
CHALMERS TEKNISKA HÖGSKOLA 08:30–12:30, Tuesday, May 22nd, 2012..
Dept. of Computer Science and Engineering Parallel Functional Programming

DAT280, DIT261

Exam in Parallel Functional Programming

08:30–12:30, Tuesday, May 22nd, 2012..
Lecturers:
John Hughes, tel 1001
Mary Sheeran, tel 1013

Permitted aids:
Up to two pages (on one A4 sheet of paper) of pre-written notes. These notes
may be typed or hand-written. This summary sheet must be handed in with
the exam.

There are X questions. 24 points is required to pass (grade 3), 36 points is
required for grade 4, and 48 points is required for grade 5.

1

1. Parallel Functional Programming 10 points

(a) Why are functional languages particularly well-suited to parallel pro-
gramming? 1 points

(b) An easy way to parallelize functional programs is to evaluate every
expression in parallel. Would you recommend this approach? Ex-
plain your answer briefly. 1 points

(c) “After parallelization, any program should be able to run N times
faster on N cores.” Is this true or false? Explain your answer briefly
(for example, with reference to Amdahl’s Law). 1 points

(d) What is the connection between associative operators and paral-
lelism? 1 points

(e) Do parallel processes share memory in

i. Haskell? 1 points

ii. Erlang? 1 points

(f) What is the main advantage of the strategies approach to parallelism
in Haskell? 1 points

(g) What is the effect of linking two Erlang processes? 1 points

(h) Erlang is used to build robust systems. How can this be reconciled
with the Erlang slogan “Let it crash”? 1 points

(i) What is the purpose of a supervisor? 1 points

2. Parallel Sorting 8 points

(a) Read this Haskell definition of merge sort:

merge_sort [] = []

merge_sort [x] = [x]

merge_sort xs = merge (merge_sort ys) (merge_sort zs)

where (ys,zs) = split xs

merge [] ys = ys

merge xs [] = xs

merge (x:xs) (y:ys) | x <= y = x:merge xs (y:ys)

| otherwise = y:merge (x:xs) ys

split xs = split’ [] xs xs

split’ xs (y:ys) (_:_:zs) = split’ (y:xs) ys zs

split’ xs ys _ = (xs,ys)

Using par and pseq, write a parallel version of merge_sort. Ensure
that the task granularity is not so fine that the overheads of paral-
lelism dominate the run time. You may reuse the functions defined
above without including their definitions in your answer. 4 points

2

(b) Read this Erlang definition of merge sort (which is simply a transla-
tion of the Haskell version):

merge_sort([]) -> [];

merge_sort([X]) -> [X];

merge_sort(Xs) ->

{Ys,Zs} = split(Xs),

merge(merge_sort(Ys),merge_sort(Zs)).

merge([],Ys) -> Ys;

merge(Xs,[]) -> Xs;

merge([X|Xs],[Y|Ys]) when X =< Y ->

[X|merge(Xs,[Y|Ys])];

merge([X|Xs],[Y|Ys]) -> [Y|merge([X|Xs],Ys)].

split(Xs) -> split([],Xs,Xs).

split(L,[X|R],[_,_|Xs]) -> split([X|L],R,Xs);

split(L,R,_) -> {L,R}.

Using spawn_link, self, and message passing, write a parallel Er-
lang version of merge_sort. As above, ensure that the task granu-
larity is not so fine that the overheads of parallelism dominate the
run-time. Once again, you may reuse functions defined above in your
answer without including their definitions. 4 points

3. The Par-monad 8 points

(a) Using the Par-monad, define a parallel fold function with the type

parFoldM :: NFData a => (a -> a -> Par a) -> [a] -> Par a

You need not take account of task granularity or thresholding. 2 points

(b) Write a parallel divide-and-conquer higher-order function in Haskell
for use in the Par-monad. If you wish, you may use

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]
4 points

(c) Redefine merge sort using your divide-and-conquer function. 2 points

3

4. Work and Depth 8 points

(a) Briefly explain, using at least one small example program, the no-
tions of work and depth (or span) as presented by Blelloch. How does
expected running time relate to work, depth and number of proces-
sors? State one aspect of the cost of running parallel computations
which the basic work / depth model does not cover? 3 points

(b) The following is Blelloch’s pre-scan function (for inputs whose length
is a power of two):

function scan_op(op,identity,a) =

if #a == 1 then [identity]

else

let e = even_elts(a);

o = odd_elts(a);

s = scan_op(op,identity,{op(e,o): e in e; o in o})

in interleave(s,{op(s,e): s in s; e in e});

scan_op(max, 0, [2, 8, 3, -4, 1, 9, -2, 7]);

it = [0, 2, 8, 8, 8, 8, 9, 9] : [int]

What are the work and depth for this form of pre-scan, in terms of
n, the length of the input sequence? 2 points

(c) Consider the following variant of the stock market problem: given
the price of a stock at each day for n days, determine the biggest
profit you can make by buying one day and selling on a later day.
A simple sequential (serial) solution requires O(n) work for an input
sequence of length n. In NESL, the problem can be solved as follows:

function stock(a) =

max_val({x - y : x in a; y in min_scan(a)});

It uses min scan (with the same work and depth as scan op above,
and without the restriction on the input length) and max val, which
is a parallel fold. Is the work of this parallel solution still O(n)?
Explain your answer. What is the depth of the solution? 2 points

(d) In Haskell, one can solve the above stock market problem using a
single parallel fold. What is the work and depth in that case? 1 points

4

5. Parallel Map 12 points

(a) The following Erlang function is intended to deliver the same result
as lists:map(F,Xs), but to compute the elements of the resulting
list in parallel.

pmap(F,Xs) ->

Parent = self(),

[begin

spawn_link(fun() -> Parent ! F(lists:nth(I,Xs)) end),

receive FX -> FX end

end

|| I <- lists:seq(1,length(Xs))].

The following functions are used to test it:

expensive(X) ->

_ = length(lists:seq(1,1000000)),

X+1.

test() ->

pmap(fun expensive/1,lists:seq(1,10)).

Timing calls of these functions in the Erlang shell on a dual core
machine yields:

1> timer:tc(pmap,expensive,[0]).

{125000,1}

2> timer:tc(pmap,test,[]).

{1077000,[2,3,4,5,6,7,8,9,10,11]}

(with a timer resolution of about 15000 microseconds). Profiling a
call of test with Percept yields the following graph:

and examining the process lifetimes yields:

5

i. How many processing cores can this version of pmap make good
use of? 1 points

ii. Why can’t this code use 10 cores in parallel in this example? 1 points

iii. All the elements of the resulting list are sent back to the same
Parent process. How can we ensure they appear in the correct
order in the final result? 2 points

iv. The code above incurs unnecessary communication costs. Ex-
plain why. 1 points

v. Write a corrected version of pmap that addresses all of these is-
sues. 3 points

(b) Recall that spawn_link(Node,Fun) spawns a process that calls Fun()
on the Erlang node Node. Write a function dmap(Fun,Xs) that im-
plements a distributed map function, evaluating calls of Fun on all
the connected nodes. Each node should be given one call of Fun to
evaluate at a time; while list elements remain to be processed, then
each node should be given another element to work on as soon as its
previous task is done. Make sure you return the list of results in the
correct order. 4 points

Hint: If XYs is a list of pairs with different first components, then
lists:sort(XYs) will sort the list by the first components (because
Erlang’s ordering on pairs is lexicographic: the first components are
compared, and only if they are equal are the second components
compared). For example,

1> lists:sort([{2,a},{3,b},{1,c}]).

[{1,c},{2,a},{3,b}]

6

6. Map-Reduce 6 points

(a) map_reduce takes a mapper function, a reducer function, and input
data as parameters. Consider a näıve version in which the input data
is represented as a list. If map_reduce were defined in Haskell, what
would its type be? You need not include any class constraints, such
as Eq a, in the type that you give. 1 points

(b) Suppose the input data to map_reduce consists of pairs of a page
number and a list of words, such as

[{1,["hello","clouds"]},{2,["hello","sky"]}]

Write a mapper and a reducer function to convert this to an index
of words and page numbers. . . in this example,

[{"clouds",[1]},{"hello",[1,2]},{"sky",[2]}]
2 points

(c) Given the same input data, write a mapper and a reducer function
to associate each word with its total number of occurrences. Recall
that a word may occur several times on the same page. 2 points

(d) In a distributed implementation of Map-Reduce, why might we wish
to use the reducer function in the map jobs as well as the reduce
jobs? 1 points

7. Choosing between approaches to parallel functional program-
ming 8 points

Consider the situation (described by Lennart Augustsson in his guest lec-
ture) where you have embarassingly parallel computations and a remote
grid machine that does stateless computation tasks. (Note: In questions
7a and 7b below, there is no one correct answer. The important thing is
to be able to justify your choice based on results that you obtained using
the different approaches in the labs (and possibly also on what you have
heard from guest lecturers). Imagine pitching your chosen approaches to
a sceptical manager.)

(a) Would you choose Erlang or Haskell in this setting? Briefly explain
your choice. 3 points

(b) If using Haskell, and given a choice between using the Repa library,
Strategies and the Par monad, which would you choose? Again,
explain briefly why you make this choice. 5 points

7

