
Feedback Directed Implicit Parallelism

Tim Harris
Microsoft Research, Cambridge, UK

tharris@microsoft.com

Satnam Singh
Microsoft Research, Cambridge, UK

satnams@microsoft.com

Abstract
In this paper we present an automated way of using spare CPU re-
sources within a shared memory multi-processor or multi-core ma-
chine. Our approach is (i) to profile the execution of a program, (ii)
from this to identify pieces of work which are promising sources
of parallelism, (iii) recompile the program with this work being
performed speculatively via a work-stealing system and then (iv)
to detect at run-time any attempt to perform operations that would
reveal the presence of speculation.

We assess the practicality of the approach through an imple-
mentation based on GHC 6.6 along with a limit study based on
the execution profiles we gathered. We support the full Concur-
rent Haskell language compiled with traditional optimizations and
including I/O operations and synchronization as well as pure com-
putation. We use 20 of the larger programs from the ‘nofib’ bench-
mark suite. The limit study shows that programs vary a lot in the
parallelism we can identify: some have none, 16 have a potential
2x speed-up, 4 have 32x. In practice, on a 4-core processor, we get
10-80% speed-ups on 7 programs. This is mainly achieved at the
addition of a second core rather than beyond this.

This approach is therefore not a replacement for manual paral-
lelization, but rather a way of squeezing extra performance out of
the threads of an already-parallel program or out of a program that
has not yet been parallelized.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming

General Terms Algorithms, Languages, Performance

Keywords Implicit Parallelism, Functional Programming, Haskell

1. Introduction
Parallel processing has now reached consumer desktop machines:
all major vendors offermulti-core processors which are capable
of executing 2, 4, and soon 8 threads in parallel. Where will we
find enough profitable work for these threads to do so that a user
perceives a 2-core machine as being better than a uni-processor, or
a 4-core system better than a 2?

In this paper we return to an old idea: can we find this kind of
parallelismautomaticallyin existing programs? If we can do this
then it would avoid programmers needing to grapple with explicit
abstractions for parallel programming.

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’07, October 1–3, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-815-2/07/0010. . . $5.00

We work with programs written in Haskell (Peyton Jones et al.
1996), a pure, lazy, functional language which supports monadic
I/O. In principle this language is a great fit for multi-core hardware:
purity means that the compiler or run-time system can evaluate
multiple parts of a program in parallel without needing to worry
about data races. In practice we encounter five problems:

• Programs vary in the amount of parallelism that is actually
available. As we show, some have a lot but some have very little.

• Even in programs with abundant parallelism, the work must
be at a sufficiently coarse granularity that the parallel speed
up compensates for the overheads introduced in managing the
work.

• In languages with lazy evaluation, it is not immediately clear
which pieces of computation will actually contribute to the
‘real’ work of the program. Performing un-needed work can
harm performance – for example it can allocate a lot of memory
and trigger extra garbage collections.

• Even if the source code for a piece of work appears pure,
its compiled implementation may contain side effects (e.g. to
perform memoisation).

• Although the core of a language may be pure, practical pro-
grams written in it are likely to involve some kinds of I/O or
updates to mutable storage locations.

We base our work around the use ofthunksallocated by optimized
Haskell programs. Thunks provide a natural abstraction with which
to look for implicit parallelism: in principle the run-time system can
evaluateany of the thunks that have been allocated. We quantify
this with a limit study examining the parallel speed-up we would
achieve if we could evaluateall thunks as soon as they are allocated
(Section 2).

This limit study is clearly unrealistic from a practical point of
view – it assumes there is an infinite number of processors, and that
there are no overheads introduced by running thunks in parallel.
Our results show that many programsdoactually exhibit substantial
degrees of implicit parallelism in this simulated environment: 16 of
our 20 test programs show at least a 2x speed-up and 4 show at least
an 32x speed-up.

Can we achieve such a speed-up in practice? To do that we must
be able topredictwhich thunks are likely to be good candidates for
parallel execution. We want to select thunks that are likely to be
needed by the program and which will run for long enough that
the parallelism gained compensates for the overheads introduced.
In Section 3 we show that, for most programs, we can make these
predictions based on a thunk’s allocation site. Restricting ourselves
to selecting long-running thunks loses some potential parallelism,
but we still see simulated 2x speed-ups on 7 of our tests.

In Section 4 we show how we use these predictions in practice
in the Glasgow Haskell Compiler (GHC). When we predict that
a thunk allocation site will produce useful work we ‘spark’ the

thunk, putting it into a shared pool of work that can be performed
speculatively. We modified the GHC run-time system to add (i) a
work-queue mechanism for managing sparked thunks, (ii) a new
thunk-locking mechanism to prevent duplication of work between
speculative execution and direct execution, and (iii) a mechanism
to detect and prevent I/O operations that may reveal the presence of
speculation.

Section 5 summarizes the results from our implementation of
feedback-directed implicit parallelism (FDIP). We see performance
improvements in all of the programs that our simulator predicted,
but the practical overheads eat into the parallelism, leaving 10-
80% speed-ups on the 7 programs that offered the potential for
feedback-directed implicit parallelism. We show results for all of
our benchmarks, including those which get a negligible speed-up
and those which are slowed down. In practice we would use the
simulation results from Section 4 to select whether or not to use
FDIP for a particular program to try to counter this speculation risk.

As we conclude in Section 7, FDIPcanfind useful parallelism
in some programs and get useful performance improvements on
real commodity hardware. However, this approach is clearly not a
silver bullet for parallel programming: it provides a way of squeez-
ing extra performance out of the threads of an already-parallel pro-
gram or out of a program that has not yet been parallelized.

In particular, we make the following contributions:

• We introduce a low-overhead mechanism for building paral-
lelism profiles from optimized compiled code.

• We introduce heuristics that use these profiles to predict which
thunk-allocation sites are likely to represent coarse-grained
sources of parallelism.

• We show how these predictions can be used with full-run feed-
back to improve the performance of real large applications run-
ning on commodity multi-core hardware.

2. Profiling
In this section we examine the amount of implicit parallelism avail-
able in optimized programs compiled by GHC (specifically, we use
‘-O’ on the GHC command line). This is a limit study in which we
ignore practical matters such as the overhead of scheduling work on
multiple processors: as we will show, much of this parallelism is at
too fine a granularity for it to be exploitable on stock hardware.
However, the results are still important – the limit study gives an
upper bound on what we could hope to achieve in practice.

Section 2.1 outlines the implementation of lazy evaluation in
GHC; the techniques it uses are central to our definition of implicit
parallelism. Then, in Sections 2.2–2.5 we describe our techniques
for tracing compiled Haskell programs and measuring the implicit
parallelism that they actually contain.

2.1 Lazy evaluation in GHC

Lazy evaluation in GHC is based on the allocation and execution of
thunkswhich represent suspended computations whose results may
or may not be needed. Consider this expression as an example1:

let x = f(1) -- T1
y = f(2) -- T2

in y + x

For clarity in these short examples we assume that ‘let’ is imple-
mented by allocating a thunk for each of the variables it introduces,
and that evaluating ‘+’ will require its left argument before its right
one. In this example thunkT1 will compute the value off(1), and

1 The syntax ‘--’ causes the rest of a line to be treated as a comment.

null

Entry
code

Header
word

Result
word

Payload words
(if any)

Haskell
stack

(a) An unevaluated thunk consists of aheader wordthat points to
the thunk’s implementation, aresult wordwhich will be updated to
hold the thunk’s result once it has been computed, and zero or more
payload wordswhich provide values for the free variables used by
the thunk.

Frames
used by
thunk

null

Entry
code

Update
frame

Payload words
(if any)

Result
word

Header
word

Haskell
stack

(b) When a thread requires the value in the thunk it branches to the
function that the thunk’s header word points to. Thisentry code
pushes anupdate frameonto the thread’s stack, identifying the
thunk under evaluation.

Result

Update
frame

Payload words
(if any)

Result
word

Header
word

Haskell
stack

IND
entry
code

Entry
code

(c) The thunk’s evaluation is complete when execution returns to
the update frame. The thunk is thenupdated, placing its value in
the result wordand replacing the header word with a pointer to
indirection entrycode (IND). If the thunk’s value is needed again
then the IND code returns the contents of the thunk’s result word.

Figure 1. Thunk evaluation in GHC.

similarly for T2 andf(2). In this case the value ofy is needed al-
most immediately: the thunk is said to beentered(causingf(2)
to be evaluated) and then, assumingf(2) terminates, the thunk is
updated(overwritten in memory so that the result off(2) is imme-
diately available if it is needed again). Figure 1 shows the life-cycle
of a thunk in more detail.

Many of the transformations made by an optimizing compiler
focus on eliminating thunk creation in this kind of code: this is
worthwhile because it avoids heap-allocating the thunk itself, elim-
inates the book-keeping work on entry and update, and can expose
opportunities for further traditional optimizations (for instance if
the body off is inlined andf(2) can then be evaluated at compile
time). In our example one would not expect a thunk to be created
for T2 because thelet expression will always need the result of
f(2).

As we said in the introduction, our implementation and per-
formance measurements are all designed to work with code with
these optimizations applied. As we discuss in the conclusions in

let x = f(1) -- T1
y = f(2) -- T2

in y + x T

T2

T1

T

T2

T1

(a) T allocates thunks T1 and T2 and then evaluates both of them.

let x = f(1) -- T3
y = f(2) + x -- T4

in y T

T4

T3

T

T4

T3

(b) T allocates T3 and T4. T evaluates T4 which in turn requires T3 to be evaluated.

let x = f(1) -- T5
y = x + f(2) -- T6

in y T

T6

T5

T

T6

T5

(c) T allocates T5 and T6. T evaluates T6 which immediately requires T5 to beevaluated.

Figure 2. Examples of thunk allocation and lazy evaluation.

Section 7, there is an interesting trade-off between parallelism and
optimization opportunities.

Figure 2 illustrates some examples of lazy evaluation. In each
case thelet expression computesf(1)+f(2). Looking first at
Figure 2(a), following our first example, the code in the left column
allocates two thunks on entry to thelet expression. Evaluatingy+x
in the body of thelet forcesT2 to be evaluated and thenT1. The
center column of Figure 2(a) shows what happens at run-time. The
boxes show pieces of work involved in the implementation of each
thunk, represented in execution order from left to right. If thelet
expression is in thunkT then execution starts with short steps that
allocate thunksT1 andT2. Execution then branches toT2 which
computesf(2) before returning toT. Execution proceeds toT1
which computesf(1) and returns again toT. We return to the right
column of the figure later.

In Figure 2(b) the addition is moved into one of the thunks. This
is shown in the center by the fact that execution proceeds directly
from T4 to T3 rather than back toT in between.

Finally, in Figure 2(c), the operands of the addition are swapped
over. At run-time this means thatT6 almost immediately entersT5
and the body ofT6 only executes when the result fromT5 has been
computed.

2.2 Computing available parallelism

In the examples Figure 2(a)-(c) the total amount of work performed
at run-time is the same. However, they differ in the amount of
implicit parallelism that is available at the granularity of thunks.

In Figure 2(a) thunksT1 andT2 can start being evaluated in
parallel as soon as they have been allocated. The same is true for
most of the execution of the thunks in Figure 2(b), aside from the
very last step ofT4 that must wait untilT3 has been completed.
Conversely there is little parallelism available in Figure 2(c): the
very first thing thatT6 does is to enterT5 and so the bulk ofT6
cannot proceed untilT5 has been evaluated.

Do real programs behave like examples (a) and (b), or do they
behave like example (c)?

We can answer this question by tracing the execution of real
programs and examining how they use thunks. Our basic approach
is (i) to modify GHC so that programs can be run in a tracing
mode which records the dependencies between different pieces of
thunks’ execution, (ii) from this trace build a graph whose nodes
are pieces of work labeled with the work’s duration, and whose
edges represent the dependencies that execution must respect, (iii)
find the critical path through this graph from the thunk representing
the start of execution to that computing the program’s final result.

The critical path length gives us a lower bound on how fast this
same execution could have run on a multi-processor machine. If
there is little parallelism in this idealized view then there is cer-
tainly none in practice. Conversely, even if the critical path suggests
that there is abundant parallelism then, of course, we must remain
sceptical of the result; this limit study assumes an unbounded num-
ber of cores are available, that no additional book-keeping over-
heads are introduced, and no further slow-down is caused by ad-
ditional pressure on the memory management subsystem or other
resources in the run-time system or hardware.

At a high level there are three kinds of dependency between
pieces of work involved in evaluating thunks:

• Pieces of work from the same thunk must execute serially. For
example, in Figure 2(a), all of the pieces ofT execute in order.

• A thunk cannot start being executed until it has been allocated.
For example, in Figure 2(a), the thunksT1 andT2 cannot start
to be evaluated until they have been allocated byT.

• If a thunk U requires the result of a thunkV then U’s execu-
tion cannot proceed past that point untilV has been completed
and the result supplied. This is what harms parallelism in Fig-
ure 2(c):T6 requires the result ofT5 early in its own execution.

The right hand column of Figure 2 illustrates these dependencies
for our three examples. The blocks represent the individual ‘steps’
of execution that each thunk is broken up into, and the dashed lines
represent the dependencies that exist. For example, in Figure 2(a),
the first step ofT allocatesT1, the second step allocatesT2. The

third step ofT entersT2. Notice how thisdoes notintroduce a
dependency fromT to T2: T2 was available for execution at any
point since its allocation. However, the fourth step ofT is dependent
on receiving the result ofT2, and the final step ofT on receiving the
result ofT1.

2.3 Implementation

It is vital that we minimize the impact that our trace-collection
has on the program under test; many steps are very small and
so there is a risk that the probe effect introduced by tracing will
affect the results. We do this by trying to perform most work as
part of garbage collection (GC). The current garbage collectors in
GHC are allstop-the-worlddesigns in which all mutator threads are
suspended during collection. GC will already drastically perturb the
contents of the processor’s caches and so it provides a good time to
add extra work associated with profiling.

In this limit study our input programs are all sequential. How-
ever, our tracing infrastructure does support programs using mul-
tiple Haskell threads multiplexed over a single operating system
thread.

Events. We add tracing to each thunk at each stage of its allocation-
entry-update lifecycle. We batch up trace-events in a simple in-
memory buffer between GCs. To gather the step-dependency
graphs we need to trace five kinds of event, (i) thunk allocation,
(ii) thunk entry, (iii) thunk update, (iv) Haskell thread switches,
and (v) thunk relocation events generated at GC time.

The first three kinds of event correspond to the steps in the
thunk life-cycle in Figure 1. Each event includes the processor
cycle-counter value when it is generated. In each case thunks are
identified by their address in the heap and, in thunk allocation
events, each static allocation site is identified by a unique integer
ID allocated sequentially by the compiler.

Thread switch events are generated when the user-level sched-
uler in the run-time system switches to or from a given Haskell
thread. A special thread ID is used to represent switching to work in
the run-time system itself; this avoids us accounting work in (e.g.)
the GC to the thunk which happened to be active when the collec-
tion was triggered. Thunk relocation events are generated at GC
time and include the old and new locations of the thunk.

Trace processing. At GC time we process the in-memory buffer
to generate a text file on disk that can be processed off-line to
determine the implicit parallelism available.

In generating the on-disk file format we map each thunk to a
unique sequence number; this provides a stable identifier for the
thunk, meaning that trace-processing tools do not need to track the
location of the thunk if it is relocated by the GC. The mapping from
thunk addresses to unique IDs is held in a hashtable separate from
the Haskell heap. This avoids perturbing the in-memory represen-
tation of thunks by extending them with space to hold the ID.

Each line in the on-disk file represents either (i) a relationship
between two steps, or (ii) execution of a step, along with the cycle-
count timing of that step. We use the notationX.Y to mean step
numberY of thunk numberX. For example, the execution shown in
Figure 2(a) would be represented as follows, assuming that thunkT
is numbered 100,T1 101,T2 102:

100.1 101.0 A-1234
100.1 100.2 S-700
100.2 102.0 A-1235
100.2 100.3 S-500
100.3 101.0 E
101.0 101.1 S-5000
101.1 100.4 U
100.4 100.5 S-500

100.5 102.0 E
102.0 102.1 S-6000
102.1 100.6 U

The A- lines indicate allocation dependencies, e.g. the first line
shows that step 100.1 finished by allocating thunk 101. The number
1234 identifies the static allocation site in the program.

TheS- lines indicate execution steps, e.g. the second line shows
that step 100.1 took 700 cycles to execute measured with the user-
mode processor cycle counter instruction. As Figure 2(a) shows,
execution starts byT allocating the other thunks in a series of short
steps.

TheE- lines record when a thunk is first entered in sequential
execution. They are superfluous from the point of view of the limit
study but allow us to record the path taken by sequential execution
for comparison with the possible parallel execution.

Finally, theU- lines record when one thunk completes execution
by being updated. For example, the line101.1 100.4 U shows
that execution returns from thunk T1 (number 101) to thunk T
(number 100).

Validation. We validated the tracing infrastructure by having it
maintain ashadow stackof the thunks it believed were under
evaluation in each Haskell thread. Athunk entryevent pushes a new
thunk onto the stack. Athunk updateevent pops a thunk from the
stack. We report an error if (i) the thunk popped from the shadow
stack does not match the thunk supplied as a parameter tothunk
update, (ii) a thunk is entered before an allocation event is seen for
it, (iii) a thunk is updated before an entry event is seen for it.

This approach was invaluable in finding places in the run-time
system where thunks were manipulated without recording the nec-
essary trace events2. Ultimately we could compile traced versions
of GHC itself (including the Haskell libraries it uses) and run these
without any errors being reported. Validation is often overlooked
when collecting traces (Jain 1991) and our experience is that, with-
out validation, subtle problems would have remained undetected
and skewed the results by causing work to be attributed to the
wrong thunk.

2.4 Replaying execution

We measure the implicit parallelism available in a program’s exe-
cution by using the log to reconstruct a graph of the kind shown
on the right hand side in Figure 2. Each execution step becomes a
node in the graph and each allocation or update event becomes a
dependence edge between steps from different thunks.

For this limit study we find the fastest possible execution of
the trace by using a simple discrete event simulator modeling a
machine with an infinite number of processors. Simulation events
correspond to the completion of a step and, when an event fires, any
subsequent step that is now eligible to run is started and an event
scheduled for that step’s completion.

The simulator outputs a summary of the execution time on this
idealized parallel machine and a trace showing how the number of
active cores varies over time.

2.5 Results

Figure 3 summarises the test programs that we used and their thunk
usage. For each program we recorded (i) the total run-time of the
original compiled without any instrumentation, (ii) the total run-
time that our instrumentation accounts to the evaluation of thunks,
(iii) the mean thunk size, and (iv) the fraction of allocated thunks

2 For readers familiar with the GHC run-time system: (i) when dealing
with static thunks, (ii) thunks allocated by the run-time system to raise
asynchronous exceptions, (iii) AP STACK thunks generated from update
frames whose execution is suspended.

Eval time (10
9 cycles) Thunk size Thunks

Baseline Instrumented (cycles) needed
atom Floating point simulation, nofib/spectral 0.34 0.64 (185%) 254 94%
boyer Gabriel suite ‘boyer’ benchmark, nofib/spectral 0.47 1.09 (232%) 284 61%
bsort-1 Sorting circuit model, locally written 0.77 1.18 (152%) 725 99%
bsort-2 Sorting circuit model, locally written 1.68 2.64 (157%) 1245 99%
cacheprof Cache profiling tool, nofib/real 1.82 2.81 (154%) 1369 97%
calendar Prints a given year’s calendar, nofib/spectral 0.68 1.27 (186%) 585 99%
circsim Circuit simulator, nofib/spectral 0.66 1.56 (237%) 315 84%
clausify Put propositions into clausal form, nofib/spectral 0.58 0.85 (146%) 405 93%
compress Text compression algorithm, nofib/real 4.61 5.30 (114%) 1969 99%
fft2 Fourier transforms, nofib/spectral 0.48 0.59 (123%) 1382 99%
fibheaps Fibonacci heaps, nofib/spectral 0.26 0.25 (96%) 765 98%
hidden Line rendering, nofib/real 0.70 1.02 (146%) 441 83%
lcss Hirschberg’s LCSS algorithm, nofib/spectral 0.33 0.47 (142%) 324 99%
multiplier Binary-multiplier simulator, nofib/spectral 0.67 1.70 (254%) 213 99%
para Paragraph formatting, nofib/spectral 1.98 3.26 (164%) 1301 92%
primetest Primality testing, nofib/spectral 2.33 2.21 (95%) 9266 99%
rewrite Equational rewriting system, nofib/spectral 0.29 0.23 (80%) 1059 82%
scs Circuit simulator, nofib/real 0.78 0.98 (125%) 862 84%
simple Hydrodynamics and heat-flow, nofib/spectral 1.80 2.87 (159%) 526 99%
sphere ray tracer, nofib/spectral 0.70 0.74 (106%) 1832 85%

Figure 3. Summary of the test programs used.

1

2

4

8

16

32

64

128

256

P
a
r
a
ll
e
li
s
m

100

1K

10K

100K

1M

10M

Figure 4. Implicit parallelism for our test programs with different execution thresholds. The y-axis shows the parallelism achieved, so 1
means ‘the same as sequential execution’, and 2 ‘twice as fast as sequential execution’.

that are needed by the computation. The difference between the first
two numbers gives an upper bound on how much our instrumenta-
tion adds to the time spent evaluating thunks; as expected we tend
to see larger differences when thunks are short.

Our test programs were selected as follows. We started with the
full ‘real’ and ‘spectral’3 sections of the nofib benchmark suite,
along with a number of other locally-written programs. We re-
moved programs which could not be immediately built with our
tracing system (for example because of dependencies on Haskell
packages we had not installed). We also removed programs which
we could not readily configure to run for at least 1s so that the run-
ning time is large compared with our measurement precision. Fi-

3 ‘Real’ contains real applications written in Haskell. ‘Spectral’ contains
substantial kernels of applications.

nally, we examined the tests and made sure that they did not simply
repeat a small code fragment in a way that would lead our system
to conclude that each repetition could run in parallel; it would be
misleading to generalize from a test program where repeating an
operation 500 times allows a speed up of a factor of 500 through
parallelism. We did this by confirming that the parallelism was in-
dependent of the number of repetitions.

We preliminarily experimented with whole-program instrumen-
tation, using an instrumented version of the Haskell libraries along
with instrumentation in the program under test. Using instrumented
libraries did not affect the implicit parallelism in these tests and so,
in all the measurements reported here, we use ordinary uninstru-
mented libraries. From a practical viewpoint, this means that our
results correspond to applying FDIP without needing to recompile
or modify libraries on a per-program basis.

�

�

�

�

�

�

�

�

� ���� ���� ���� 	��� ����� ����� ����� �����

Figure 5. An allocation site that shouldnotbe sparked despite hav-
ing a high mean execution time. The x-axis shows the thunks cre-
ated at the site in allocation order, the y-axis shows their execution
time in 1M-cycle units.

Figure 4 summarizes our results, showing the parallelism
achieved for each of the programs and for a range of execution
time thresholds. The programs are shown on the x-axis, and the
speed-up achieved is shown on a logarithmic scale on the y-axis: 1
means ‘the same as sequential execution’, 2 means ‘twice as fast as
sequential execution’, and so on.

For each program we show a cluster of bars corresponding to
different thresholds on thunks’ execution times: only thunks that
take longer than this threshold are executed in parallel, shorter
thunks are executed sequentially at the point that they are first
entered. We define the execution-time of a thunk as the number
of cycles in the sequential trace between when it is entered and
when it is updated. The lowest threshold of 100 cycles causes all
thunks to be executed in parallel as soon as they are allocated: the
per-thunk logging operations add around 100 cycles to each thunk’s
execution.

Behavior clearly varies between programs. Some programs
show virtually no possible parallelism even for very small thresh-
olds – boyer, calendar, and rewrite. Others provide some paral-
lelism, but only with very small thresholds – fft2 and sphere. It is
unlikely that this could be exploited in practice; the book-keeping
cost of dispatching a thunk for execution on another thread is likely
to be at least 10k cycles.

However, some programs do continue to offer parallelism with
thresholds over 10K: atom, bsort-1, bsort-2, hidden, lcss, primetest
and simple all show a potential speed up of 2x or more even when
using a 1M cycle threshold.

3. Feedback generation, recompilation
The results from the limit study show that several programs do
provide appreciable amounts of implicit parallelism, even when
restricting ourselves to large thunks of 1M cycles or more. Can we
actually obtain any of this parallelism in practice?

The problem is that, to obtain this parallelism at run-time, we
need topredict which thunks will be worth running concurrently
with application threads. To take a contrived example, suppose that
the limit study shows that a program has 4-way implicit parallelism.
This is easy to exploit if the program allocates exactly 4 long
running thunks – simply enqueue all of the thunks for concurrent
execution. However, Figure 3 shows that real programs allocate a
vast number of thunks, some long running, some short running, and
some which are allocated but never evaluated. To generate good-
quality feedback we must predict which thunks are (i) likely to
represent pieces of work that are needed by the application, and
(ii) likely to represent large pieces of work.

Our basic approach is to use static allocation sites to predict
whether or not thunks will meet these criteria and to make a binary

spark / not-spark prediction for each site. Intuitively thunks allo-
cated at the same point in the program may be expected to be used
in similar ways. Earlier work in Haskell (Ennals 2004) has sug-
gested that this is true in practice, and earlier work on storage man-
agement in other languages has shown static allocation sites to be
a predictor of properties of the data’s usage (Harris 2001). We jus-
tify this decision later in this section by comparing the parallelism
achieved by our per-allocation-site decisions with that achieved in
our limit study.

Selecting thunks that will be needed. We do not want to spark
thunks that are not needed: even if there are idle cores available
then the extra work will add pressure on the garbage collector. We
select allocation sites based on a simple threshold on the fraction
of thunks allocated at that site in the profiling run which were
eventually entered. In our results this parameter has little effect on
the feedback quality over a wide range: our results use a threshold
of 3/4 but the number of sparked thunks is unaffected up to a ratio
of at least 255/256, and the run-time performance is unaffected by
requiring a 1/1 ratio. One explanation of this, at least in our test
programs, is that allocation sites producing long-running thunks are
also sites that produce thunks that are always needed.

Selecting thunks that provide coarse-grained parallelism. The
key problem, however, is selecting thunks that are likely to repre-
sent a substantial piece of work at run-time: we want to ensure that
each thunk we spark will provide enough work to compensate for
the overhead of sparking it.

In Section 2 we defined a thunk’s execution time as the num-
ber of processor cycles in the sequential trace between when the
thunk was entered and when it is updated. We initially hoped to use
an allocation site’s average execution time to select sites to spark.
However,this does not work well. For example, consider this func-
tion:

noRealWork :: Int -> Int
noRealWork 0 = 0
noRealWork x =
let t = noRealWork (x-1) -- T1
in t

The functionnoRealWork recurses deeply before returning 0. If
called with a large parameter then a lot of thunks will be allocated
atT1 and, if the recursion is deep enough, the mean execution time
will makeT1 look as though it is worth sparking. We might ideally
spark the first thunk allocated in a given recursion, but not the
subsequent ones. However, this cannot be expressed by a binary
spark / not-spark decision at the allocation site.

Figure 5 shows a second problematic example taken from an
actual program (bsort-2). The graph plots the execution time of
15 000 thunks from a given allocation site in units of 1M cycles.
The execution times vary from around 0 up to 6.2M cycles – al-
though some short-running thunks are allocated at this site, the site
as a whole still has a mean workload substantially over 1M cycles.
Examining the behavior of this allocation site in more detail shows
that the first peak comprises 4 000 thunks which are allocated to-
gether near the start of the program. Thunk 4 000 is entered first.
Thunk 4 000 then enters thunk 3 999, which enters thunk 3 998 and
so on in turn. Only a few hundred cycles of work are performed
at each stage. The long running time of e.g. thunk 3 999 represents
almost exactly the work as that of 4 000. However, while this case
is similar tonoRealWork, we would ideally spark thelast thunk
allocated in the recursion rather than thefirst thunk.

We therefore took the approach ofnot sparking thunks created
by allocation sites like these. Instead we try to identify allocation
sites where each sparked thunk provides its own ‘real’ work. We
do this by considering thetotal workof an allocation site which we

1

2

4

8

16

32

64

128

256
P
a
r
a
ll
e
li
s
m

Limit all

Limit 100k+

Select 100k

Select 250k

Select 500k

Select 1M

Figure 7. Simulated performance for sparking based on allocation site. We vary themean work-size threshold between 100K-1M cycles
with a fixed 3/4 needed-thunk threshold.

define as the time during which at least one thunk allocated at that
site is under evaluation, and then find themean workby dividing
this by the number of thunks allocated. For example, in Figure 5,
a total of around 6.2M cycles is spent during the evaluation of the
first 4 000 thunks, and so the mean contribution of these thunks is
only 6.2M / 4 000 = 1.5K cycles.

Figure 6 shows how we compute an allocation site’s total work
in a single pass over the trace file. We keep various mappings in-
dexed by thunks and by allocation sites, updating these as the al-
gorithm runs.ThunkToSite maps thunks to the allocation site that
created them.EntryTime records the earliest sequential execution
time at which any currently-active thunk at a given site was entered.
EntryCount records the number of currently-active thunks at a
given site.TotalWork records the total work accounted to the allo-
cation site.CurTime records the current simulated time, advanced
when processing each step in the trace.

This approach deals with allocation sites generating thunks
which recursively enter other thunks from thesamesite. What
aboutdifferentsites? For example:

inner :: Int -> Int
inner x =
let t = realWork x -- T2
in t

outer :: Int -> Int
outer x =
let t = inner x -- T3
in t

If we assumerealWork is a long-running computation thenT2 and
T3 will both appear to generate long-running thunks even though
T3 itself generates little work beyond its calls toinner.

Do we need to avoid sparking both allocation sites? We consid-
ered an extension to the algorithm in Figure 6 which took atentative
selection of thunks and replayed the execution trace to identify the
work provided by each tentatively selected thunk above and beyond
that provided by other tentatively selected thunks that it recursively
entered.

We have not yet implemented that extension. There are two
reasons. First, it requirestwo passes over the trace which would
prevent us from applying it on-line in future work. Second, the

depth of recursion through wrappers, and hence the number of
small wrapper thunks created, is bounded above by the number
of thunk allocation sites that we select for sparking – beyond this
depth one of the sites involved must be providing ‘real’ work.

3.1 Simulating the performance of our selections

We re-ran our limit study to explore the impact of the different
mean-work thresholds. Figure 7 illustrates this. We use the same
axes as our earlier results from the limit study and, for each pro-
gram, we include two bars from the limit study for comparison:
the parallelism achieved by sparking all thunks (‘Limit all’) and
the parallelism achieved by sparking all thunks whose execution
time is 100k cycles or more (‘Limit 100k+’). We then add four bars
showing the speed-up when we select allocation sites using 100k,
250k, 500k and 1M-cycle mean-work thresholds.

In many cases the simulated results are identical for 100k-500k
thresholds. This is because the sparking decisions are identical:
the parallelism is coming from a particular allocation site or set of
allocation sites, and disappears entirely when the threshold exceeds
this site’s mean work.

We lose some parallelism going from the limit study to the per-
allocation-site predictions. We examined why this is inatom which
is the program with the largest drop when comparing ‘Limit 100k+’
with ‘Select 100k’. In this case it is because of thunk allocation
sites that generate thunks with a variety of work times rather than
because of allocation sites that generate thunks that are not always
needed. We did not study the other tests in detail, but high fractions
of needed thunks in Figure 3 suggest that this same conclusion is
likely to be true in all of the programs where we lost parallelism.

Figure 8 shows the number of allocation sites selected for spark-
ing with a 100k threshold, the number of thunks that they allocate,
and the fraction of these that are needed by the program. The low
numbers – both of sparked sites and sparked thunks – justify our
decision not to avoid sparking short wrapper thunks: the total num-
ber of wrapper thunks must be low.

4. Run-Time system
The previous section showed that making per-allocation-site pre-
dictions of which thunks to spark is able to achieve a parallel speed-
up in several of our test programs. In this section we show how
we achieve a speed-up in practice rather than just in a simula-

ThunkToSite :: Thunk -> AllocationSite
EntryTime :: AllocationSite -> Time
EntryCount :: AllocationSite -> Int
TotalWork :: AllocationSite -> Time
CurTime :: Time

foreach record r {
// Update the total sequential work performed
if (r is step) {
CurTime += r.size;

}

// Thunk allocation: record mapping from this
// thunk to its allocation site
if (r is allocate-thunk) {
ThunkToSite(r.thunk) = r.site

}

// Thunk entry: check whether we are already
// evaluating a thunk from this allocation site
if (r is enter-thunk) {
site = ThunkToSite(r.thunk);
if (EntryCount(site) == 0) {
EntryTime(site) = CurTime
EntryCount(site) = 1

} else {
EntryCount(site) ++;

}
}

// Thunk completion (update): check whether
// we are still evaluating other thunks from
// this allocation site
if (r is update-thunk) {
site = ThunkToSite(r.thunk);
EntryCount(site) --;
if (EntryCount(site == 0)) {
// Last thunk at this site: record
// elapsed time since entering the
// first thunk
TotalWork(site) += CurTime - EntryTime(site)

}
}

}

Figure 6. Pseudo-code to compute the total work of an allocation
site in a single pass over a trace file.

tor. The main idea is to add additional Haskell threads whose sole
job is to evaluate sparked thunks speculatively (Section 4.1). The
sparked thunks are managed with a simple work-stealing system
(Section 4.2) with the addition of locks to prevent duplication of the
same piece of work between a speculative thread and an applica-
tion thread (Section 4.3). These mechanisms replace GHC’s exist-
ing support for sparking thunks on shared-memory multi-processor
machines. We summarize the differences and compare the perfor-
mance of these two approaches in Section 4.4.

We must be careful to preserve the semantics of the original
program. The problem here is that GHC provides two operations
through which I/O can be preformed outside the normal monadic
I/O system:

unsafePerformIO :: IO a -> a
unsafeInterleaveIO :: IO a -> IO a

Sites sparked Thunks sparked Thunks needed
atom 3 801 100.00%
boyer 1 1 100.00%

bsort-1 5 4097 100.00%
bsort-2 14 469 100.00%

cacheprof 21 9161 100.00%
calendar 1 400 100.00%
circsim 11 3604 100.00%
clausify 1 20 100.00%

compress 4 4 100.00%
fft2 15 2573 100.00%

fibheaps 2 17 100.00%
hidden 15 7284 92.77%

lcss 5 776 100.00%
multiplier 10 4008 99.98%

para 5 31351 100.00%
primetest 4 602 100.00%

rewrite 4 20 100.00%
scs 62 8805 98.17%

simple 104 532 100.00%
sphere 3 3 100.00%

Figure 8. The number of thunks sparked during the simulation,
and the percentage of sparked thunks that are actually needed.

EvaluatingunsafePerformIO x causes the I/O actionx to be per-
formed immediately. This ‘back door’ can be used for ad-hoc pro-
filing and debugging, e.g. to probe which order different expres-
sions are evaluated. It can also be used to encapsulate I/O opera-
tions which the programmer asserts are free from side effects and
independent of their environment.

PerformingunsafeInterleaveIO y provides a way to lazily
defer I/O: the actiony is performed when the value yielded by
unsafeInterleaveIO is demanded. This is used in the GHC
libraries to implement lazy file reading.

We must be careful not to perform unsafe I/O inside speculative
thunks: we do not know whether or not the speculative work should
be performed and, even if it should be performed, we do not want
to re-order the I/O operations that are executed.

We deal with this problem by dynamically detecting attempts
to perform unsafe I/O operations while speculating. If an unsafe
I/O operation is attempted then we suspend speculation of the
current spark. The suspension mechanism means that if the thunk
is subsequently entered then evaluation will resume at the I/O
operation. We implement this by defining a new I/O action:

nonSpeculatively :: IO ()

This has no side effect in an application thread, but it suspends
speculation if it is attempted during speculation. We then redefine
unsafePerformIO and unsafeInterleaveIO in terms of the
original versions of these operations:

-- Perform IO action ’m’ only if running in an
-- application thread
doNonSpeculatively :: IO a -> IO a
doNonSpeculatively m = do { nonSpeculatively ; m }

unsafePerformIO :: IO a -> a
unsafePerformIO x =
oldUnsafePerformIO (doNonSpeculatively x)

unsafeInterleaveIO :: IO a -> IO a
unsafeInterleaveIO y =
oldUnsafeInterleaveIO (doNonSpeculatively y)

Although these twounsafe operations are similar, note the asym-
metry in what is being prevented. Speculative work must not be
allowed to callunsafePerformIO. In contrast, speculative work
can callunsafeInterleaveIO but evaluating the result of typea
must be prevented.

4.1 Speculative worker threads

The GHC run-time system performs its own user-level scheduling
of Haskell threads. This lets it support a much larger number of
Haskell threads than most OS threading libraries would provide.

The maximum number of Haskell threads that can run in parallel
is supplied as a start-up parameter to the run-time system. In the
terminology of the GHC run-time system, this creates a number
of capabilities. Each capability holds resources that should be per-
core – primarily a run queue of Haskell threads being scheduled
over that capability and a local memory allocation region. Haskell
threads migrate between capabilities over long timescales for load
balancing. The number of capabilities is typically tuned by the user
to the number of cores available on the machine.

To deal with speculation we add an additionalspeculative work
thread to each capability. In most respects this is an ordinary
lightweight Haskell thread which loops attempting to pick up and
evaluate thunks that have been sparked for speculative execution.

It differs from ordinary threads in that (i) it has lower priority
than other Haskell threads on the same capability, (ii) if it attempts
an operation that would block then the speculative evaluation it was
attempting issuspendedinstead of the thread waiting. The intuition
behind this is that the blocking operation represents a long delay
and so the speculative thread should continue performing useful
work from another spark rather than actually waiting.

Speculation is suspended by updating the thunks under evalua-
tion with new thunks that will resume the computation at the point it
was suspended. This mechanism is already used in several places in
the GHC run-time system – e.g. to save partial evaluation of thunks
that are interrupted by the delivery of an asynchronous exception.

4.2 Managing sparked thunks

We manage the sparked thunks with a basic work-stealing system.
Each capability has its own spark-pool into which threads run-
ning on it publish references to the thunks that they spark. They
do this by passing the newly-allocated thunk to a new function
sparkSpeculation exported by the GHC run-time system. These
calls are intended to only by added by the FDIP tool, not directly
by the programmer. If the capability’s speculative work thread runs
then it preferentially takes sparks from its own pool. Otherwise it
takes sparks from a random capability’s pool. We take a random
thunk from the pool.

Since we assume that sparks generated by speculation represent
large pieces of work we use simple per-spark-pool mutexes and
a steal-one policy. The benefits of a finer-grained work-stealing
system (Blumofe and Leiserson 1994; Hendler et al. 2005) would
be negated by the thunk-locking mechanism described below.

4.3 Preventing duplicate evaluation

The existing implementation of thunk evaluation in GHC is de-
signed to be thread-safe (Harris et al. 2005). The approach taken
there is to make it safe for concurrent threads to enter, evaluate,
and update the same thunk at the same time. This can lead to dupli-
cate evaluation. However, referring back to Figure 1, such duplicate
evaluation will only occur if a second thread enters a thunk in the
window between a first thread entering it (Figure 1(a)) and updating
it (Figure 1(c)).

This approach is effective in practice because it avoids the cost
of locking thunks while they are under evaluation. However, this re-
lies on a number of assumptions about how thunks are used. First,

many programs are single-threaded: duplicate evaluation cannot
occur in these. Second, in programs using multiple threads, differ-
ent threads are often working on different parts of a problem. This
can lead to an affinity between threads and thunks. Third, many
thunks are short-running and so the window during which duplicate
evaluation is possible is short (our statistics in Figure 3 reconfirm
this) and the cost of occasional duplication is low.

The thunks sparked by FDIP do not behave like this. Most im-
portantly, we deliberately attempt to spark long-running thunks: the
cost of duplicate evaluation is high, and the window during which
it is possible is long. Furthermore, the work-stealing model intro-
duces correlations between the thunks being entered speculatively
and those entered by application threads. For example, this hap-
pens if an application allocates a series of thunks, adds these to the
spark-pool, and then proceeds to evaluate one of the thunks itself.

To avoid these problems we introduce locking on thunks,but
only on ones that are added to the spark-pool. As our simulation
results show in Figure 8, the number of sparked thunks is low
compared with the total number.

Sparked thunks are locked when they are under evaluation,
either by a speculative thread or by an application thread. If an
application thread tries to enter a locked thunk then it blocks until
the thunk’s value is available. If a speculative thread attempts to
enter a locked thunk then that suspension is suspended and it can
resume speculation from another spark. The intuition behind this
is that the locked thunk represents a large piece of work (because
it was selected for sparking) and so the speculative thread should
continue performing useful work from another spark rather than
waiting.

We introduce this locking in thesparkSpeculation function
that is called at the allocation sites selected for feedback-directed
sparking. Figure 9 shows what we do. The original thunk (Fig-
ure 9(a)) is cloned and overwritten by ashim-lockobject (Fig-
ure 9(b)). Remember that we callsparkSpeculation on a newly-
allocated thunk: it is thread-local at this point. Overwriting the
thunk means that all references which would have referred to the
original thunk will now refer to the shim lock.

When the shim-lock is entered the locking code is executed
instead of the original thunk’s entry code. This uses an atomic
compare-and-swap on the header word of the clone, attempting to
replace the pointer to itsentry codewith a pointer to a newlocked-
thunk entry. The first thread to attempt this will succeed: it has
locked the thunk. The lock holder branches to the original entry
code to evaluate the thunk. Other threads branch to the locked-
thunk entry code which blocks them (in the case of application
threads) or suspends their speculation (in the case of speculating
threads). The shim-lock is released by the normal thunk-update
operation: as Figure 9(d) shows, the update overwrites the header
word once again.

As an optimization, the lock holder can overwrite the shim-
lock’s entry code with an indirection. This avoids any subsequent
threads from attempting to acquire the lock: they will dereference
the indirection to either (i) enter a further indirection to the thunk’s
result value, (ii) enter the locked-thunk entry code.

4.4 Comparison with GHC 6.6

We compared the performance of the new implementation of
sparked thunks with the existing implementation in GHC 6.6. The
existing implementation is used in Concurrent Haskell to build
the par combinator. The primary differences between the imple-
mentations are that (i) we introduce locking around sparked thunks,
whereas GHC 6.6 does not, (ii) our speculative threads pro-actively
steal work from other spark pools, whereas GHC 6.6 periodically
pushes work from one spark pool to another pool that is empty,
(iii) we use long-running Haskell worker threads for speculation,

null

Entry
code

Header
word

Result
word

Payload words
(if any)

Thunk to
spark

(a) Original thunk passed tosparkSpeculation.

Locking
code

Thunk to
spark

null

Entry
code

Header
word

Result
word

Payload words
(if any)

Sparkee

(b) The thunk is cloned and the original overwritten by ashim-lock
object. Entering the shim-lock will execute thelocking code.

Locking
code

Thunk to
spark

null

Entry
code

Header
word

Result
word

Payload words
(if any)

Sparkee

Locked
thunk
entry

IND
entry
code

(c) The locking code (i) locks the sparked thunk using atomic
compare-and-swap on its header word, (ii) overwrites the shim-
lock’s header word as an indirection so future threads branch to
the locked thunk entryuntil the result is available.

Locking
code

Thunk to
spark

Result

Entry
code

Header
word

Result
word

Payload words
(if any)

Sparkee

Locked
thunk
entry

IND
entry
code

(d) The normal thunk-update operation releases the shim-lock,
leaving a double-indirection to be removed at GC time.

Figure 9. Shim-lock implementation.

�

���

�

���

�

���

�

���

�

���

� �� �� �� ��

�	
�

�����

Figure 10. Parallel speed-up on a 4-core processor (y-axis) against
thunk granularity (x-axis) for GHC 6.6 and for the modifications
we introduced to support FDIP. For this workload the GHC 6.6
implementation provides a better parallel speed-up for very short-
running thunks, but the FDIP mechanisms provide a near-optimal
4-fold speed-up for the longer thunks that we are interested in.

whereas GHC 6.6 creates a new Haskell thread for each spark that
is ‘fished’ from a pool.

For our comparison we used a naive parallel implementation
of fib n, computing thenth Fibonacci number by simple recur-
sive evaluation offib n-1 andfib n-2. The call tofib n-1 is
sparked and so, in principle, each level of recursion introduces par-
allelism. The parallel work becomes very fine grained if we con-
tinue sparking thunks all the way down tofib 1 and so we set a
threshold below which we switch to sequential evaluation. This lets
us control the minimum size of the thunks we spark.

Figure 10 shows the parallel speed-up achieved for various
thresholds in the computation offib 38 (selected to take around
1s on our test machine). GHC 6.6 achieves no parallel speed-up for
high thresholds: the spark-pushing algorithm is tied to allocation
work and does not run frequently with this workload. Speed-ups
of 2x - 3x are achieved on a 4-core machine for thresholds from
around 25 (mean thunk size 4M cycles) down to 5 (mean thunk
size 2.5k cycles). The modifications we made achieve near-optimal
4x speed-ups for larger thunks because work can be stolen by
idle cores as soon as it has been sparked. This continues down to
around threshold 17 corresponding to 50k cycle thunks. Below this
performance falls off rapidly and is worse than GHC 6.6. However,
as we showed in the limit study in Figure 7 we are primarily
interested in thunks above this size where the FDIP modifications
perform well. The performance of the FDIP run-time modifications
led us to pick 100k as the threshold for selecting a thunk allocation
site for sparking.

There are two reasons for GHC 6.6 performing better with
smaller thunks: (i) we incur run-time and space costs from locking
sparked thunks whereas GHC 6.6 does not, (ii) our simple work-
stealing system involves locking the local spark pool when sparking
a thunk whereas GHC 6.6’s spark pools are each entirely thread
local. We believe the peak speed-up in GHC 6.6 is lower because
of the cost of creating a new Haskell thread for each spark fished
from the pool. The two schemes are clearly complementary and we
would envisage combining them based on thunk size.

5. Results
We tested our FDIP implementation using the same benchmarks
we used in the limit study in Section 2. These do not ordinarily in-
clude separate input sets for testing feedback-directed techniques.
We therefore modified the input sets, where practical, to provide
different input problems for our timed experiments from our pro-
filing runs. This is to ensure that sources of parallelism we find are
due to the structure of the program under test rather than simply

atom Longer simulation run
boyer Unchanged
bsort-1 Larger input
bsort-2 Larger input
cacheprof Unchanged
calendar More repetitions
circsim Longer simulation run
clausify More repetitions
compress Longer input text
fft2 Larger input problem
fibheaps Larger input problem
hidden More complex scene to render
lcss Larger input problem
multiplier Size of multiplication inputs
para Larger input text
primetest Unchanged
rewrite Unchanged
scs Reduce simulation timesteps
simple Unchanged
sphere Scene size

Figure 11. Differences between training and test data.

due to properties of the training input. Figure 11 summarizes these
changes.

Figure 12 shows the performance measurements running on a
machine with two 4-core CPUs. We measure the total wall-clock
time spent outside garbage collection and normalize this to the
time spent outside garbage collection in a single-threaded execution
without any work sparking thunks. We omit garbage collection time
because the GHC garbage collector is single-threaded. We plot
the best-of-5 runs to avoid interaction with other services on the
machine. For each program we plot the performance with the GHC
run-time system configured to use 1..4 cores.

The results show that our actual implementation can still
achieve a parallel speed-up, although at a much reduced level than
the simulated performance in Figure 7. There are several possible
explanations for the difference. First, the simulation ignores con-
tention within the GHC run-time system – for example for access
to the lock that protects the storage manager from which threads
replenish their local allocation buffers. Second, the simulation ig-
nores the overheads of sparking work and the cache effects of mov-
ing data from a ‘sparking’ core to one running work speculatively.
Third, the simulation ignores the overheads of the shim-lock im-
plementation. We have not yet had time to investigate the relative
contributions of these factors.

In practice we would use the simulation results from Figure 7 to
select whether or not FDIP is likely to benefit a given application.
If it is not then we would run the application on an ordinary version
of the GHC run-time system. In our example programs a simple
comparison of the predicted 2-core performance against a 10%
improvement threshold would identify the programs that could
benefit from FDIP. However, for this paper, we show results for
all of the programs to assess the costs introduced by FDIP when
parallelism is not found.

We compared the number of bytes allocated under FDIP with
the number of bytes allocated by the same program compiled with-
out any calls tosparkSpeculation. On 1-core runs, calls to
sparkSpeculation add less than 0.01% to the amount allocated
by each program. On most programs they add less than 1% on 1-4
core runs. The worst case is 5% inbsort-2 andhidden. This may
be due to duplicate evaluation of thunks that arenotsparked.

Finally, we examined one of the benchmarks to see how the allo-
cation sites selected for sparking corresponded to pieces of the orig-
inal program. We selectedbsort-2 because of our local knowl-

edge in the algorithms it uses. The program is a sequential imple-
mentation of bitonic sorting networks (Batcher 1969) applied to 32
streams of integers. It models a pipelined hardware implementa-
tion in which each clock cycle inputs a new set of 32 integers and
outputs a completed set of 32 integers.

The sorting network has a hierarchical structure, with the 32-
way sorter being built from two 16-way sorters. This is expressed
in the source code using a combinatortwo:

two :: ([a] -> [b]) -> [a] -> [b]
two r = halve >-> toBoth r r >-> unhalve

This combinator takes a functionr from lists of a to lists of b
and produces a function which splits its input list into two halves,
appliesr to each half, and then merges the results to form a list of
b. The ‘>->’ combinator passes pairs of lists between these steps.
FDIP identifies the two places where bsort-2 usestwo, sparking
one half of the work so that it can be computed in parallel with the
other half.

In this case the decision of where to spark work corresponds
closely to what would be done manually to parallelize the same
program using thepar andseq combinators. We have not yet had
time to investigate the other programs to see whether or not this is
true in general.

6. Related work
Hammond’s introduction to parallel functional programming intro-
duces the main concepts and history (1994), highlighting the vital
importance of introducing parallelism at the right granularity: too
coarse and there will be idle processors, too fine and the overheads
will be unacceptable.

Mechanisms to express speculative evaluation have been present
in many functional programming languages. For example, Osborne
(1990) explored the use of speculation in Multilisp, a language with
explicit side effects andfuturesas the mechanism for expressing
parallel tasks. Speculative tasks are explicitly created by the pro-
grammer. Explicit operations are also provided to control groups
of tasks – for instance to cull speculative computation that is no
longer needed. Our work aims to provide an entirely automatic
mechanism for speculation.

Roe (1991) examined the use of thepar andseq combinators
to control parallelism. Our approach can be seen as an automated
identification of where to usepar; the placement inbsort-2 we
examined in Section 5 coincides with sensible manual placement.
Of course, we anticipate that careful manual use of these combina-
tors and evaluation strategies (Trinder et al. 1998) built over them
will yield better performance than automated placement.

Mattson (1993) describes the use of speculative evaluation of
Haskell programs on the BBN ‘butterfly’ multiprocessor machine,
using thepar combinator to identify non-speculative parallelism
and additional priority annotations to identify possible speculative
work. Mattson writes that ideally ‘the compiler employs heuristics
to annotate the program graph automatically... heuristics to auto-
matically determine safe and effective speculative annotations have
not yet been developed’. Our work provides one heuristic for doing
this, although we do not reify the annotations in the original source
program.

Languages like Id90 and pH (Nikhil and Arvind 2001) com-
bine non-strictness with eager evaluation. This ‘lenient’ evalua-
tion (Traub 1991) provides abundant fine-grained parallelism. For
example, givenlet x=E in E’, a lenient language will create
separate tasks forE andE’, and similarly the body of a function
and all of its arguments.

Arvind et al (1988) used an idealized interpreter to show that
many traditional algorithms exhibit ample parallelism in this kind

0

0.5

1

1.5

2
P
a
r
a
ll
e
li
s
m

1

2

3

4

Figure 12. Actual performance on multi-core hardware, normalized against single-core performance with FDIP disabled and showing
performance using 1, 2, 3, and 4 cores. As with previous graphs, 1 means ‘the same as sequential execution’, 2 means ‘twice as fast as
sequential execution’, and so on.

of model and that it is effective both for using parallelism across
processing elements and for masking large, unpredictable memory
latencies. This form of parallelism is particularly effective on data-
flow hardware such as Monsoon (Traub et al. 1991) which can
support fine-grained concurrency. This is a much finer granularity
of parallelism than our limit study identifies.

Ennals and Peyton Jones introduced the idea ofoptimistic evalu-
ation for non-strict languages (Ennals and Peyton Jones 2003; En-
nals 2004). The idea is to identifylet expressions whose right-
hand sides are quick to evaluate and likely to be needed. These can
be optimistically evaluated without creating a thunk. The selection
of where to use optimistic evaluation is based on dynamic feedback
of whichlet expressions generate suitable thunks: optimistic eval-
uation is disabled forlet expressions that generate long-running
thunks or ones that are frequently un-needed.

Our decision to make spark / not-spark choices for each static
allocation site was partly based on Ennals’ and Peyton Jones’ de-
cision to make optimistic / lazy evaluation decisions for eachlet
expression. It is interesting to consider whether dynamic feedback
would be capable of making spark / not-spark decisions. It is not
obvious that this is the case – the number of thunks sparked (Fig-
ure 7) is a tiny fraction of the total number created: probabilistic or
burst-based profiling is likely to miss these, whereas profiling every
thunk will have a high performance cost because many thunks are
small (Figure 3).

GranSim (Loidl 1998) is a flexibile simulator for studying the
performance of prorgams written in Glasgow Parallel Haskell. We
developed a new tracing tool and simple simulator (Section 2)
because we wished to study sequential benchmarks which had not
yet been parallelised. It would be interesting to use GranSim to
study the behavior of the parallel programs resulting from FDIP.

7. Conclusions and future work
In this paper we have shown that, for some programs, we can
achieve 10-80% parallel speed-ups automatically on stock multi-
core hardware. Furthermore, we can use a simulator to identify
which programs are likely to have such speed-ups and avoid intro-
ducing any overheads in programs that will not. This clearly does
not provide a silver bullet for using the full computational power
of these machines effectively, but it suggests that perhaps paral-

lelizing a single application thread across two cores is a practical
proposition.

The key new technique in achieving this speed-up is the pre-
diction of which thunk-allocation sites in the program are likely to
produce long-running pieces of work based on profiling informa-
tion collected from earlier program runs. A clear question for fu-
ture work is whether we can adapt this technique to work within a
single program run, rather than needing a profile-collection phase.

A further interesting direction to explore is the relationship be-
tween optimizations and available parallelism. As researchers have
previously explored, there are several tensions here: optimizations
for non-strict languages often try to avoid or delay thunk allocation,
whereas we exploit thunk allocation as a potential source of paral-
lelism. It would be interesting to explore the impact of reducing the
level of optimization on the parallelism seen in our limit study and
on the eventual performance that we achieve in practice. Perhaps it
is practical to gather profiling data from an un-optimized program,
identify profitable thunk-allocation sites, and then re-compile the
program with some annotations to prevent these sites from being
removed by optimizations. This would require tighter integration
between the compiler and feedback-generation system than we are
using at the moment.

Finally, although the goal of our work has been automatic par-
allelization, our techniques could also be applied to guide manual
parallelization. As we showed withbsort-2, the selected thunk-
allocation sites may correspond to meaningful points in the pro-
gram source code, and so simply identifying these points from an
execution trace could be a valuable programming aid.

Acknowledgments
We would like to thank John DeTreville for feedback and advice
while starting this work, Maurice Herlihy, Jan-Willem Maessen,
Simon Marlow and Simon Peyton Jones for discussions, the anony-
mous reviewers for their suggestions, and Andrew Birrell for help
preparing the figures.

References
Arvind, David E. Culler, and Gino K. Maa. Assessing the benefits of

fine-grained parallelism in dataflow programs. Technical Report 279,
Computation Structures Group, MIT, March 1988.

K. E. Batcher. Sorting networks and their applications. InProceedings of
the AFIPS Spring Joint Computing Conference, 1969.

R. Blumofe and C. Leiserson. Scheduling multithreaded computations
by work stealing. InProceedings of the 35th Annual Symposium on
Foundations of Computer Science, Santa Fe, New Mexico., pages 356–
368, November 1994.

Robert Ennals.Adaptive Evaluation of Non-Strict Programs. PhD thesis,
Cambridge University Computer Laboratory, 2004.

Robert Ennals and Simon Peyton Jones. Optimistic evaluation:an adaptive
evaluation strategy for non-strict programs. InICFP ’03: Proceedings
of the eighth ACM SIGPLAN international conference on Functional
programming, pages 287–298. ISBN 1-58113-756-7.

Kevin Hammond. Parallel functional programming: An introduction. In
International Symposium on Parallel Symbolic Computation, Hagen-
berg/Linz, Austria, September 1994.

Tim Harris. Dynamic adaptive pre-tenuring. InInternational Symposium
on Memory Management (ISMM ’00), volume 36(1) ofACM SIGPLAN
Notices, pages 127–136, January 2001.

Tim Harris, Simon Marlow, and Simon Peyton Jones. Haskell on a shared-
memory multiprocessor. InHaskell ’05: Proceedings of the 2005 ACM
SIGPLAN workshop on Haskell, pages 49–61, September 2005.

Danny Hendler, Yossi Lev, Mark Moir, and Nir Shavit. A dynamic-sized
nonblocking work stealing deque. Technical Report TR-2005-144, Sun
Microsystems Laboratories, 2005.

Raj Jain.The art of computer systems performance analysis. Wiley, 1991.

H-W. Loidl. Granularity in Large-Scale Parallel Functional Programming.
PhD thesis, Department of Computing Science, University of Glasgow,
March 1998.

James Stewart Mattson.An effective speculative evaluation technique for
parallel supercombinator graph reduction. PhD thesis, University of
California at San Diego.

Rishiyur S Nikhil and Arvind. Implicit Parallel Programming in pH.
Morgan Kaufman, 2001.

Randy B. Osborne. Speculative computation in multilisp. InLFP ’90:
Proceedings of the 1990 ACM conference on LISP and functional pro-
gramming, pages 198–208. ISBN 0-89791-368-X.

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent
haskell. InPOPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 295–308,
New York, NY, USA, 1996. ISBN 0-89791-769-3.

Paul Roe.Parallel Programming Using Functional Languages. PhD thesis,
Department of Computing Science, University of Glasgow, 1991.

Kenneth R. Traub.Implementation of non-strict functional programming
languages. MIT Press, Cambridge, MA, USA, 1991. ISBN 0-262-
70042-5.

Kenneth R. Traub, Gregory M. Papadopoulos, Michael J. Beckerle,
James E. Hicks, and Jonathan Young. Overview of the Monsoon project.
In ICCD ’91: Proceedings of the 1991 IEEE International Conference
on Computer Design on VLSI in Computer & Processors, pages 150–
155. ISBN 0-8186-2270-9.

P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones. Algo-
rithm + strategy = parallelism.J. Funct. Program., 8(1):23–60, 1998.
ISSN 0956-7968.

