq� If e� is not �� the

expression e� �seq� e� has the value of e�� otherwise it is �� The corresponding

dynamic behaviour is to evaluate e� to weak head normal form �WHNF	 before

returning e��

Since both par and seq are projection functions� they are vulnerable to being

altered by optimising transformations� and care must be taken in the compiler

to protect them� The implementation of the compositions is described more fully

in �Trinder et al�� �

�	�

��� Simple Divide�and�Conquer Functions

Let us consider the parallel behaviour of pfib� a very simple divide�and�conquer

program� If n is greater than �� then pfib �n��� is sparked� and the thread con�

tinues to evaluate pfib �n���� Figure � shows a process diagram of the execution

of pfib ��� Each node in the diagram is a function application� and each arc is the

data value� in this case an integer� used to communicate between the invocations�

Note that seq has a higher precedence than par�

� Trinder and others

pfib 15

pfib 14 pfib 13

pfib 13 pfib 12 pfib 12 pfib 11

Fig� �� p�b Divide�and�conquer Process Diagram

pfib n

	 n
� � � �

	 otherwise � n� �par� n� �seq� n��n���

where

n� � pfib �n���

n� � pfib �n���

Parallel quicksort is a more realistic example� and we might write the following

as a �rst attempt to introduce parallelism�

quicksortN �a� �� �a�

quicksortN �� � ��

quicksortN �x� � �x�

quicksortN �xxs� � losort �par�

hisort �par�

losort �� �xhisort�

where

losort � quicksortN �y	y
� xs� y
 x�

hisort � quicksortN �y	y
� xs� y �� x�

The intention is that two threads are created to sort the lower and higher halves of

the list in parallel with combining the results� Unfortunately quicksortN has almost

no parallelism because threads in GpH terminate when the sparked expression is

WHNF� In consequence� all of the threads that are sparked to construct losort and

hisort do very little useful work� terminating after creating the �rst cons cell� To

make the threads perform useful work a forcing function like forceList below� can

be used� The resulting program has the desired parallel behaviour� and a process

network similar to pfib� except that complete lists are communicated rather than

integers�

forceList �a� �� ��

forceList �� � ��

forceList �xxs� � x �seq� forceList xs

Algorithm � Strategy � Parallelism �

f x0

parMap f [x0, x1, ... xn]

f x1 f xn....

Fig� � parMap Process Diagram

quicksortF �� � ��

quicksortF �x� � �x�

quicksortF �xxs� � �forceList losort� �par�

�forceList hisort� �par�

losort �� �xhisort�

where

losort � quicksortF �y	y
� xs� y
 x�

hisort � quicksortF �y	y
� xs� y �� x�

��� Data�Oriented Parallelism

Quicksort and p�b are examples of �divide�and�conquer	 control�oriented paral�

lelism where subexpressions of a function are identi�ed for parallel evaluation�Data�

oriented parallelism is an alternative approach where elements of a data structure

are evaluated in parallel� A parallel map is a useful example of data�oriented paral�

lelism� for example the parMap function de�ned below applies its function argument

to every element of a list in parallel�

parMap �a �� b� �� �a� �� �b�

parMap f �� � ��

parMap f �xxs� � fx �par� fxs �seq� �fxfxs�

where

fx � f x

fxs � parMap f xs

The de�nition above works as follows� fx is sparked� before recursing down the list

�fxs	� only returning the �rst constructor of the result list after every element has

been sparked� The process diagram for parMap is given in Figure �� If the function

argument supplied to parMap constructs a data structure� it must be composed

with a forcing function in order to ensure that the data structure is constructed in

parallel�

��� Evaluation Degree � Parallelism � Dynamic Behaviour

As the examples above show� a parallel function must describe not only the algo�

rithm� but also some important aspects of how the parallel machine should organise

� Trinder and others

the computation� i�e� the functions dynamic behaviour� In GpH� there are two com�

ponents to this dynamic behaviour�

� Parallelism control� which speci�es what threads should be created� and in

what order� using par and seq�

� Evaluation degree� which speci�es how much evaluation each thread should

perform� In the examples above� forcing functions were used to describe the

evaluation degree�

Evaluation degree is closely related to strictness� If the evaluation degree of a

value in a function is less than the programs strictness in that value then the

parallelism is conservative� i�e� no expression is reduced in the parallel program

that is not reduced in its lazy counterpart� In several programs we have found it

useful to evaluate some values speculatively� That is� the evaluation�degree may

usefully be more strict than the lazy function�

In the examples above� the code describing the algorithm and dynamic behaviour

are intertwined� and as a consequence both have become rather opaque� In larger

programs� and with carefully�tuned parallelism� the problem is far worse�

� Strategies Separate Algorithm from Dynamic Behaviour

The driving philosophy behind evaluation strategies is that it should be possible to

understand the semantics of a function without considering its dynamic behaviour�

��� Evaluation Strategies

An evaluation strategy is a function that speci�es the dynamic behaviour of an

algorithmic function� In order to allow evaluation strategies to specify the degree to

which the algorithmic functions result should be evaluated� they are parameterised

over the result of the algorithmic function� Since a strategys only purpose is to

de�ne dynamic behaviour� it is de�ned to return the unit type ���

type Strategy a � a �� ��

Strategies Controlling Evaluation Degree The simplest strategies introduce no par�

allelism� they specify only the evaluation degree� The simplest strategy is termed r�

and performs no reduction at all� This is surprisingly useful� e�g� when evaluating

a pair the �rst element can be evaluated but not the second�

r� Strategy a

r� � � ��

Because reduction to WHNF is the default evaluation degree in GpH� a strategy

to reduce a value of any type to WHNF is easily de�ned�

rwhnf Strategy a

rwhnf x � x �seq� ��

Algorithm � Strategy � Parallelism �

A data value �but not a function value	 can also be reduced further to normal

form �NF	 using rnf� Since we wish to de�ne only one rnf operation for a list of

values of any type� the obvious solution is to use a Haskell type class� NFData� to

overload the rnf operation� Because NF and WHNF coincide for base types like

integers and booleans� the default method for rnf is rwhnf� For constructed types

an instance of NFData must be declared specifying how to reduce a value of that

type to normal form� Such an instance relies on its element type being in class

NFData� Consider lists and pairs for example�

class NFData a where

rnf Strategy a

rnf � rwhnf

instance NFData a �� NFData �a� where

rnf �� � ��

rnf �xxs� � rnf x �seq� rnf xs

instance �NFData a� NFData b� �� NFData �a�b� where

rnf �x�y� � rnf x �seq� rnf y

Using Strategies A strategy is applied by the using function� The expression

x �using� s is a projection on x� i�e� it is both a retraction �x �using� s is less de�

�ned than x	 and idempotent ��x �using� s� �using� s � x �using� s�� The

using function is de�ned to have a lower precedence than any other operator�

using a �� Strategy a �� a

using x s � s x �seq� x

Note that the use of seq in the de�nition above allows some control over the

timing of results� For example� the following sequential version of quicksortwill not

return any part of its result until the entire list is sorted� This could be signi�cant

if the sort formed part of a pipeline� for example�

quicksortFS �� � ��

quicksortFS �x� � �x�

quicksortFS �xxs� � losort �� �xhisort� �using� rnf

where

losort � quicksortFS �y	y
� xs� y
 x�

hisort � quicksortFS �y	y
� xs� y �� x�

Combining Strategies Because evaluation strategies are just normal higher�order

functions� they can be combined using the full power of the language� e�g� passed

as parameters or composed using the function composition operator� Strategies are

most commonly composed with seq or par� Many useful strategies are higher�order�

for example� seqList is a strategy that sequentially applies a strategy to every

element of a list� The strategy seqList r� evaluates just the spine of a list� and

� Trinder and others

seqList rwhnf evaluates every element of a list to WHNF� There are analogous

functions for every constructed type�

seqList Strategy a �� Strategy �a�

seqList strat �� � ��

seqList strat �xxs� � strat x �seq� �seqList strat xs�

Parallel Strategies A strategy can specify parallelism�sequencing as well as evalu�

ation degree� Strategies specifying control�oriented parallelism use par and seq to

specify which subexpressions of a function are to be evaluated in parallel� and in

what order� Quicksort uses divide�and�conquer control�oriented parallelism� and in

the following version the evaluation degree is speci�ed by rnf� As before� the two

subexpressions� losort and hisort are selected for parallel evaluation�

quicksortS �xxs� � losort �� �xhisort� �using� strategy

where

losort � quicksortS �y	y
� xs� y
 x�

hisort � quicksortS �y	y
� xs� y �� x�

strategy result � rnf losort �par�

rnf hisort �par�

rnf result

Strategies specifying data�oriented parallelism must describe the dynamic be�

haviour in terms of some data structure� For example parList is similar to seqList�

except that it applies the strategy to every element of a list in parallel�

parList Strategy a �� Strategy �a�

parList strat �� � ��

parList strat �xxs� � strat x �par� �parList strat xs�

Strategic functions are particularly elegant when their result is a data structure

that describes the parallelism� Parallel map is just such a function�

parMap Strategy b �� �a �� b� �� �a� �� �b�

parMap strat f xs � map f xs �using� parList strat

The strat parameter determines the dynamic behaviour of each element of the

result list� and hence parMap is parametric in some of its dynamic behaviour�

Such strategic functions can be viewed as a dual to the algorithmic skeleton ap�

proach �Cole� �
��	� This relationship is discussed further in Section ����

� Evaluation Strategies for Parallel Paradigms

This section demonstrates the �exibility of evaluation strategies by showing how

they express some common parallel paradigms� We cover data�oriented� divide�and�

conquer� producer�consumer� and pipeline parallelism�

Algorithm � Strategy � Parallelism

��� Data�oriented Parallelism

In the data�oriented paradigm� elements of a data structure are evaluated in parallel�

Complex database queries are more realistic examples of data�oriented parallelism

than parMap� The basis of one such query is a relation between parts indicating that

one part is made from zero or more others� The task is to list all component parts

of a given part� including all the sub�components of those components etc� �Date�

�
��	�

Main Sub� Quantity

Component Component

P� P� �

P� P� �

P� P� �

P� P� �

P� P� �

A na��ve function explode lists the components of a single part� main� The full

program generates a bill of material relation� as a list of tuples� then explodes a

sequence of part numbers before printing the number of parts in each explosion�

explode parts main � �p 	 �m�s�q�
� parts� m �� main�

p
� �sexplode parts s��

doQuery lo hi bomSize � map length explodeList

where

bom � generate bomSize

explodeList � map �explode bom� �lo��hi�

The program is inherently data parallel because the explosion of one part is not

dependent on the explosion of any other part� Constructing the bill of material

in memory is atypical of a query program� a more realistic program would read

it in from disk� For this reason we do not parallelise the construction generate�

Once the bill exists� the parts are exploded in parallel� This dynamic behaviour is

speci�ed by adding a strategy to doQuery�

doQuery lo hi bomSize � map length explodeList �using� strat

where

bom � generate bomSize

explodeList � map �explode bom� �lo��hi�

strat result � �rnf bom� �seq�

�parList rnf explodeList�

It is easy to modify both algorithm and strategy� although changing the algorithm

may also entail specifying new dynamic behaviour� It is� however� easy to modify

�� Trinder and others

the strategy without changing the algorithm� For example� to calculate the lengths

in parallel we simply add �seq� parList result to the strategy�

��� Divide�and�conquer Parallelism

Divide�and�conquer is probably the best�known parallel programming paradigm�

The problem to be solved is decomposed into smaller problems that are solved in

parallel before being recombined to produce the result� Our example is taken from

a parallel linear equation solver that we wrote as a realistic medium�scale parallel

program �Loidl et al�� �

�	� whose overall structure is described in Section ����

Here is the speci�cation of a determinant on a square matrix�

� Given� a matrix �A	��i�j�n

� Compute� for some � � i � n�
P

��j�n���	i�jAi�jdet�A�	

where A� � A cancelling row i� and column j

sum �l�par �using� parList rnf�

where

l�par � map determine� �jLo		jHi

determine� j � �if pivot � � then

signpivotdet� �using� strategyD

else

�� �using� sPar sign

where

sign � if �even �j�jLo�� then � else ��

pivot � �head mat� �� �j���

mat� � SqMatrixC ��iLo�jLo���iHi���jHi����

�map �newLine j� �tail mat��

det� � determinant mat�

strategyD r �

parSqMatrix �parList rwhnf� mat� �seq�

det� �par�

r� r

For comparison� Appendix A contains sequential and directly parallel versions of

this function� At �rst sight� it may not be obvious that this is a divide�and�conquer

program� The crucial observation is that a determinant of a matrix of size n is

computed in terms of the determinants of n matrices of size n���

The �rst strategy� parList rnf speci�es that the determinant of each of the

matrices of size n�� should be calculated in parallel� There are two strategies in

determine�� The �rst� sPar sign speci�es that the sign of the determinant should

be calculated in parallel with the conditional �sPar is a strategy corresponding to

par� i�e� x �par� e � e �using� sPar x	� Only if the pivot is non�zero is the

second strategy� strategyD used� It speci�es that the sub�matrix �mat�	 is to be

constructed in parallel before its determinant is computed in parallel with the result�

��� Producer	Consumer Parallelism

In another common paradigm� a process consumes some data structures produced

by another process� In a compiler� for example� an optimising phase might consume

Algorithm � Strategy � Parallelism ��

sieveAhead print

Fig� �� Producer�Consumer Process Diagram

the parse�tree produced by the parser� The data structure can be thought of as a

bu�er that the producer �lls and the consumer empties�

For simplicity� we will assume that the bu�er is represented by a list� and consider

just two alternatives� a one�place bu�er and an n�place bu�er� There are many other

possible ways to express producer�consumer parallelism� for example in order to

improve granularity the producer could compute the next n�element �chunk� of the

list rather than just a single value�

One�Place Bu�er In order to �ll a one�place bu�er� when the head of the bu�er�

list is demanded� the producer should immediately evaluate the second element� In

e�ect the producer speculatively assumes that the next element in the list will be

used in the computation� This gives parallel behaviour because� if there is a free

processor� a producer�thread can construct the second element� while the consumer

is consuming the �rst� If good parallelism is to result� then the time to produce

an element must be similar to the time to consume it� The second element of the

list acts as a one�element bu�er� The simple sieveAhead function below eagerly

produces an extra prime number using Eratosthenes algorithm� It uses a simple

strategy parListNth to evaluate the second element of a list in parallel �since

Haskell lists are enumerated from �� the parameter to parListNth is � rather than

�	� The process diagram for producer�consumer parallelism is very simple� a pro�

ducing process communicating via the bu�er with the consumer� Figure � show the

diagram for a program that prints the result of a sieveAhead invocation

parListNth �� Int �� Strategy a �� Strategy �a

parListNth n strat xs

� null rest � ��

� otherwise � strat �head rest� �par� ��

where

rest � drop n xs

sieveAhead �p�xs� �

p��sieveAhead �x � x �� xs� x �mod� p �� �
� �using� parListNth � rwhnf

n�Place Bu�er To provide an n�place bu�er� the producer must initially evaluate

n elements� and whenever the head of the bu�er�list is demanded� it must evaluate

the nth element� In e�ect the producer eagerly �lls an n�element bu�er� Evaluating

the �rst n elements of a list in parallel is easily speci�ed by parListN� analogous

to parListNth� Unfortunately constructing the nth element every time the head

is demanded cannot be speci�ed by a strategy that is independent of the result�

Instead� the strategy for generating the rest of the result must be built into the

result� We use a function fringeList whose semantics are the identity on lists� but

whose dynamic behaviour is to spark the nth element when the �rst is demanded�

�� Trinder and others

map (* 2) map fac map fib

Fig� �� Pipeline Process Diagram

seqListNth is analogous to parListNth� As an example� doExplode is a database

query function that maps an explode function over a range of elements in a list�

The list of explosions acts as a three�element bu�er�

parListN �� �Integral b� �� b �� Strategy a �� Strategy �a

parListN n strat �
 � ��

parListN � strat xs � ��

parListN n strat �x�xs� � strat x �par� �parListN �n��� strat xs�

fringeList �� �Integral a� �� a �� Strategy b �� �b
 �� �b

fringeList n strat �
 � �

fringeList n strat �r�rs� � seqListNth n strat rs �par�

r�fringeList n strat rs

doExplode lo hi bom �

fringeList � rnf result �using� parListN � rnf

where

result � map �explode bom� �lo		hi

��� Pipelines

In pipelined parallelism a sequence of stream�processing functions are composed
together� each consuming the stream of values constructed by the previous stage
and producing new values for the next stage� The generic pipeline combinator
uses strategies to describe a simple pipeline� where every stage constructs values of
the same type� and the same strategy is applied to the result of each stage�

pipeline �� Strategy a �� a �� �a��a
 �� a

pipeline strat inp �
 � inp

pipeline strat inp �f�fs� �

pipeline strat out fs �using� sPar �strat out�

where

out � f inp

list � pipeline rnf ��		�
 �map fib� map fac� map � ��

A pipeline process diagram has a node for each stage� and an arc connecting one

stage with the next� Typically an arc represents a list or stream of values passing

between the stages� Figure � gives the process diagram for the example above�
Several of the large applications described in the next section use more elaborate

pipelines where di�erent types of values are passed between stages� and stages may
use di�erent strategies� For example� the back end in Lolitas top level pipeline is
as follows�

Algorithm � Strategy � Parallelism ��

back�end inp opts

� r� �using� strat

where

r� � unpackTrees inp

r� � unifySameEvents opts r�

r� � storeCategoriseInformation r�

r� � unifyBySurfaceString r�

r� � addTitleTextrefs r�

r� � traceSemWhole r�

r� � optQueryResponse opts r�

r� � mkWholeTextAnalysis r�

strat x � �parPair rwhnf �parList rwhnf�� inp �par�

�parPair rwhnf �parList �parPair rwhnf rwhnf��� r� �par�

rnf r� �par�

rnf r� �par�

rnf r� �par�

rnf r� �par�

rnf r� �par�

�parTriple rwhnf �parList rwhnf� rwhnf� r� �par�

��

A disadvantage of using strategies like this over long pipelines is that every in�

termediate structure must be named �r���r�	� Because pipelines are so common

we have introduced two special combinators� parameterised sequential and parallel

function application� The parameter speci�es the strategy that is used on the ar�

gument� Therefore� we achieve the separation of algorithm and dynamic behaviour

by using strategies only as the second argument to a parameterised function appli�

cation�
The de�nition of the new combinators is as follows�

infixl � ���� ��

����� ����� �� �a �� b� �� Strategy a �� a �� b

���� f s � � x �� f x �using� � � �� s x �seq� ��

����� f s � � x �� f x �using� � � �� s x �par� ��

We have also de�ned similar combinators for parameterised function composition�
Pipelines can now be expressed more concisely� while retaining textual separation
of strategic and algorithmic code�

back�end inp opts �

mkWholeTextAnalysis ��� parTriple rwhnf �parList rwhnf� rwhnf �

optQueryResponse opts ��� rnf �

traceSemWhole ��� rnf �

addTitleTextrefs ��� rnf �

unifyBySurfaceString ��� rnf �

storeCategoriseInf ��� rnf �

unifySameEvents opts ��� parPair rwhnf �parList �parPair rwhnf rwhnf�� �

unpackTrees ��� parPair rwhnf �parList rwhnf� �

inp

�� Trinder and others

� Large Parallel Applications

�� General

We have written a number of medium�scale parallel programs� and are currently

paralleling a large�scale program� Lolita ���K lines	� This section discusses the use of

evaluation strategies in three programs� one divide�and�conquer� one pipelined and

another data�oriented� The methodology we are developing out of our experiences

is also described�

To date� parallel programming has been most successful in addressing problems

with a regular structure and large grain parallelism� However� many large scale ap�

plications have a number of distinct stages of execution� and good speedups can only

be obtained if each stage is successfully made parallel� The resulting parallelism is

highly irregular� This makes understanding and controlling the dynamic behaviour

of a large program hard� A major motivation for investigating our predominantly�

implicit approach is that we believe that it is very hard to gain good speedups for

large programs with irregular parallelism in languages that require the program�

mer to control many aspects of parallelism� e�g� thread creation� placement and

synchronisation� etc�

In large applications� evaluation strategies are de�ned in three kinds of mod�

ules� Strategies over Prelude types such as lists� tuples and integers are de�ned in

a Strategies module� Strategies over application�speci�c types are de�ned in the

application modules� Currently� strategies over library types are de�ned in private

copies of the library modules� Language support for strategies which automatically

derived strategies over constructed types would greatly reduce the amount of code

to be modi�ed and avoid this problem of reproducing libraries�

�� Methodology

Our emerging methodology for parallelising large non�strict functional programs

is outlined below� The approach is top�down� starting with the top level pipeline�

and then parallelising successive components of the program� The �rst �ve stages

are machine�independent� Our approach uses several ancillary tools� including time

pro�ling �Sansom and Peyton Jones� �

�	 and the GranSim simulator �Hammond

et al�� �

�	� Several stages use GranSim� which is fully integrated with the GUM

parallel runtime system �Trinder et al�� �

�	� A crucial property of GranSim is that

it can be parameterised to simulate both real architectures and an idealised machine

with� for example� zero�cost communication and an in�nite number of processors�

The stages in our methodology are as follows�

�� Sequential implementation� Start with a correct implementation of an

inherently�parallel algorithm or algorithms�

�� Parallelise Top�level Pipeline� Most non�trivial programs have a number

of stages� e�g� lex� parse and typecheck in a compiler� Pipelining the output

of each stage into the next is very easy to specify� and often gains some

parallelism for minimal change�

Algorithm � Strategy � Parallelism ��

�� Time Pro	le the sequential application to discover the �big eaters�� i�e� the

computationally intensive pipeline stages�

�� Parallelise Big Eaters using evaluation strategies� It is sometimes possible

to introduce adequate parallelism without changing the algorithm� otherwise

the algorithm may need to be revised to introduce an appropriate form of

parallelism� e�g� divide�and�conquer or data�parallelism�
�� Simulate First� Using an idealised simulator like hbcpp or GranSim elim�

inates some of the complexities of a real parallel implementation� like task

migration� communication times etc� This is a �proving� step� if the program

isnt parallel on an idealised machine it wont be on a real machine� A simu�

lator is often easier to use� more heavily instrumented� and can be run on a

workstation�

�� Simulate Second� GranSim can be parameterised to closely resemble the

GUM runtime system for a particular machine� forming a bridge between

the idealised and real machines� A major concern at this stage is to improve

thread granularity so as to o�set communication and thread�creation costs�
�� Real Machine� The GUM runtime system supports some of the GranSim

performance visualisation tools� This seamless integration helps understand

real parallel performance�

It is more conventional to start with a sequential program and then move almost

immediately to working on the target parallel machine� This has often proved highly

frustrating� the development environments on parallel machines are usually much

worse than those available on sequential counterparts� and� although it is crucial to

achieve good speedups� detailed performance information is frequently not available�

It is also often unclear whether poor performance is due to use of algorithms that

are inherently sequential� or simply artefacts of the communication system or other

dynamic characteristics�

�� Lolita

The Lolita natural language engineering system �Morgan et al�� �

�	 has been

developed at Durham University� The teams interest in parallelism is partly as a

means of reducing runtime� and partly also as a means to increase functionality

within an acceptable response�time� The overall structure of the program bears

some resemblance to that of a compiler� being formed from the following large

stages�

� Morphology �combining symbols into tokens� similar to lexical analysis	�
� Syntactic Parsing �similar to parsing in a compiler	�

� Normalisation �to bring sentences into some kind of normal form	�

� Semantic Analysis�
� Pragmatic Analysis�

Depending on how Lolita is to be used� a �nal additional stage may perform a

discourse analysis� the generation of text �e�g� in a translation system	� or it perform

inference on the text to extract the required information�

�� Trinder and others

Our immediate goal in parallelising this system is to expose su�cient parallelism

to fully utilise a ��processor shared memory machine� A pipeline approach is a

promising way to achieve this relatively small degree of parallelism �Figure �	�

Each stage listed above is executed by a separate thread� which are linked to form

a pipeline� The key step in parallelising the system is to de�ne strategies on the

very complex intermediate data structures �e�g� parse trees	 which are used to

communicate between these stages� This data�oriented approach simpli�es the top�

down parallelisation of this very large system� since it is possible to de�ne the parts

parts of the data structure that should be evaluated in parallel without considering

the algorithms that produce the data structures�

Synt. ParsingMorpholgy Semantic An.Normalisation Pragmatic An. Back End

Fig� �� Overall Pipeline Structure of Lolita

A critical issue for the Lolita system is avoiding the generation of unnecessary

work� In order to achieve this� Lolita makes heavy use of laziness� for example when

handling ambiguities in the parsing of natural languages� The overall e�ciency of

the whole system depends on computing only information about the quality of

alternative parses� and not the parse trees themselves� This avoids the construction

of large super�uous data structures� Consequently� using a strategy that is stricter

than necessary may increase the parallelism in the parsing stage but decrease overall

performance�

We are currently at the Simulate First stage of our parallelising methodology� So

far� the pipeline approach has produced an average parallelism between ��� and ����

Since Lolita was originally written without any consideration for parallel execution�

we are fairly satis�ed with this amount of parallelism� Amdahls law gives an upper

bound for speedup of about � if only ��� of the code is inherently sequential

Apart from specifying instances of NFData for intermediate data structures� to

achieve this parallelisation it was only necessary to modify one of about three

hundred modules in Lolita and three of the thirty six functions in that module�

At this stage� we havent parallelised any of the sub�algorithms� which also contain

signi�cant sources of parallelism�

To achieve more parallelism we plan to consider two parts of the pipeline�

Firstly� both of the �rst two stages �morphology and syntactic parsing	 can be

applied to di�erent parts of the text in parallel� So several sentences can be parsed

simultaneously� This creates data�parallelism in the �rst part of the pipeline that

will be especially e�ective in improving performance for large inputs�

Similarly� the semantic and pragmatic analyses can be applied in a data�parallel

fashion on di�erent possible parse trees for the same sentence� Such parallelism

would not increase the performance of the system but it might improve the quality

of the result�

The analyses also produce information that is put into a !global context con�

taining information about the semantics of the text� This creates an additional

Algorithm � Strategy � Parallelism ��

Morpholgy Synt. Parsing

Semantic An. Pragmatic An.Normalisation

Semantic An. Pragmatic An.Normalisation

Morpholgy Synt. Parsing

Semantic An. Pragmatic An.Normalisation

Semantic An. Pragmatic An.Normalisation

Morpholgy Synt. Parsing

Semantic An. Pragmatic An.Normalisation

Semantic An. Pragmatic An.Normalisation

Back End
Text

stream

Parse Forest Parse TreeSGML Tree

Fig� �� Detailed Structure of Lolita

dependence between di�erent instances of the analysis� Lazy evaluation ensures

that this does not completely sequentialise the analyses� however�

Finally� it seems worthwhile to parallelise the rather expensive syntactic parsing

stage itself� Figure � shows the more detailed structure that results�

The code of the top level function wholeTextAnalysis is given in Figure �� This

clearly shows how the algorithm is separated from the dynamic behaviour in each

stage�

The only changes in the algorithm are

�� the use of parMap to describe the data parallelism in the parsing stage� and

�� the use of parameterised function applications to describe the overall pipeline

structure�

The strategies used in parse�prag are of special interest� The parse forest

rawParseForest contains all possible parses of a sentence� The semantic and prag�

matic analyses are then applied to a prede�ned number �global	 of these parses�

The strategy that is applied to the list of these results �parList �parPair ����	

demands only the score of each analysis �the �rst element in the triple	� and not

the complete parse� This score is used in pickBestAnalysis to decide which of the

parses to choose as the result of the whole text analysis�

�� Linsolv

Linsolv is a linear equation solver� and a typical example of a parallel symbolic

program� It uses the multiple homomorphic images approach which is often used in

computer algebra algorithms �Lauer� �
��	� �rst the elements of the input matrix

and vector are mapped from Z into several images Zp �where each p is a prime

number	� then the system is solved in each of these images� and �nally the overall

result is constructed by combining these solutions using the Chinese Remainder

Algorithm� This divide�and�conquer structure is depicted by Figure ��

�� Trinder and others

wholeTextAnalysis opts inp global �

result

where

�� ��� Morphology

�g�� sgml� � prepareSGML inp global

sentences � selectEntitiesToAnalyse global sgml

�� ��� Parsing

rawParseForest � parMap rnf �heuristic�parse global� sentences

�� ������� Analysis

anlys � stateMap�TimeOut �parse�prag opts� rawParseForest global�

�� ��� Back End

result � back�end anlys opts

�� Pick the parse tree with the best score from the results of

�� the semantic and pragmatic analysis	 This is done speculatively�

parse�prag opts parse�forest global �

pickBestAnalysis global ��� evalScores �

take �getParsesToAnalyse global� �

map analyse parse�forest

where

analyse pt � mergePragSentences opts � evalAnalysis

evalScores � parList �parPair rwhnf �parTriple rnf rwhnf rwhnf��

evalAnalysis � stateMap�TimeOut analyseSemPrag pt global

�� Pipeline the semantic and pragmatic analyses

analyseSemPrag parse global �

prag�transform ��� rnf �

pragm ��� rnf �

sem�transform ��� rnf �

sem �g��
� ��� rnf �

addTextrefs global �� rwhnf �

subtrTrace global parse

back�end inp opts �

mkWholeTextAnalysis ��� parTriple rwhnf �parList rwhnf� rwhnf �

optQueryResponse opts ��� rnf �

traceSemWhole ��� rnf �

addTitleTextrefs ��� rnf �

unifyBySurfaceString ��� rnf �

storeCategoriseInf ��� rnf �

unifySameEvents opts ��� parPair rwhnf �parList �parPair rwhnf rwhnf�� �

unpackTrees ��� parPair rwhnf �parList rwhnf� �

inp

Fig� �� The Top Level Function of the Lolita Application

Algorithm � Strategy � Parallelism �

Z Z

�� �

�� �

�
�

�
�CRA

Z
s

t

�
�
�

�
�

���

P
P
P
P
P
PPq

�
�
�
�
�
��

� �

P
P
P
P
P
Pq

�

ba

pkp�

s

t

s

t

Zp�
Zpk

Zp�

Zp�

Zpk

Zpk

ap� bp� apk bpk

xp� xpk

x

Forward Mapping

Cramer�s Rule

Lifting

Fig� �� Structure of the LinSolv algorithm

Strategic code for the matrix determinant part of the solver is given in Section ���

�the whole algorithm is discussed in �Loidl et al�� �

�		� Precise control of the

dynamic behaviour is required at two critical places in the program� This behaviour

can be described by combining generic strategies�

� The algorithm is described in terms of an in�nite list of all solutions in the

homomorphic images� An initial segment of the list is computed in paral�

lel� based on an educated guess as to how many homomorphic solutions are

needed� Depending on the solutions in the initial segment� a small number of

additional solutions are then computed�

� The algorithm only computes the solutions that can actually be used in the

combination step� This is achieved by initially only evaluating the �rst two

elements of the result list� then checking if the result is useful and if so com�

puting the remainder�

�
 Accident Blackspots

Given a set of ���� police accident records� the task is to discover any accident

blackspots� i�e� places where a number of accidents occurred� Several criteria are

used to determine whether two accident reports are for the same location� Two

accidents may be at the same location if they occurred at the same junction number�

at the same pair of roads� at the same grid reference� or within a small radius of

�� Trinder and others

each other� The problem amounts to partitioning a set into equivalence classes

under several equivalence relations�

The GpH implementation �Trinder et al�� �

�	 has three major phases forming a

top�level pipeline� These are� reading and parsing the �le of accidents� constructing a

combined sameSite relation and indices over the accident and sameSite relations�

and forming the partition� Little parallelism is gained from this top�level pipeline

�a speedup of ���	 because the �rst value cannot be read from the index�trees until

all of the tree has been constructed�
So far� the �rst and last pipeline stages have been adequately parallelised for our

��processor target machine� The accidents are read in parallel from n separate �les
into a list of lists of accidents�

nFiles � �

main � readn nFiles �

readn n cts � n � � �

readFile ���path�accident� show n�

��ioerror �� complainAndDie�

��ctsn �� readn �n��� �ctsn�cts��

readn � cts �

let accidents � map parse�Tuple cts �using� strategy

where strategy � parList rnf

The partition is parallelised by speculatively computing the equivalence classes of

n ���	 accidents in parallel� If two or more of the accidents are in the same class�

some work is duplicated� The chance of wasting work is small as the mean class

size is ���� and there are approximately ���� accidents� Additional parallelism is

obtained by removing members of the equivalence classes from the accident set in

parallel with determining the equivalence classes �rnf rest	� The speculation is

benign because the amount of work performed by a speculative task is small� and

no other threads are sparked�

mkPartition �� Set Accident �� IxRelation� Accident Accident ��

Set �Set Accident�

mkPartition accs ixRel �

case �length aList� of

� �� emptySet

n �� �mkSet matchList �union� mkPartition rest ixRel�

�using� strategy

otherwise �� �singletonSet matches� �union�

mkPartition �accs �minusSet� matches� ixRel

where

aList � take n �setToList accs�

matches � mkSet �reachable �chose accs
 ixRel�

matchList � �mkSet �reachable �a
 ixRel� � a �� aList

rest � minusManySet accs matchList

strategy result � parList rnf matchList �par�

rnf rest �par�

r� result

Algorithm � Strategy � Parallelism ��

The middle stage which constructs the indices is harder to implement in parallel�

The problem is that the indices are trees� and the top�level pipeline is blocked be�

cause the �rst element �root	 of an index�tree cannot be consumed by the following

stage until all of the tree has been constructed� Our current solution splits the index

into a sequence of trees� reducing the bottleneck�

 Related Work

There have been many di�erent proposals for ways to specify parallelism in func�

tional languages� Space precludes describing every proposal in detail� instead this

section concentrates on the approaches that are most closely related to evaluation

strategies� covering purely�implicit approaches� algorithmic skeletons� coordination

languages� language extensions and explicit approaches� Some non�functional ap�

proaches are also covered� The approach that is most closely related to our work is

that using �rst�class schedules �Mirani and Hudak� �

�	� described in Section ����

��� Purely Implicit Approaches

Purely implicit approaches include data�ow languages like Id �Arvind et al�� �
�
	

or pH �Nikhil et al�� �

�	� which is based on Haskell� and evaluation transform�

ers �Burn� �
��	� Data parallel languages such as NESL �Blelloch et al�� �

�	

can also be seen as implicitly parallelising certain bulk data structures� All of the

implicit approaches have some �xed underlying model of parallelism� Because eval�

uation strategies allow explicit control of some crucial aspects of parallelism� the

programmer can describe behaviours very di�erent from the �xed model� e�g� spec�

ulatively evaluating some expressions�

Evaluation Transformers Evaluation transformers exploit the results of strictness

analysis on structured data types� providing parallelism control mechanisms that

are tailored to individual strictness properties �Burn� �
��	� Each evaluation trans�

former reduces its argument to the extent that is allowed by the available strictness

information� The appropriate transformer is selected at compile time� giving e��

cient execution at the cost of some increase in code�size �Burn� �

�� Finne and

Burn� �

�	�

If there are only a small number of possible transformers �as for lists using the

standard ��point strictness domain � see Table �	� repeated work can be avoided

by recording the extent to which a data structure has already been evaluated� and

then using a specialised transformer on the unevaluated� but needed part of that

structure�

One problem with evaluation transformers is that the more sophisticated the

strictness analysis� and the more types they are de�ned on� the greater is the num�

ber of evaluation transformers that are needed� and the greater is the code�bloat�

Specialised transformers must be de�ned in the compiler for each type� complicating

the provision of transformers over programmer�de�ned types�

In contrast� since the programmer has control over which strategy is to be used in

�� Trinder and others

Transf� Meaning Strategy

E� No reduction r�
EWHNF Reduce to WHNF rwhnf
ETS Reduce spine of a list seqList r�
EHTS Reduce each list element to WHNF seqList rwhnf

Table �� The Relationship of Evaluation Strategies and Transformers

a particular context� and since those strategies are programmable rather than �xed�

strategies are strictly more general than evaluation transformers� In particular� a

programmer can elect to use a strategy that is more strict than the function in

order to obtain good performance�

It is possible that in the future� strictness analysis could drive the choice of an

appropriate evaluation strategy in at least some circumstances� Indeed we are aware

of a relationship between strictness domains and the structure of certain strategies

that implement those domains� Use of strictness information in this way would

make strategies more implicit than they are at present�

Data Parallelism It has been argued that support should be provided for both task

and data parallelism �Subhlok et al�� �

�	� We have already shown how some kinds

of data�oriented parallelism can be expressed using evaluation strategies� Truly

data parallel approaches� however� such as NESL �Blelloch et al�� �

�� Blelloch�

�

�	 treat higher�order functions such as scans and folds� or compound expressions

such as list� and array�comprehensions� as single �atomic� operations over entire

structures such as lists or arrays�

In e�ect� functions are applied to each element of the data simultaneously� rather

than data being supplied to the functions� This approach is more suitable than

control parallelism for massively parallel machines� such as the CM��� Certain eval�

uation strategies can therefore be seen as control parallel implementations of data

parallel constructs� targetted more at distributed�memory or shared�memory ma�

chines than at massively parallel architectures�

Data�ow Many recent data�ow languages are functional� e�g� Id �Arvind et al��

�
�
	� indeed pH �Nikhil et al�� �

�	 is a variant of Haskell� These languages typ�

ically use some evaluation scheme� e�g� lenient evaluation� to introduce parallelism

implicitly� The evaluation scheme generates massive amounts of �ne�grained par�

allelism� which is often too small to be utilised e�ciently by conventional thread

technology� The overheads of small grain threads have been addressed by using

hardware support� The explicit control provided by evaluation strategies help the

programmer to create larger grain threads�

Algorithm � Strategy � Parallelism ��

��� Algorithmic Skeletons

As de�ned by Cole �Cole� �
��	� algorithmic skeletons take the approach that imple�

menting good dynamic behaviour on a machine is hard� A skeleton is intended to be

an e�cient implementation of a commonly encountered parallel behaviour on some

speci�c machine� In e�ect a skeleton is a higher�order function that combines �se�

quential	 sub�programs to construct the parallel application� The most commonly

encountered skeletons are pipelines and variants of the common list�processing func�

tions map� scan and fold� A general treatment has been provided by Rabhi� who

has related algorithmic skeletons to a number of parallel paradigms �Rabhi� �

�	�

Skeletons and Strategies Since a skeleton is simply a parallel higher�order function�

it is straightforward to write skeletons using strategies� Both the parMap function

in Section ��� and the pipeline function in Section ��� are actually skeletons� A

more elaborate divide�and�conquer skeleton� based on a Concurrent Clean func�

tion �N�ocker et al�� �

�	 can be written and used as follows�

divConq �� �a �� b� �� a �� �a �� Bool� ��

�b �� b �� b� �� �a �� Bool� �� �a �� �a�a�� �� b

divConq f arg threshold conquer divisible divide

� not �divisible arg� � f arg

� otherwise � conquer left right �using� strategy

where

�lt�rt� � divide arg

left � divConq f lt threshold conquer divisible divide

right � divConq f rt threshold conquer divisible divide

strategy � � � �� if threshold arg

then �seqPair rwhnf rwhnf� � �left�right�

else �parPair rwhnf rwhnf� � �left�right�

It is also possible to use strategies in the opposite way to skeletonsy� A skeleton

parameterises the control function over the algorithm� i�e�� it takes sequential sub�

programs as arguments� However� a function using strategies may instead specify

the algorithm and parameterise the control information� i�e� take a strategy as a

parameter� In fact several of the functions we have already described take a strategy

as a parameter� including parList� parMap� and pipeline�

Imperative Skeletons The algorithmic skeleton approach clearly �ts functional lan�

guages very well� and indeed much work has been done in a functional context�

However� it is also possible to combine skeletons with imperative approaches�

For example� the Skil compiler integrates algorithmic skeletons into a subset of

C �C�	� Rather than using closures to represent work� as we have done for our

purely functional setting� the Skil compiler �Botorog and Kuchen� �

�	 translates

polymorphic higher�order functions into monomorphic �rst�order functions� The

y such functions are not a true dual� because skeletons are lower level�

�� Trinder and others

performance of the resulting program is close to that of a hand�crafted C� applica�

tion� While the Skil instantiation procedure is not fully general� it may be possible

to adopt similar techniques when compiling evaluation strategies� in order to reduce

overheads�

��� Coordination Languages

Coordination languages build parallel programs from two components� the com�

putation model and the coordination model �Gelernter and Carriero� �

�	� Like

evaluation strategies� programs have both an algorithmic and a behavioural aspect�

It is not necessary for the two computation models to be the same paradigm� and

in fact the computation model is often imperative� while the coordination language

may be more declarative in nature� Programs developed in this style have a two�

tier structure� with sequential processes developed using the computation language

composed using the coordination language�

The best known coordination languages are PCN �Foster and Taylor� �

�	 and

Linda �Gelernter and Carriero� �

�	� Both of these adopt a much lower�level ap�

proach than evaluation strategies� however� It is� of course� possible to introduce

deadlock with either of these systems�

PCN composes tasks by connecting pairs of communication ports� using three

primitive composition operators� sequential composition� parallel composition and

choice composition� It is possible to construct more sophisticated parallel structures

such as divide�and�conquer� and these can be combined into libraries of reusable

templates�

Linda is built on a logically shared�memory structure� Objects �or tuples	 are

held in a shared area� the Linda tuple space� Linda processes manipulate these

objects� passing values to the sequential computation language� In the most common

Linda binding� C�Linda� this is C� Sequential evaluation is therefore performed using

normal C functions�

SCL Darlington et al� integrate the coordination language approach with the skele�

ton approach� providing a system for composing skeletons� SCL �Darlington et al��

�

�	� SCL is basically a data�parallel language� with distributed arrays used to

capture not only the initial data distribution� but also subsequent dynamic redis�

tributions�

SCL introduces three kinds of skeleton� con�guration� elementary and computa�

tional skeletons� Con�guration skeletons specify data distribution characteristics�

elementary skeletons capture the basic data parallel operations as the familiar

higher�order functions map� fold� scan etc� Finally� computational skeletons add

control parallel structures such as farms� SPMD and iteration� It is possible to write

higher�order operations to transform con�gurations as well as manipulate compu�

tational structures etc� An example taken from Darlington et al�� but rewritten in

Haskell�style� is the partition function� which partitions a �sequential	 array into

a parallel array of p sequential subarrays�

Algorithm � Strategy � Parallelism ��

partition Partition�pattern �� Array Index a ��

ParArray Index �Array Index a�

partition �Row�block p� a � mkParArray � ii � b ii 	 ii
� ����p� �

where b l � array bounds � �i�j� � a � �i��ii����l�p� j�

	 i
� ����l�p�� j
� ����m� �

bounds � ����l�p�� ���m��

A similar integration is provided by the P�L language �Danelutto et al�� �

�	�

which provides a set of skeletons for common classes of algorithm�

Control Abstraction Another approach which has certain parallels with evaluation

strategies has been described by Crowl and Leblanc �Crowl and Leblanc� �

�	�

who work with explicitly parallel imperative programs �including explicit synchro�

nisation and communication� as well as explicit task creation	�

Like evaluation strategies� the control abstraction approach also separates par�

allel control from the algorithm� Each control abstraction comprises three parts� a

prototype specifying the types and names of the parameters to the abstraction� a

set of control dependencies that must be satis�ed by all legal implementations of

the control abstraction� and one or more implementations�

Each implementation is e�ectively a higher�order function� parameterised on one

or more closures representing units of work that could be performed in parallel�

These closures are invoked explicitly within the control abstraction� Implementa�

tions can use normal language primitives or other control abstractions�

In our purely functional context� Crowl and Leblancs control dependencies cor�

respond precisely to the evaluation degree of a strategy� Their requirement that

implementations conform to the stated control dependencies is thus equivalent in

our setting to requiring that strictness is preserved in any source�to�source transfor�

mation involving an evaluation strategy� This is� of course� a standard requirement

for any transformation in a non�strict functional language�

Compared with the work described here� that on control abstractions is much

lower level� relying on a meta�language to capture the essential notions of closure

and control dependency that can be directly encoded in our GpH�based system�

We also avoid the complications caused by explicit encoding of synchronisation and

communication� though perhaps at some cost in e�ciency�

Crowl and Leblanc have applied the technique in a prototype parallelising com�

piler� They report good performance results compared with hand�coded parallel C�

though certain optimisations must be applied by hand� This lends con�dence to

our belief that evaluation strategies could also be applied to imperative parallel

programs�

Finally� there is a clear relationship between control abstraction and skeleton�

based approaches� In fact� control abstractions could be seen as an e�cient imple�

mentation technique for algorithmic skeletons�

�� Trinder and others

��� Parallel Language Extensions

Rather than providing completely separate languages for coordination and compu�

tation� several researchers have instead extended a functional language with a small�

but distinct� process control language� In its simplest form �as with GpH	� this can

be simply a set of annotations that specify process creation etc� More sophisticated

systems� such as Caliban �Kelly� �
�
	� or �rst�class schedules �Mirani and Hudak�

�

�	 support normal functional expressions as part of the process control language�

Annotations Several languages have been de�ned to use parallel annotations� De�

pending on the approach taken� these annotations may be either hints that the

runtime system can ignore� or directives that it must obey� In addition to speci�

fying the parallelism and evaluation degree of the parallel program �the what and

how	� as for evaluation strategies� annotation�based approaches often also permit

explicit placement annotations �the where	�

An early annotation approach that is similar to that used in GpH was that of

Burton �Burton� �
��	� who de�ned three annotations to control the reduction order

of function arguments� strict� lazy and parallel� In his thesis �Hughes� �
��	� Hughes

extends this set with a second strict annotation �qes	� that reverses the conventional

evaluation order of function and argument� evaluating the function body before

the argument� Clearly all these annotations can be expressed as straightforward

evaluation strategies� or even directly in GpH�

These simple beginnings have led to the construction of quite elaborate annota�

tion schemes� One particularly rich set of annotations was de�ned for the Hope�

implementation on ICLs Flagship machine �Glynn et al�� �
��� Kewley and Glynn�

�
�
	� This covered behavioural aspects such as data and process placement� as

well as simple partitioning and sequencing� As a compromise between simplicity

and expressibility� however� we will describe the well�known set of annotations that

have been provided for Concurrent Clean �N�ocker et al�� �

�	�

The basic Concurrent Clean annotation is e �P� f args� which sparks a task to

evaluate f args to WHNF on some remote processor and continues execution of

e locally� Before the task is exported its arguments� args� are reduced to NF� The

equivalent strategy is rnf args �seq� �rwhnf �f args� �par� e��

The other Concurrent Clean annotations di�er from the �P� annotation in either

the degree of evaluation or the placement of the parallel task� Since GpH delegates

task placement to the runtime system� there is no direct strategic equivalent to the

annotations that perform explicit placement�

Other important annotations are�

� e �I� f args interleaves execution of the two tasks on the local processor�
� e �P AT location� f args executes the new task on the processor speci�ed

by location�
� e �Par� f args evaluates f args to NF rather than WHNF� The equivalent

strategy is rnf args �seq� �rnf �f args� �par� e��
� e �Self� f args is the interleaved version of �Par��

As with evaluation strategies� Concurrent Clean annotations cleanly separate

Algorithm � Strategy � Parallelism ��

dynamic behaviour and algorithm� However� because there is no language for com�

posing annotations� the more sophisticated behaviours that can be captured by

composing strategies cannot be described using Concurrent Cleanannotations� This

is� in fact� a general problem with the annotation approach�

Caliban Caliban �Kelly� �
�
	 provides a separation of algorithm and parallelism

that is similar to that used for evaluation strategies� The moreover construct is used

to describe the parallel control component of a program� using higher�order func�

tions to structure the process network� Unlike evaluation strategies� the moreover

clause inhabits a distinct value space from the algorithm � in fact one which com�

prises essentially only values that can be resolved at compile�time to form a static

wiring system� Caliban does not support dynamic process networks� or control

strategies� A clean separation between algorithm and control is achieved by naming

processes� These processes are the only values which can be manipulated by the

moreover clause� This corresponds to the use of closures to capture computations

in the evaluation strategy model�

For example� the following function de�nes a pipeline� The � syntax is used to

create an anonymous process which simply applies the function it labels to some

argument� arc indicates a wiring connection between two processes� chain creates

a chain of wiring connections between elements of a list� The result of the pipeline

function for a concrete list of functions and some argument is thus the composition

of all the functions in turn to the initial value� Moreover� each function application

is created as a separate process�
pipeline fs x � result

where result � �foldr ��� id fs� x

moreover �chain arc �map ��� fs��

�� �arc ��last fs� x�

�� �arc ��head fs� result�

Para�Functional Programming Para�functional programming �Hudak� �
��� Hu�

dak� �
��� Hudak� �

�	 extends functional programming with explicit parallel

scheduling control clauses� which can be used to express quite sophisticated place�

ment and evaluation schemes� These control clauses e�ectively form a separate

language for process control� For ease of comparison with evaluation strategies� we

follow Hudaks syntax for para�functional programming in Haskell �Hudak� �

�	�

Hudak distinguishes two kinds of control construct� schedules are used to express

sequential or parallel behaviours� while mapped expressions are used to specify pro�

cess placements� These two notions are expressed by the sched and on constructs�

respectively� which are attached directly to expressions�

Schedules In order to use functional expressions in schedules� Hudak introduces

labelled expressions� l�e labels expression e with label l �this syntax is entirely

equivalent to a let expression�

There are three primitive schedules� Dlab is the demand for the labelled expression

lab� �lab represents the start of evaluation for lab� and lab� represents the end of

�� Trinder and others

evaluation for lab� Whereas a value may be demanded many times� it can only be

evaluated once� Schedules can be combined using either sequential composition ��	

or parallel composition �		� Since it is such a common case� the schedule lab can be

used as a shorthand for Dlab�lab�� Schedules execute in parallel with the expression

to which they are attached�

So� for example�

�l�e� m�e� n�e�� sched l� � �Dm	Dn�

requires e� to complete evaluation before either m or n are demanded�

Evaluating schedules in parallel is one major di�erence from the evaluation strat�

egy approach� where all evaluation is done under control of the strategy� A second

major di�erence is that schedules are not normal functional values� and hence are

not under control of the type system�

Mapped Expressions The second kind of para�functional construct is used to specify

static or dynamic process placement� The expression exp on pid speci�es that exp is

to be executed on the processor identi�ed by an integer pid� There is a special value

self� which indicates the processor id of the current processor� and libraries can be

constructed to build up virtual topologies such as meshes� trees etc� For example�

sort �QT q� q� q� q � �

merge �sort q� on �left self��

�sort q� on �right self��

�sort q� on �up self��

�sort q on �down self��

would sort each sub�quadtree on a di�erent neighbouring processor� and merge

the results on the current processor� Because GpH deliberately doesnt address

the issue of thread placement� there is no equivalent to mapped expressions in

evaluation strategies�

First�Class Schedules First�Class schedules �Mirani and Hudak� �

�	 combine

para�functional programming with a monadic approach� Where para�functional

schedules and mapped expressions are separate language constructs� �rst�class

schedules are fully integrated into Haskell� This integration allows schedules to

be manipulated as normal Haskell monadic values�

The primitive schedule constructs and combining forms are similar to those pro�

vided by para�functional programming� The schedule d e demands the value of

expression e� returning immediately� while r e suspends the current schedule until

e has been evaluated� Both these constructs have type a �� OS Sched� Similarly�

both the sequential and parallel composition operations have type OS Sched ��

OS Sched �� OS Sched� The monadic type OS is used to indicate that schedules

may interact in a side�e�ecting way with the operating system� As we will see� this

causes loss of referential transparency in only one respect�

Rather than using a schedule construct� Mirani and Hudak instead provide a func�

tion sched� whose type is sched a �� OS Sched �� a� and which is equivalent

Algorithm � Strategy � Parallelism �

to our using function� The sched function takes an expression e and a schedule

s� and executes the schedule� If the schedule terminates� then the value of e is

returned� otherwise the value of the sched application is ��

In evaluation strategy terms� both the d and r schedules can be replaced by calls

to rwhnf without a�ecting the semantics of those para�functional programs that

terminate� Unlike evaluation strategies� however� with �rst�class schedules it is also

possible to suspend on a value without ever evaluating it� Thus para�functional

schedules can give rise to deadlock in situations which cannot be expressed with

evaluation strategies� A trivial example might be�

f x y � �x�y� �sched� r x � d y 	 r y � d x

Compared with evaluation strategies� it is not possible to take as much advantage

of the type system� all schedules have type OS Sched rather than being parame�

terised on the type of the value�s	 they are scheduling� Clearly there is also a loss of

referential transparency� since expressions involving sched may sometimes evaluate

to �� and other times to a non�� value� If the program terminates �yields a non��

value	� however� it will always yield the same value�

��
 Fully�Explicit Approaches

More explicit approaches usually work at the lowest level of parallel control� pro�

viding sets of basic parallelism primitives that could then be exploited to build

more complex structures such as evaluation strategies� The approach is typi�ed by

MultiLisp �Halstead� �
��	 or Mul�T �Kranz et al�� �
�
	 which provide explicit

futures as the basic parallel control mechanism� Futures aresimilar to GpH pars�

At an even more explicit level� languages such as CML �Reppy� �

�	 also require

communication and synchronisation to be speci�ed� Again� these constructs can be

used to build a higher�level� evaluation strategy approach �closures and laziness can

be modelled using function application or conditionals	� although to our knowledge�

there has been no attempt yet to implement such an approach in this framework�

At a slightly higher level� Jones and Hudak have worked on commutative Mon�

ads �Jones and Hudak� �

�	� which allow operations such as process creation

�called fork	 to be captured within a standard state�transforming monad� While

this approach provides the essential building blocks which would be needed to sup�

port evaluation strategies� it has the disadvantage of raising all parallel operations

to the monad level� thus preventing the clean separation of algorithm and behaviour

that is observed with either evaluation strategies or �rst�class schedules�

� Conclusion

��� Summary

This paper has introduced evaluation strategies� a new mechanism for controlling

the parallel evaluation of non�strict functional languages� We have shown how lazy

evaluation can be exploited to de�ne evaluation strategies in a way that cleanly

�� Trinder and others

separates algorithmic and behavioural concerns� As we have demonstrated� the re�

sult is a very general� and expressive system� many common parallel programming

paradigms can be captured� Finally� we have also outlined the use of strategies in

three large parallel applications� noting how they facilitate the top�down paralleli�

sation of existing code�

��� Discussion

Required Language Support In describing evaluation strategies� we have exploited

several aspects of the Haskell language design� Some of these are essential� whereas

others may perhaps be modelled using other mechanisms� For example� some sup�

port for higher�order functions is clearly needed� strategies are themselves higher�

order functions� and may take functional arguments�

Lazy evaluation of some form is clearly essential since it allows us to postpone to

the strategy the speci�cation of which bindings� or data�structure components� are

evaluated and in what order� Operationally� laziness avoids the recomputation of

values referred to in both the algorithmic code and the strategy� Although we have

not yet studied this in detail� the work on control abstraction by Crowl and Leblanc�

plus other work referred to above� does suggest that enough of the characteristics

of lazy evaluation could be captured in an imperative language to allow the use of

evaluation strategies in a wider context than that we have considered�

In de�ning evaluation strategies� we have taken advantage of Haskells type class

overloading to de�ne general evaluation�degree strategies� such as rnf� If general ad�

hoc overloading is not available� then a number of standard alternative approaches

could be taken� including�

� de�ne a set of standard polymorphic evaluation�degree operations�

� require evaluation�degree operations to be monomorphic�

In either case� support can be provided as functions or language constructs� Nei�

ther approach is as desirable as that taken here� since they limit user �exibility in

the �rst case� or require code duplication in the second�

Additional Control Issues Evaluation strategies have been used to specify some

aspects of dynamic behaviour that are not described here� One such aspect is con�

trol of thread granularity� While it is not possible to exploit load information� for

example� in a referentially transparent fashion� simple thresholding techniques can

safely be employed� In quicksort� for example� if the sublists that are to be sorted

are su�ciently small they can be evaluated sequentially rather than subdivided for

parallel execution� Such tests are easily incorporated into an evaluation strategy�

which consquently avoids cluttering the algorithmic code�

One parallel programming paradigm that we have not expressed here is branch�

and�bound parallelism� This cannot be expressed functionally� however� without

using semantic non�determinism of some kind� This is not available in Haskell�

though languages such as Sisal �Feo et al�� �

�	 do provide non�determinism for

precisely such a purpose�

Algorithm � Strategy � Parallelism ��

Abuse of Strategies Like most powerful language constructs� evaluation strategies

can be abused� If a strategy has an evaluation degree greater than the strictness of

the function it controls� it may change the termination properties of the program

�note that unlike �rst�class schedules� however� this is still de�ned by the normal

language semantics	� Similarly it is easy to construct strategies with undesirable

parallelism� e�g� a strategy that creates an unbounded number of threads� Finally�

strategies sometimes require additional runtime traversals of a data structure� In

pathological cases� e�g� when accumulating parameters are involved� care must be

taken to avoid multiple traversals�

��� Future Work

The groups at Glasgow and Durham will continue to use evaluation strategies to

write large parallel programs� and we hope to encourage others to use them too�

Initial performance measurements show that strategic code is as e�cient as code

with ad hoc parallelism and forcing functions� but more measurements are needed

to con�rm that this is true in general�

A framework for reasoning about strategic functions is under development� Prov�

ing that two strategic functions are equivalent entails not only proving that they

compute the same value� but also that they have the same evaluation degree and

parallelism�sequencing� The evaluation�degree of a strategic function can be deter�

mined adding laws for par and seq to existing strictness analysis machinery� e�g�

Hughes and Wadlers projection�based analysis �Wadler and Hughes� �
��	� As an

operational aspect� parallelism�sequencing are harder to reason about� At present

we have a set of laws� e�g� both par and seq are idempotent� but are uncertain of

the best framework for proving them� One possible starting point is to use partially

order multisets to provide a theoretical basis for de�ning evaluation order �Hudak

and Anderson� �
��	�

Some support for evaluation strategies could be incorporated into the language�

If the compiler was able to automatically derive rnf from a type de�nition� the

work involved in parallelising a large application would be dramatically reduced�

and the replication of libraries could be avoided� Some form of tagging of closures

in the runtime system could reduce the execution overhead of strategies� a data

structure need not be traversed by a strategy if its evaluation degree is already at

least as great as the strategies�

We would like to investigate strategies for strict parallel languages� Many strict

functional languages provide a mechanism for postponing evaluation� e�g� delay

and force functions� The question is whether cost of introducing explicit laziness

outweighs the bene�ts gained by using strategies�

Our long term goal is to support more implicit parallelism� Strategies provide a

useful step towards this goal� We are learning a great deal by explicitly controlling

dynamic behaviour� and hope to learn su�cient to automatically generate strategies

with good dynamic behaviour for a large class of programs� One promising approach

is to use strictness analysis to indicate when it is safe to evaluate an expression

in parallel� and granularity analysis to indicate when it is worthwhile� It may be

�� Trinder and others

possible to use a combined implicit�explicit approach� i�e� most of a program may be

adequately parallelised by a compiler� but the programmer may have to parallelise

a small number of crucial components�

References

Arvind� Nikhil� R�S�� and Pingali� K�K�� �I�Structures � Data Structures For Parallel Com�
puting�� TOPLAS ������ 	����
� pp� �������

Blelloch� G�E�� Chatterjee� S�� Hardwick� J�C�� Spielstein� J�� and Zagha� M�� �Implemen�
tation of a Portable Nested Data�Parallel Language�� Proc� Fourth ACM Conf� on
Principles � Practice of Parallel Programming �PPoPP�� San Diego� CA� May ����
	����
� pp� �������

Blelloch� G�E�� �Programming Parallel Algorithms�� CACM� ����� 	����
� pp� ������

Botorog� G�M�� and Kuchen� H�� �Skil� An Imperative Language with Algorithmic Skele�
tons for E�cient Distributed Computation�� Proc� �th� IEEE Intl� Symposium on High
Performance Distributed Computing� Syracuse� NY� August ���� 	����
� pp� �����

Burn� G�L�� Abstract Interpretation and the Parallel Evaluation of Functional Languages�
PhD Thesis� Imperial College London� 	����
�

Burn� G�L�� �Implementing the Evaluation Transformer Model of Reduction on Parallel
Machines�� J� Functional Prog�� ����� 	����
� pp� �������

Burton� F�W�� �Annotations to Control Parallelism and Reduction Order in the Dis�
tributed Evaluation of Functional Programs�� ACM TOPLAS� 	�
�� April 	����
�
pp� ��������

M�I� Cole� Algorithmic Skeletons� Pitman�MIT Press 	����
�

Crowl� L�A� and Leblanc� T�J�� �Parallel Programming with Control Abstraction�� ACM
TOPLAS� �	���� 	����
� pp� �������

Danelutto� M�� Di Meglio� R�� Orlando� S�� Pelagatti� S�� and Vanneschi� M�� �The P�L
Language� An Introduction�� Technical Report HPL�PSC������ Hewlett�Packard Lab�
oratories� Pisa Science Centre� December� 	����
�

Darlington� J�� Guo� Y�� To� H�W�� and Yang� J�� �Parallel Skeletons for Structured Com�
position�� Proc� Fifth ACM Conf� on Principles � Practice of Parallel Programming
�PPoPP�� Santa Barbara� CA� July ����� 	����
� pp� �����

Date� C�J�� An Introduction to Database Systems� �th Edition� Addison Wesley� 	����
�

Feo� J�� Miller� P�� Skedziewlewski� S�� Denton� S�� and Soloman� C�� �Sisal ���� Proc�
HPFC ���� Denver� CO� April ����� 	����
� pp� ������

Finne� S�O�� and Burn� G�L�� �Assessing the Evaluation Transformer Model of Reduction
on the Spineless G�Machine�� Proc� FPCA ��	� Copenhagen� 	����
� pp� ��������

Gelernter� D�� and Carriero� N�� �Coordination Languages and Their Signi�cance�� CACM�
�
�
�� February� 	���
� pp� �������

Flanagan� C�� and Nikhil� R�S�� �pHluid� The Design of a Parallel Functional Language
Implementation�� Proc� ICFP ��
� Philadelphia� Penn�� May ���� 	����
� pp� ��������

Foster� I�� and Taylor� S�� �A Compiler Approach to Scalable Concurrent�Program Design��
ACM TOPLAS� �	���� 	����
� pp� ��������

Glynn� K�� Kewley� J�M�� Watson� P�� and While� L�� �Annotations for Hope��� Technical
Report IC�FPR�PROG��������� Imperial College� London� 	����
�

Halstead� R�� �MultiLisp� A Language for Concurrent Symbolic Computation�� ACM
TOPLAS� ����� 	����
� pp� ��������

Hammond� K�� Loidl� H��W�� and Partridge� A�S�� �Visualising Granularity in Parallel
Programs� A Graphical Winnowing System for Haskell�� Proc� HPFC��� � High Per�
formance Functional Computing� Denver� CO� April ����� 	����
� pp� �����

Algorithm � Strategy � Parallelism ��

Hoare� C�A�R�� Communicating Sequential Processes� Prentice Hall 	����
�

Hudak� P�� �Para�Functional Programming�� IEEE Computer� ������ 	����
� pp� ������

Hudak� P�� �Exploring Para�Functional Programming� Separating the what from the how��
IEEE Software� ���� 	����
� pp� ������

Hudak� P�� �Para�Functional Programming in Haskell�� In Parallel Functional Languages
and Computing� ACM Press 	New York
 and Addison�Wesley 	Reading� MA
� 	����
�
pp� ��������

Hudak� P�� and Anderson� S�� �Pomset Interpretations of Parallel Functional Languages��
Proc� FPCA ��� Springer�Verlag LNCS ��� September 	����
� pp� ������

Hughes� R�J�M�� The Design and Implementation of Programming Languages� DPhil The�
sis� Oxford University� 	����
�

Jones M�P�� and Hudak� P�� �Implicit and Explicit Parallel Programming in Haskell��
Research Report YALEU�DCS�RR���� University of Yale� August ��� 	����
�

Kelly� P�H�J�� Functional Programming for Loosely�Coupled Multiprocessors� Pitman�MIT
Press� 	����
�

Kewley� J�M�� and Glynn� K�� �Evaluation Annotations for Hope��� Glasgow Workshop
on Functional Programming� Fraserburgh� Scotland� Springer�Verlag WICS� 	����
�
pp� �������

Kranz� D�� Halstead� R�� and Mohr� E�� �Mul�T� A High�Performance Parallel Lisp�� Proc�
PLDI ��� Portland� OR� June� 	����
� pp� ������

M� Lauer� �Computing by Homomorphic Images�� in Computer Algebra � Symbolic and
Algebraic Computation� B� Buchberger� G�E� Collins� R� Loos� and R� Albrecht� 	Eds�
�
Springer Verlag 	���
� pp� ��������

Loidl� H��W�� Hammond� K�� and Partridge A�S�� �Solving Systems of Linear Equations
Functionally� a Case Study in Parallelisation�� Technical Report� Dept� of Computing
Science� University of Glasgow� 	����
�

Milner� A�J�R�G�� Communication and Concurrency� Prentice Hall 	����
�

Mirani� R�� and Hudak� P�� �First�Class Schedules and Virtual Maps�� Proc� FPCA ����
La Jolla� CA� June� 	����
� pp� ������

Mohr� E�� Kranz� D�A�� and Halstead� R�H�� �Lazy Task Creation � a Technique for In�
creasing the Granularity of Parallel Programs�� IEEE Transactions on Parallel and
Distributed Systems�
���� July� 	����
� pp� ������

Morgan� R�G�� Smith� M�H�� and Short� S�� �Translation by Meaning and Style in Lolita��
Intl� BCS Conf� � Machine Translation Ten Years On� Cran�eld University� November�
	����
�

Nikhil� R�S�� Arvind and Hicks� J�� �pH language proposal�� DEC Cambridge Research
Lab Tech� Rep� 	����
�

N�ocker� E�G�J�M�H�� Smetsers� J�E�W�� van Eekelen� M�C�J�D�� and Plasmeijer� M�J��
�Concurrent Clean�� Proc� PARLE ���� Springer Verlag LNCS �������� 	����
� pp� ��
��

Peterson J�C�� Hammond� K� 	eds�
� Augustsson� L�� Boutel� B�� Burton� F�W�� Fasel� J��
Gordon� A�D�� Hughes� R�J�M�� Hudak� P�� Johnsson� T�� Jones� M�P�� Peyton Jones�
S�L�� Reid� A�� and Wadler� P�L��Report on the Non�Strict Functional Language� Haskell�
Version ��	� 	����
�

Rabhi� F�A� �Exploiting Parallelism in Functional Languages� a �Paradigm�Oriented� Ap�
proach�� in Abstract Machine Models for Highly Parallel Computers� Dew� P� and Lake�
T� 	eds�
� Oxford University Press� 	����
�

Reppy� J�H�� �CML� a Higher�Order Concurrent Language�� Proc� PLDI ���� Toronto�
Canada� June ���� 	����
� pp� �������

�� Trinder and others

Roe� P�� Parallel Programming using Functional Languages� PhD thesis� Dept� of Com�
puting Science� University of Glasgow� April� 	����
�

Sansom� P�M�� and Peyton Jones� S�L�� �Time and Space Pro�ling for Non�Strict� Higher�
Order Functional Languages�� Proc� POPL ���� 	����
� pp� ��������

Subhlok� J�� Stichnooch� J�M�� O�Hallaron� D�R�� and Gross� T�� �Exploiting Task and Data
Parallelism on a Multicomputer�� Proc� Fourth ACM Conf� on Principles � Practice of
Parallel Programming �PPoPP�� San Diego� CA� May ���� 	����
� pp� ����

Trinder� P�W�� Hammond� K�� Mattson� J�S� Jr�� Partridge� A�S�� and Peyton Jones� S�L��
�GUM� a Portable Parallel Implementation of Haskell�� Proc� PLDI ��
� Philadelphia�
Penn�� May ��� 	����
� pp� ������

Trinder� P�W�� Hammond� K�� Loidl� H�W�� Peyton Jones� S�L�� and J� Wu� �A Case Study
of Data�intensive Programs in Parallel Haskell� Proc� Glasgow Functional Programming
Workshop� Ullapool� Scotland� 	����
�

Wadler� P�L�� and Hughes� R�J�M�� �Projections for Strictness Analysis�� Proc� FPCA ���
September� 	����
�

A Determinant

This appendix contains two more versions of the determinant function from the lin�

ear equation solver described in Section ���� The version on the left is the original

sequential version� That on the right is a slightly cleaned�up version of the one we

originally wrote to parallelise this function� Compared with the strategic version

presented earlier� the lower�level parallel version is much more obscure and di�cult

to understand�

Sequential Version

sum l�par where

l�par � map determine� �jLo		jHi

determine� j �

�if pivot � � then

signpivotdet�

else

��

where

sign � if �even �j�jLo��

then � else ��

pivot � �head mat� �� �j���

mat� �

SqMatrixC

��iLo�jLo���iHi���jHi����

�map �newLine j�

�tail mat��

det� � determinant mat�

Direct Parallel Version

sum l�par where

l�par � do�it�from�to jLo

do�it�from�to j

� j�jHi � �

� otherwise � fx �par� �fx�rest�

where

sign � if �even �j�jLo��

then � else ��

mat� �

SqMatrixC

��iLo�jLo���iHi���jHi����

�parMap �newLine j�

�tail mat��

pivot � �head mat� �� �j���

det� � mat� �seq�

determinant mat�

x � case pivot of

� �� �

� �� signpivotdet�

fx � sign �par�

if pivot��

then det� �par� x else x

rest � do�it�from�to �j ��

