
CHALMERS TEKNISKA HÖGSKOLA 08:30–12:30, Tuesday, May 28th, 2012..
Dept. of Computer Science and Engineering Parallel Functional Programming

DAT280, DIT261

Exam in Parallel Functional Programming

08:30–12:30, Tuesday, May 28th, 2012..
Lecturers:
John Hughes, tel 1001
Mary Sheeran, tel 1013

Permitted aids:
Up to two pages (on one A4 sheet of paper) of pre-written notes. These notes
may be typed or hand-written. This summary sheet must be handed in with
the exam.

There are 7 questions.
24 points are required to pass (grade 3), 36 points are required for grade 4, and
48 points for grade 5.

1

1. Parallel Functional Programming 10 points

(a) Why are functional languages particularly well-suited to parallel pro-
gramming? 1 points

(b) An easy way to parallelize functional programs is to evaluate every
expression in parallel. Would you recommend this approach? Ex-
plain your answer briefly. 1 points

(c) “After parallelization, any program should be able to run N times
faster on N cores.” Is this true or false? Explain your answer briefly
(for example, with reference to Amdahl’s Law). 1 points

(d) Briefly explain the par and pseq approach to expressing parallelism
in Haskell 1 points

(e) Briefly explain the use of Divide and Conquer in parallel program-
ming, for example by writing and explaining a divConq combinator
for use with the Par monad. 2 points

(f) Name one advantage of the Par Monad approach to parallelism in
Haskell. 1 points

(g) What is the effect of linking two Erlang processes? 1 points

(h) Erlang is used to build robust systems. How can this be reconciled
with the Erlang slogan “Let it crash”? 1 points

(i) What is the purpose of a supervisor? 1 points

2

2. Parallel Sorting 8 points

(a) Read this Haskell definition of merge sort:

merge_sort [] = []

merge_sort [x] = [x]

merge_sort xs = merge (merge_sort ys) (merge_sort zs)

where (ys,zs) = split xs

merge [] ys = ys

merge xs [] = xs

merge (x:xs) (y:ys) | x <= y = x:merge xs (y:ys)

| otherwise = y:merge (x:xs) ys

split xs = split’ [] xs xs

split’ xs (y:ys) (_:_:zs) = split’ (y:xs) ys zs

split’ xs ys _ = (xs,ys)

Using par and pseq, write a parallel version of merge_sort. Ensure
that the task granularity is not so fine that the overheads of paral-
lelism dominate the run time. You may reuse the functions defined
above without including their definitions in your answer. 4 points

(b) Read this Erlang definition of merge sort (which is simply a transla-
tion of the Haskell version):

merge_sort([]) -> [];

merge_sort([X]) -> [X];

merge_sort(Xs) ->

{Ys,Zs} = split(Xs),

merge(merge_sort(Ys),merge_sort(Zs)).

merge([],Ys) -> Ys;

merge(Xs,[]) -> Xs;

merge([X|Xs],[Y|Ys]) when X =< Y ->

[X|merge(Xs,[Y|Ys])];

merge([X|Xs],[Y|Ys]) -> [Y|merge([X|Xs],Ys)].

split(Xs) -> split([],Xs,Xs).

split(L,[X|R],[_,_|Xs]) -> split([X|L],R,Xs);

split(L,R,_) -> {L,R}.

Using spawn_link, self, and message passing, write a parallel Er-
lang version of merge_sort. As above, ensure that the task granu-
larity is not so fine that the overheads of parallelism dominate the
run-time. Once again, you may reuse functions defined above in your
answer without including their definitions. 4 points

3

3. Obsidian 10 points

(a) Identify some functions (for example force) in Obsidian that give
the user control over important aspects of the GPU. Explain those
functions briefly. 2 points

(b) Obsidian makes use of Push and Pull arrays. Outline their main
differences. 2 points

(c) This is the definition of a Pull array

data Pull s a = Pull s (EWord32 -> a)

Implement fmap, which maps a function onto each element of the
array:

fmap f (Pull s ixf) = Pull s $???
1 points

(d) This is the definition of a Push array

data Push t s a =

Push s ((a -> EWord32 -> Program Thread ()) -> Program t ())

Now implement fmap for Push arrays:

fmap f (Push s p) = Push s $???
2 points

(e) Implement a parallel reduction (with the functionality of foldl1) in
Obsidian so that a reduction kernel in CUDA could be generated.
Explain your implementation. 3 points

4

4. Work and Depth 7 points

(a) Briefly explain, using at least one small example program, the no-
tions of work and depth (or span) as presented by Blelloch. How
does expected running time relate to work, depth and number of
processors? 2 points

(b) The following is Blelloch’s pre-scan function (for inputs whose length
is a power of two):

function scan_op(op,identity,a) =

if #a == 1 then [identity]

else

let e = even_elts(a);

o = odd_elts(a);

s = scan_op(op,identity,{op(e,o): e in e; o in o})

in interleave(s,{op(s,e): s in s; e in e});

scan_op(max, 0, [2, 8, 3, -4, 1, 9, -2, 7]);

it = [0, 2, 8, 8, 8, 8, 9, 9] : [int]

What are the work and depth for this form of pre-scan, in terms of
n, the length of the input sequence? 2 points

(c) Consider the following variant of the stock market problem: given
the price of a stock at each day for n days, determine the biggest
profit you can make by buying one day and selling on a later day.
A simple sequential (serial) solution requires O(n) work for an input
sequence of length n. In NESL, the problem can be solved as follows:

function stock(a) =

max_val({x - y : x in a; y in min_scan(a)});

It uses min scan (with the same work and depth as scan op above,
and without the restriction on the input length) and max val, which
is a parallel fold. Is the work of this parallel solution still O(n)?
Explain your answer. What is the depth of the solution? 2 points

(d) In Haskell, one can solve the above stock market problem using a
single parallel fold. What is the work and depth in that case? 1 points

5

5. Parallel Reduce Read the following definition of a parallel reduce func- 12 points
tion.

reduce(_,[X]) ->

X;

reduce(F,[X,Y]) ->

F(X,Y);

reduce(F,L) ->

{L1,L2} = lists:split(length(L) div 2,L),

Parent = self(),

Y = reduce(F,L2),

Pid = spawn_link(fun() -> Parent ! {self(),reduce(F,L1)} end),

receive

{Pid,X} ->

F(X,Y)

end.

Profile a call of reduce with Percept on a list of 15 elements resulted in
the following graph:

(a) How many processing cores can this version of reduce make good
use of? 1 points

(b) Why can’t this program take advantage of a larger number of cores?
1 points

(c) Make a small fix to the code above so that it makes better use of
parallelism. You need not copy the entire definition into your answer:
just write the modified lines and explain clearly where in the code
they should be placed. 1 points

6

(d) A weakness of the code above (even after your fix) is that, if recursive
calls to reduce take widely differing amounts of time, then cores
may remain idle even though there is work that could be done. For
example, in the situation in this diagram

then two recursive calls are ready, while two more are currently being
evaluated. The code above will wait for each busy call to terminate
before combining its result with its neighbour; however, a smarter
implementation could begin to combine the two available results al-
ready to use more parallelism. (Of course, this changes the order
in which results are combined, but we will assume this does not af-
fect the final result). Write a new version of reduce which uses this
idea to combine the results of recursive calls as soon as any two are
available. 4 points

(e) Recall that spawn_link(Node,Fun) spawns a process that calls Fun()
on the Erlang node Node. In a distributed system, we might want
to run reduce jobs on different nodes in the network to share the
workload. Write a load balancing server, which accepts requests of
the form {call,Pid,F}, calls F() on one of the nodes of the net-
work, and then sends the result back to Pid in a message of the
form {result,Res} (where Res is the value that F() returned). You
should ensure that you can make use of all nodes in your network,
but that each node has at most one job to execute at a time. 4 points

(f) What modification would you make to your reduce function to make
use of the load balancer you wrote in question 5e? 1 points

7

6. Map-Reduce 6 points

(a) map_reduce takes a mapper function, a reducer function, and input
data as parameters. Consider a näıve version in which the input data
is represented as a list. If map_reduce were defined in Haskell, what
would its type be? You need not include any class constraints, such
as Eq a, in the type that you give. 1 points

(b) Suppose the input data to map_reduce consists of pairs of a page
number and a list of words, such as

[{1,["hello","clouds"]},{2,["hello","sky"]}]

Write a mapper and a reducer function to convert this to an index
of words and page numbers. . . in this example,

[{"clouds",[1]},{"hello",[1,2]},{"sky",[2]}]
2 points

(c) Given the same input data, write a mapper and a reducer function
to associate each word with its total number of occurrences. Recall
that a word may occur several times on the same page. 2 points

(d) In a distributed implementation of Map-Reduce, why might we wish
to use the reducer function in the map jobs as well as the reduce
jobs? 1 points

8

7. Choosing between approaches to parallel functional program-
ming 8 points

(a) Imagine that you work at a company that builds applications that
are highly data parallel. The possibility of using Haskell is being
discussed. Your manager asks you to write a brief description of
the Repa library for parallel array processing in Haskell. Write that
description. It should include some example code, and a discussion
of the pros and cons of using Repa, based on your own experience of
using it. 4 points

(b) Explain how fault tolerance is handled in Erlang, using concrete code
snippets. (You might, for example, explain how the Map-Reduce
example from above could be made fault tolerant.) 4 points

9

