
Lab B Parallel Functional Programming

Part 1

Write a tutorial about parallel functional programming, concentrating on a particular language
or library. You are free to choose your own title. Check with Mary if you are unsure about
your choice. Some possible titles might be

The Par Monad for parallel Haskell programming: a tutorial

A tutorial on Parallel Strategies in Haskell

How to use par and pseq for parallel programming in Haskell

Parallel functional programming in Java 8: a tutorial

GPU programming in Haskell: a tutorial on Accelerate

Parallel sorting in Haskell: how well can we do?

Parallel programming in F#: a tutorial

Deterministic parallel programming in Erlang

The main point, remember, is to make a clear and simple tutorial (more like a technical blog
post than a paper). Good tutorials often contain nice pictures! Give readers some information
about sequential and parallel running times. Submit your document or web page with all
associated images and code. One option would be to implement an interesting deterministic
parallel program in Haskell or some other functional language, and to write a blog post
documenting your work in developing and optimising the program. This task might be a good
way to start exploring possible Masters thesis topics. It gives you the opportunity to explore
one approach to parallel functional programming more deeply. It is important to avoid
plagiarism!

	

Lab B Part 2

Exercises in Futhark for Parallel Functional

Programming at Chalmers

Troels Henriksen
based on work by Martin Elsman
DIKU, University of Copenhagen

April 2018

Introduction

These exercises explore the use of Futhark for writing parallel programs
in a functional setting. The exercises assume access to a computer with
Futhark installed. For information about installing Futhark, please consult
https://futhark-lang.org.

1 Getting started

This exercise aims at illustrating how simple parallel problems can be ex-
pressed in Futhark.

Exercise 1.1: Write a function

Create a Futhark function called process that takes as arguments two one-
dimensional i32 arrays (signals) of the same length and computes the max-
imum absolute di↵erence (pointwise) between the signals (you should not
use Futhark’s loop construct). The function should return the value 0 if
two empty signals are passed to the function.

Consider the following two signals:⌥ ⌅
let s1 = [23,45,-23,44,23,54,23,12,34,54,7,2, 4,67]

let s2 = [-2, 3, 4,57,34, 2, 5,56,56, 3,3,5,77,89]⌃ ⇧
1

What is the result of calling your function on s1 and s2?
Hint: To run the function, define a main function that passes the two

arrays to the function process, then compile this program with futhark-c

or futhark-opencl.

Exercise 1.2: Run your function

Use the futhark-dataset tool to generate seven sets of test data of di↵erent
length. Each set should contain a pair of one-dimensional i32 arrays each
containing integers in the range [-10000;10000]. The array lengths for the
seven di↵erent sets should be 100, 1000, 10000, 100000, 1000000, 5000000,
and 10000000.

Run the function process with the di↵erent data sets and with executa-
bles obtained both with using futhark-c and futhark-opencl. Map the
timings (in microseconds) onto a chart and remember to specify the system
on which you’re running the executables. Follow the guidelines given in the
Futhark book on benchmarking1.

Exercise 1.3: Extend your function

Create a refined version of the process function, called process idx, that
also returns the index of the source signals for which the maximum absolute
di↵erence is found.

Report the result of calling process idx on the signals s1 and s2. Show
evidence that your solution scales as the process function.

Hint: The lecture slides should give you a hint to solving this problem.

Exercise 1.4: Neutral elements

Assuming � is an associative operator with neutral element 0, show that
(0,false) is a left-neutral element of

(v1, f1)�0 (v2, f2) = (if f2 then v2 else v1 � v2, f1 _ f2)

Exercise 1.5: Segmented scans and reductions

The operator in the previous question can be used to implement a segmented
scan. Specifically, a scan on an array of type []t with operator � and
neutral element 0� can be turned into a segmented scan on an array of
type [](t, bool) with operator �0 and neutral element (0�, false). A

1http://futhark-book.readthedocs.io/en/latest/benchmarking.html

2

true indicates the beginning of a segment, and false the continuation of a
segment.

Finish the following Futhark definition of segmented scan:⌥ ⌅
let segscan [n] ’t (op: t -> t -> t) (ne: t)

(arr: [n](t, bool)): [n]t =

...⌃ ⇧
A segmented reduction is more complicated, but can be implemented

by first performing a segmented scan, and then making use of the scatter

operation.
Finish the following Futhark definition of segmented reduction:⌥ ⌅

let segreduce [n] ’t (op: t -> t -> t) (ne: t)

(arr: [n](t, bool)): []t =

...⌃ ⇧
Note that we cannot provide the size of the returned array in the type,

as we do not know the number of segments.
Benchmark the performance of segmented scan versus ordinary scan, and

segmented reduce versus ordinary reduction and show the result.

2 Monte Carlo Simulation

In this exercise, we shall use the technique of Monte Carlo simulation for
computing the value of ⇡. We shall first use a simple technique based on an
external generation of random numbers. We shall then use the concept of
Sobol-numbers for approaching the real value of ⇡ with less work.

Exercise 2.1: Monte Carlo ⇡

In this exercise we shall make use of the “dart-throwing” technique. Observe
that if one randomly throws a dart on a square of size 2⇥2 then the chance of
hitting within the enclosed circle of radius 1, provided one hits the square,
is ⇡

4 . It is quite easy to determine, using Pythagoras’s theorem, whether
a throw (x, y) is successful, which it is if its distance to the center of the
circle is less than or equal to 1, that is, if (x � 1)2 + (y � 1)2 1. Write
a function estimate pi that takes two arrays of f32 values as arguments,
corresponding to x and y coordinates for the throws, and, based on the
above observations, gives an estimate on the value of ⇡.

3

Exercise 2.2: External randomness

Using the futhark-dataset tool, generate three datasets of di↵erent sizes,
each containing two arrays of type []f32 of the same size, containing f32

values between 0.0 and 2.0. Use 100, 10000, and 1000000 as the sizes
for the data sets. Both for executables generated with futhark-c and
futhark-opencl, plot the time for computing ⇡ as a function of the dif-
ferent data set sizes. What do you see?

Hint: Use the following command to generate input for the 100-size case:

futhark-dataset --f32-bounds=’0:2’ -g [100]f32 -g [100]f32 > pi100.inp

Exercise 2.3: Monte Carlo integration

Use the same technique as above but for integrating (i.e., finding the volume
under) the following mathematical function (a function of two variables) in
the interval x 2 [0; 2] and y 2 [0; 2]:

f(x, y) = 2x6y2�x

6
y+3x3y3�x

2
y

3+x

3
y�3xy2+xy�5y+2x5y4�2x5y5+250

A Futhark function resembling the mathematical function is given as follows:

⌥ ⌅
let f (x:f32) (y:f32): f32 =

2.0 f32*x*x*x*x*x*x*y*y - x*x*x*x*x*x*y

+ 3.0f32*x*x*x*y*y*y - x*x*y*y*y +

x*x*x*y - 3.0f32*x*y*y + x*y -

5.0 f32*y + 2.0f32*x*x*x*x*x*y*y*y*y -

2.0 f32*x*x*x*x*x*y*y*y*y*y + 250.0 f32⌃ ⇧
Here is a graph showing the surface defined by the function in the interval:

4

Both for executables generated with futhark-c and futhark-opencl,
plot the time for computing the integral as a function of the di↵erent data
set sizes for the data sets generated in the previous exercise. What do you
see now?

Hint: If n is the number of sample pairs S, the integral
R 2
0

R 2
0 f(x, y)dxdy

can be approximated by 4
n

⌃(x,y)2Sf(x, y).

Exercise 2.4: Sobol numbers

Futhark features a standard library, which includes a module for generating
so-called Sobol sequences, an example of quasi-random low-discrepancy se-
quences. Such sequences are particularly good for Monte-Carlo techniques
in that results converge faster than if ordinary pseudo-random numbers are
used.

The Futhark module /futlib/sobol includes a number of (higher-order)
sub-modules, which can be composed to setup a module for implementing
a Monte-Carlo simulation. An example use of the library, for establish-
ing the value of ⇡, is available in the file https://github.com/diku-dk/

futhark/blob/master/tests/futlib_tests/sobol.fut. The documen-
tation for the module is available online2.

Use the sobol library for establishing a value for the integral in section 2.3
and investigate how fast (as a function of the number of sampling points)

2https://futhark-lang.org/docs/futlib/sobol.html

5

the integral value converges compared to using the technique presented in
section 2.1.

Exercise 2.5: Conventional random numbers (optional)

The Futhark basis library also contains a more conventional random number
generation facility, which is available as /futlib/random

3. Rewrite the
numerical integration function from before such that it uses this library
instead, and compare performance and convergence rates.

3 2D Ising Simulation

The 2D Ising Simulation is a simulation of the behaviour of a simple idealised
ferromagnet, in which we compute the spin of a grid of electrically charged
atoms over a period of time. From a Futhark point of view, this grid is
merely a two-dimensional array of integers that are either �1 or 1.

At any given discrete time step, the charge of a spin can be either positive
or negative. A spin interacts only with its immediate neighbors, which makes
Ising simulation a stencil. An atom prefers to have the same polarity as its
neighbors, although it also has a small chance to flip polarity randomly,
based on the temperature. This is the Monte Carlo aspect.

To update the grid, we compute for each spin c its corresponding �
e

, as
followed:

�
e

= 2c(u+ d+ l + r)

where u, d, l, r are the spins directly adjacent to c in the grid (we ignore
diagonals). Further, for each spin we compute two random numbers, a and
b, in the range (0, 1). It is very important that each spin receives its own
a, b. Then we compute the new values of c as

c

0 =

(
�c if b < p ^ (�

e

< ��
e

_ b < e

��e÷t)

c otherwise

where 0 p 1 is the sample rate, and t 2 R is the temperature. Put in
words, p is the fraction of spins that are candidates for flipping in a given
time step. Of these, we flip those where it would locally reduce the energy of
the system, or randomly, where the chance of random flips is proportional to
the temperature. For more information on Ising models, I recommend the

3https://futhark-lang.org/docs/futlib/random.html

6

very readable 6-page article The World in a Spin by Brian Hayes4. However,
we need not understand the physics to implement the model in Futhark.

For this exercise, you will be modifying a code handout, ising.fut,
that contains the skeleton for an implementation of the 2D Ising model.
Read the existing code carefully. The code handout also comes with a fron-
tend, ising-gui.py, written in Python, that permits a visualisation of the
computation.

Exercise 3.1: Generate initial state

The code handout defines the type of spins as follows:⌥ ⌅
1 type spin = i8⌃ ⇧

However, we also need to generate (potentially) distinct random numbers
for every spin. For this exercise, we will use one RNG state per spin. Thus,
the function for generating an initial grid state is:⌥ ⌅

1 entry random_grid (seed: i32) (w: i32) (h: i32)

2 : ([w][h]rng_engine.rng , [w][h]spin) =

3 ...⌃ ⇧
Where rng_engine.rng is the type of RNG states. See the code com-

ments for more information.
Hint: Generate one-dimensional arrays of size n⇥m, then use reshape

at the end.

Exercise 3.2: Computing �
e

This is the stencil operation where we, for every spin, compute �
e

as a value
of type i8:⌥ ⌅

1 entry deltas [w][h] (spins: [w][h]spin): [w][h]i8 =

2 ...⌃ ⇧
One question that must be answered for every stencil is how to handle

the edges of the grid, where there are no neighbors. For the 2D Ising model,
we pick the easy solution, and use wraparound, also known as a torus world.
Simply put, when we go over one edge, we come out on the opposite edge.
In Futhark, this is easily done with the rotate language construct. If xss

4http://bit-player.org/wp-content/extras/bph-publications/

AmSci-2000-09-Hayes-Ising.pdf

7

is a two-dimensional array, then rotate@0 1 xss corresponds to rotating
the array by one element horizontally (along the first dimension), while
rotate@1 (-1) xss rotates it by negative one element vertically (along the
second dimension).

Hint: Use the map1/map2/map3/map4/map5 functions to easily map across
multiple arrays simultaneously.

Exercise 3.3: The step function

Define the step function, which computes one time step of the simulation:⌥ ⌅
1 entry step [w][h] (abs_temp: f32) (samplerate: f32)

2 (rngs: [w][h]rng_engine.rng)

3 (spins: [w][h]spin)

4 : ([w][h]rng_engine.rng , [w][h]spin) =

5 ...⌃ ⇧
Note that it computes not just new spins, but also new RNG states.

Exercise 3.4: Benchmarking

If you have defined the above functions correctly, then you should now be
able to use the predefined main function, which creates a grid and runs a
few steps of the simulation; returning the final grid at the end:⌥ ⌅

1 let main (abs_temp: f32) (samplerate: f32)

2 (w: i32) (h: i32) (n: i32): [w][h]spin =

3 (loop (rngs , spins) = random_grid 1337 w h

4 for _i < n do

5 step abs_temp samplerate rngs spins).2⌃ ⇧
Show benchmarks that demonstrate how sequential versus parallel per-

formance varies for di↵erent values of w, h, and n. Explain your results.
Hint: Use futhark-bench with the --compiler option to switch between

futhark-c and futhark-opencl. Be aware that the Futhark compiler is not
very good at generating sequential CPU code, and that stencils in particular
are likely to have poor cache behaviour, so don’t consider the futhark-c

results indicative of the full power of your CPU.

Exercise 3.5: Now do it again (optional)

Rewrite the Ising simulation in another parallel functional language; reflect
on how Futhark compares in convenience and performance.

8

