Programming Language Technology

Exam, 11 April 2017 at 8.30-12.30 in SB (Sven Hultins gata 6)

Course codes: Chalmers DAT151, GU DIT231. As re-exam, also DAT150,
DIT229/230, and TIN321.
Exam supervision: Andreas Abel (+46 31 772 1731), visits at 9:30 and 11:30.

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: Tuesday 25 April 2017 at 10-11 in room EDIT 8103.

Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the
following constructs of a C-like imperative language: A program is a list of
statements. Types are int and bool. Statement constructs are:
e variable declarations (e.g. int x;), not multiple variables, no initial value
e expression statements (E';)
e while loops
e blocks: (possibly empty) lists of statements enclosed in braces
Expression constructs are:
identifiers/variables
integer literals
pre-increments of identifiers (++x)
greater-or-equal-than comparisons (E >= E')
e assignments of identifiers (z = E)
Greater-or-equal is non-associative and binds stronger than assignment. Paren-
theses around and expression are allowed and have the usual meaning. An
example program would be:

int x; x = 0; while (10 >= ++x) {}

You can use the standard BNFC categories Integer and Ident as well as list
short-hands, and terminator, separator, and coercions rules. (10p)

SOLUTION:

Program. Prg ::= [Stm] ;
SDecl. Stm ::= Type Ident ";" 3
SExp. Stm ::= Exp ";" ;
SWhile. Stm ::= "while" "(" Exp ")" Stm ;
SBlock. Stm ::= "{" [Stm] "}" g

terminator Stm "" ;

TInt. Type ::= "int" g
TBool. Type ::= "bool" ;
EId. Expl ::= Ident 5
EInt. Expl ::= Integer 3
EPreIncr. Expl ::= "++" Ident ;
EGEq. Exp ::= Expl ">=" Expl 5
EAss. Exp ::= Ident "=" Exp g

coercions Exp 1 3

Question 2 (Lexing): A string literal is a character sequence of length > 2
which starts and ends with double quotes ". Taking away both the starting and
the ending ", we obtain a string in which " may only appear in the form "".

Valid string literals are e.g.: "Hi!" or """01". Invalid string literals are e.g.:
B" (does not start with double quotes) "A (does not end with double quotes),
or """ (the middle part " is not valid since it is a single ").

To simplify matters, we represent character " by a and any other character
by b. The valid string literals from above become abbba and aaabba and the
invalid ones ba, ab, and aaa. Our alphabet thus becomes ¥ = {a, b}.

1. Give a regular expression for string literals (using alphabet). Demon-
strate that your regular expression accepts the two valid examples and
rejects the three invalid ones. (5p)

2. Give a deterministic or non-deterministic automaton for recognizing string
literals (using alphabet). Demonstrate that your automaton accepts the
two valid examples and rejects the three invalid ones. (5p)

SOLUTION:

1. r = a(b + aa)*a. For the proofs of acceptance, we use the compositional
semantics of regular expressions. For the proofs of rejectance, we use
derivatives. Other demonstrations are possible.

(a) b+ aa accepts b, thus, (b+ aa)* accepts bbb, thus a(b+ aa)*a accepts
abbba.

(b) b+ aa accepts both b and aa, thus, (b + aa)* accepts aabb, thus,
a(b + aa)*a accepts aaabba.

(c) r/ba = a(b+ aa)*a/ba = () which does not contain the empty word.

(d) r/ab = a(b+ aa)*a/ab = (b+ aa)*a/b = (b+ aa)*a which does not
contain the empty word.

(e) r/aaa = a(b+ aa)*a/aaa = (b+ aa)*a/aa = (b+ aa)*a which does
not contain the empty word.

2. A possible non-deterministic automaton uses three states S = {0,1,2}
with start state 0 and accepting state 2 and the following transitions.

b

(This automaton could easily be made deterministic by adding an error
state, reachable from 0 and 2 by character b.) To demonstrate acceptance
or rejectance, we simply run the automaton on the input. We denote a
run by the sequence of states the automaton goes through.

(a
(b

) abbba is accepted by run 011112.
)
¢) ba is stuck in state 0.
)
)

aaabba is accepted by run 0121112.
(
(d

(e) aaa leads to run 0121 ending in a non-accepting state.

ab leads to run 011 ending in a non-accepting state.

Question 3 (Parsing): Consider the following BNF-Grammar for boolean
expressions (written in bnfc). The starting non-terminal is D.

Or. D::=D"|"C ; -- Disjunctions
Conj. D ::=¢C ;

And. C ::=C"&" A ; —— Conjunctions
Atom. C ::= A ;

TT. A ::= "true" ; —— Atoms

FF. A ::= "false"

Var. A = "x" ;

Parens. A ::= "(" D ")"

Step by step, trace the LR-parsing of the expression
false | x & true
showing how the stack and the input evolves and which actions are performed.
(8p)
SOLUTION: The actions are S (shift), R (reduce with rule(s)), and Accept.

Stack . Input // Action(s) (rules)

. false | x & true // SR: "false" -> A (FF)

A | x & true // R: A->C->D (Atom, Conj)
D . | x & true // SSR: "x" -> A (Var)

D | A . & true // R: A ->C (Atom)

D| C . & true // SSR: "true" -> A (TT)

DI| C&A // R: C& A ->C (And)

D|C // R:D|C->D (0r)

D // Accept

Question 4 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the statement forms and lists
of Question 1. The typing environment must be made explicit. You can
assume a type-checking judgement for expressions.

Alternatively, you can write the type-checker in pseudo code or Haskell.

Please pay attention to scoping details; in particular, the program
while (0 >= 0) int x; x = 0;

should not pass your type checker! (5p)

SOLUTION: We use a judgement I' - s = I'" that expresses that state-
ment s is well-formed in context I' and might introduce new declarations,
resulting in context I'".

A context I' is a stack of blocks A, separated by a dot. Each block A is a
map from variables x to types t. We write A, z:t for adding the binding
x +— t to the map. Duplicate declarations of the same variable in the same
block are forbidden; with z ¢ A we express that x is not bound in block
A. We use a judgement I' - e : t, which reads “in context I', expression e

has type t”.
I'kFe:
g A _ I'Fess
I''AF SDecltx = (I.A, z:t) I'tSExpe =T
I'e:bool I''Fs=T.A I''Fss=T.A
I'-SWhilees =T ' SBlock ss = I'

This judgement is extended to sequences of statements I' = ss = I by
the following rules:

I'Fs=T1 I'Fss=T1T"
I'FSNil=T ' SCons s ss = I'”

Alternative solution: Lists of statements are denoted by ss and € is
the empty list. The judgement I' - ss reads “in context I', the sequence
of statements ss is well-formed”. Here, concrete syntax is used for the
statements:

T'Aklre:t Az :tE ss I'ke:t 'k ss

A
I'ke LAl tz;ss 7 I'Fe;ss

T'Fe:bool I''Fs I'F ss T.F ss I'F ss’
I'F while(e)s ss T'F {ss}ss’

Possible Haskell solution:

chkStm :: Stm -> StateT [Map Ident Type]l Maybe ()

chkStm (SExp e) = do

chkExp e Nothing —-— Check e is well-typed
chkStm (SDecl t x) = do

(delta : gamma) <- get -- Get context

guard $ Map.notMember x delta -- No duplicate binding!

put $ Map.insert x t delta : gamma -- Add binding
chkStm (SWhile e s) = do

chkExp e (Just TBool) —-— Check e against bool

modify (Map.empty :) —-— Push new block

chkStm s

modify tail —-- Pop top block
chkStm (SBlock ss) = do

modify (Map.empty :) —-— Push new block

mapM_ chkStm ss

modify tail -- Pop top block

. Write syntax-directed interpretation rules for the expression forms of Ques-
tion 1. The environment must be made explicit, as well as all possible side
effects.

Alternatively, you maybe write an interpeter in pseudo code or Haskell.
(5p)

SOLUTION:

The judgement v - e |} (v;9’) reads “in environment ~, evaluation of the

expression e results in value v and environment 7.

v FEInti | (i) v FEVarz | (y(z);7)

v EPreIncra | (y(z) + 1;9[z := v(z) + 1])

yEer 4 (i) 11 Fea | (ia;72) yEel (v;v)
v EGEqes ex | (i1 > i2;72) vk EAssze | (v;y/[z = v])

Question 5 (Compilation):

1. Write compilation schemes in pseudo code for each of the expression con-
structions in Question 1 generating JVM (i.e. Jasmin assembler). It is not
necessary to remember exactly the names of the instructions — only what
arguments they take and how they work. (6p)

SOLUTION:

compile (EVar x) = do
a <- lookupVar x
emit (iload a)

compile (EInt i) = do

emit (1dc i)

compile (EAss x e) = do
compile e
a <- lookupVar x
istore a
iload a

compile (EPrelncr x) = do
a <- lookupVar x
emit (iload a)
emit (ldc 1)
emit (iadd)
emit (istore a)
emit (iload a)

compile (EGEq el e2) = do
LDone <- newLabel
emit (ldc 1)
compile el
compile e2
emit (if_icmpge LDone)
emit (pop)
emit (ldc 0)
emit (LDone:)

load value of x onto stack

put i onto stack

value of e is on stack

store value
put value back on stack

load value of x onto stack
increment

store value
put value back on stack

push "true"

if greater or equal, then done
remove "true"
push "false"

2. Give the small-step semantics of the JVM instructions you used in the
compilation schemes in part 1. Write the semantics in the form

i:(PV,S)— (P, V'S

where (P,V,S) are the program counter, variable store, and stack before
execution of instruction ¢, and (P’, V', S’) are the respective values after
the execution. For adjusting the program counter, you can assume that
each instruction has size 1. (6p)

SOLUTION:
ldc a (P,V,S) — (P+ LV, S.a)
iload z (P,V,S) — (P+1,V, S.V(x))
istore z (P,V,Sa) — (P+1,Vixz=ada],5)
pop (P,V,S5.a) — (P+1,V, S)
iadd (P,V,S.ab) — (P+1,V, S.(a+0))
if_icmpge L (P,V,S.a.b) — (L, V, S) ifa>b
if_icmpge L (P,V,S.a.b) — (P+1,V, S) otherwise

Question 6 (Functional languages):

1. For lambda-calculus expressions we use the grammar

ex=nlz|lx—elee
and for simple types ¢ ::= int | ¢t — t. Non-terminal 2 ranges over variable
names and n over integer constants 0, 1, etc.

For the following typing judgements I" - e : ¢, decide whether they are
valid or not. Your answer should be just “valid” or “not valid”.

(a) FAx = Ay = (fx)y:int — (int — int).
(b) y: (int = int) = intky(Ax — 1) :int.
(¢) f:int—=intk Az — f(fx):int — int.
(d) y:int —int, f :intk fy:int.

) f

(e I (int = int) — (int > int) F (Az = f(zz)(A— f(zx)):
Int.

int —

The usual rules for multiple-choice questions apply: For a correct answer
you get 1 point for a wrong answer —1 points. If you choose not to give an
answer for a judgement, you get 0 points for that judgement. Your final
score will be between 0 and 5 points, a negative sum is rounded up to 0.

(5p)

SOLUTION:

(a) not valid (f is unbound)

2. Write a call-by-value interpreter for above lambda-calculus either with
inference rules, or in pseudo-code or Haskell. (5p)

