
Programming Language Technology

Exam, 11 April 2017 at 8.30–12.30 in SB (Sven Hultins gata 6)

Course codes: Chalmers DAT151, GU DIT231. As re-exam, also DAT150,
DIT229/230, and TIN321.
Exam supervision: Andreas Abel (+46 31 772 1731), visits at 9:30 and 11:30.

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: Tuesday 25 April 2017 at 10-11 in room EDIT 8103.

Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the
following constructs of a C-like imperative language: A program is a list of
statements. Types are int and bool. Statement constructs are:
• variable declarations (e.g. int x;), not multiple variables, no initial value
• expression statements (E;)
• while loops
• blocks: (possibly empty) lists of statements enclosed in braces

Expression constructs are:
• identifiers/variables
• integer literals
• pre-increments of identifiers (++x)
• greater-or-equal-than comparisons (E >= E′)
• assignments of identifiers (x = E)

Greater-or-equal is non-associative and binds stronger than assignment. Paren-
theses around and expression are allowed and have the usual meaning. An
example program would be:

int x; x = 0; while (10 >= ++x) {}

You can use the standard BNFC categories Integer and Ident as well as list
short-hands, and terminator, separator, and coercions rules. (10p)

1

SOLUTION:

Program. Prg ::= [Stm] ;

SDecl. Stm ::= Type Ident ";" ;

SExp. Stm ::= Exp ";" ;

SWhile. Stm ::= "while" "(" Exp ")" Stm ;

SBlock. Stm ::= "{" [Stm] "}" ;

terminator Stm "" ;

TInt. Type ::= "int" ;

TBool. Type ::= "bool" ;

EId. Exp1 ::= Ident ;

EInt. Exp1 ::= Integer ;

EPreIncr. Exp1 ::= "++" Ident ;

EGEq. Exp ::= Exp1 ">=" Exp1 ;

EAss. Exp ::= Ident "=" Exp ;

coercions Exp 1 ;

Question 2 (Lexing): A string literal is a character sequence of length ≥ 2
which starts and ends with double quotes ". Taking away both the starting and
the ending ", we obtain a string in which " may only appear in the form "".
Valid string literals are e.g.: "Hi!" or """Ol". Invalid string literals are e.g.:
B" (does not start with double quotes) "A (does not end with double quotes),
or """ (the middle part " is not valid since it is a single ").

To simplify matters, we represent character " by a and any other character
by b. The valid string literals from above become abbba and aaabba and the
invalid ones ba, ab, and aaa. Our alphabet thus becomes Σ = {a, b}.

1. Give a regular expression for string literals (using alphabet Σ). Demon-
strate that your regular expression accepts the two valid examples and
rejects the three invalid ones. (5p)

2. Give a deterministic or non-deterministic automaton for recognizing string
literals (using alphabet Σ). Demonstrate that your automaton accepts the
two valid examples and rejects the three invalid ones. (5p)

2

SOLUTION:

1. r = a(b + aa)∗a. For the proofs of acceptance, we use the compositional
semantics of regular expressions. For the proofs of rejectance, we use
derivatives. Other demonstrations are possible.

(a) b+aa accepts b, thus, (b+aa)∗ accepts bbb, thus a(b+aa)∗a accepts
abbba.

(b) b + aa accepts both b and aa, thus, (b + aa)∗ accepts aabb, thus,
a(b+ aa)∗a accepts aaabba.

(c) r/ba = a(b+ aa)∗a/ba = ∅ which does not contain the empty word.

(d) r/ab = a(b + aa)∗a/ab = (b + aa)∗a/b = (b + aa)∗a which does not
contain the empty word.

(e) r/aaa = a(b + aa)∗a/aaa = (b + aa)∗a/aa = (b + aa)∗a which does
not contain the empty word.

2. A possible non-deterministic automaton uses three states S = {0, 1, 2}
with start state 0 and accepting state 2 and the following transitions.

// 0
a // 1

a //

b

EE 2
a

oo

(This automaton could easily be made deterministic by adding an error
state, reachable from 0 and 2 by character b.) To demonstrate acceptance
or rejectance, we simply run the automaton on the input. We denote a
run by the sequence of states the automaton goes through.

(a) abbba is accepted by run 011112.

(b) aaabba is accepted by run 0121112.

(c) ba is stuck in state 0.

(d) ab leads to run 011 ending in a non-accepting state.

(e) aaa leads to run 0121 ending in a non-accepting state.

3

Question 3 (Parsing): Consider the following BNF-Grammar for boolean
expressions (written in bnfc). The starting non-terminal is D.

Or. D ::= D "|" C ; -- Disjunctions

Conj. D ::= C ;

And. C ::= C "&" A ; -- Conjunctions

Atom. C ::= A ;

TT. A ::= "true" ; -- Atoms

FF. A ::= "false" ;

Var. A ::= "x" ;

Parens. A ::= "(" D ")" ;

Step by step, trace the LR-parsing of the expression

false | x & true

showing how the stack and the input evolves and which actions are performed.
(8p)

SOLUTION: The actions are S (shift), R (reduce with rule(s)), and Accept.

Stack . Input // Action(s) (rules)

. false | x & true // SR: "false" -> A (FF)

A . | x & true // R: A -> C -> D (Atom, Conj)

D . | x & true // SSR: "x" -> A (Var)

D | A . & true // R: A -> C (Atom)

D | C . & true // SSR: "true" -> A (TT)

D | C & A // R: C & A -> C (And)

D | C // R: D | C -> D (Or)

D // Accept

4

Question 4 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the statement forms and lists
of Question 1. The typing environment must be made explicit. You can
assume a type-checking judgement for expressions.

Alternatively, you can write the type-checker in pseudo code or Haskell.

Please pay attention to scoping details; in particular, the program

while (0 >= 0) int x; x = 0;

should not pass your type checker! (5p)

SOLUTION: We use a judgement Γ ` s⇒ Γ′ that expresses that state-
ment s is well-formed in context Γ and might introduce new declarations,
resulting in context Γ′.

A context Γ is a stack of blocks ∆, separated by a dot. Each block ∆ is a
map from variables x to types t. We write ∆, x:t for adding the binding
x 7→ t to the map. Duplicate declarations of the same variable in the same
block are forbidden; with x 6∈ ∆ we express that x is not bound in block
∆. We use a judgement Γ ` e : t, which reads “in context Γ, expression e
has type t”.

Γ.∆ ` SDecl t x⇒ (Γ.∆, x:t)
x 6∈ ∆

Γ ` e : t

Γ ` SExp e⇒ Γ

Γ ` e : bool Γ. ` s⇒ Γ.∆

Γ ` SWhile e s⇒ Γ

Γ. ` ss ⇒ Γ.∆

Γ ` SBlock ss ⇒ Γ

This judgement is extended to sequences of statements Γ ` ss ⇒ Γ′ by
the following rules:

Γ ` SNil⇒ Γ

Γ ` s⇒ Γ′ Γ′ ` ss ⇒ Γ′′

Γ ` SCons s ss ⇒ Γ′′

Alternative solution: Lists of statements are denoted by ss and ε is
the empty list. The judgement Γ ` ss reads “in context Γ, the sequence
of statements ss is well-formed”. Here, concrete syntax is used for the
statements:

Γ ` ε
Γ.∆ ` e : t Γ.∆, x : t ` ss

Γ.∆ ` t x; ss
x 6∈ ∆

Γ ` e : t Γ ` ss

Γ ` e; ss

Γ ` e : bool Γ. ` s Γ ` ss
Γ ` while(e)s ss

Γ. ` ss Γ ` ss ′

Γ ` {ss}ss ′

5

Possible Haskell solution:

chkStm :: Stm -> StateT [Map Ident Type] Maybe ()

chkStm (SExp e) = do

chkExp e Nothing -- Check e is well-typed

chkStm (SDecl t x) = do

(delta : gamma) <- get -- Get context

guard $ Map.notMember x delta -- No duplicate binding!

put $ Map.insert x t delta : gamma -- Add binding

chkStm (SWhile e s) = do

chkExp e (Just TBool) -- Check e against bool

modify (Map.empty :) -- Push new block

chkStm s

modify tail -- Pop top block

chkStm (SBlock ss) = do

modify (Map.empty :) -- Push new block

mapM_ chkStm ss

modify tail -- Pop top block

2. Write syntax-directed interpretation rules for the expression forms of Ques-
tion 1. The environment must be made explicit, as well as all possible side
effects.

Alternatively, you maybe write an interpeter in pseudo code or Haskell.
(5p)

SOLUTION:

The judgement γ ` e ⇓ 〈v; γ′〉 reads “in environment γ, evaluation of the
expression e results in value v and environment γ′”.

γ ` EInt i ⇓ 〈i; γ〉 γ ` EVarx ⇓ 〈γ(x); γ〉

γ ` EPreIncrx ⇓ 〈γ(x) + 1; γ[x := γ(x) + 1]〉

γ ` e1 ⇓ 〈i1; γ1〉 γ1 ` e2 ⇓ 〈i2; γ2〉
γ ` EGEq e1 e2 ⇓ 〈i1 ≥ i2; γ2〉

γ ` e ⇓ 〈v; γ′〉
γ ` EAssx e ⇓ 〈v; γ′[x := v]〉

6

Question 5 (Compilation):

1. Write compilation schemes in pseudo code for each of the expression con-
structions in Question 1 generating JVM (i.e. Jasmin assembler). It is not
necessary to remember exactly the names of the instructions – only what
arguments they take and how they work. (6p)

SOLUTION:

compile (EVar x) = do

a <- lookupVar x

emit (iload a) -- load value of x onto stack

compile (EInt i) = do

emit (ldc i) -- put i onto stack

compile (EAss x e) = do

compile e -- value of e is on stack

a <- lookupVar x

istore a -- store value

iload a -- put value back on stack

compile (EPreIncr x) = do

a <- lookupVar x

emit (iload a) -- load value of x onto stack

emit (ldc 1) -- increment

emit (iadd)

emit (istore a) -- store value

emit (iload a) -- put value back on stack

compile (EGEq e1 e2) = do

LDone <- newLabel

emit (ldc 1) -- push "true"

compile e1

compile e2

emit (if_icmpge LDone) -- if greater or equal, then done

emit (pop) -- remove "true"

emit (ldc 0) -- push "false"

emit (LDone:)

2. Give the small-step semantics of the JVM instructions you used in the
compilation schemes in part 1. Write the semantics in the form

i : (P, V, S) −→ (P ′, V ′, S′)

7

where (P, V, S) are the program counter, variable store, and stack before
execution of instruction i, and (P ′, V ′, S′) are the respective values after
the execution. For adjusting the program counter, you can assume that
each instruction has size 1. (6p)

SOLUTION:

ldc a : (P, V, S) −→ (P + 1, V, S.a)
iload x : (P, V, S) −→ (P + 1, V, S.V (x))
istore x : (P, V, S.a) −→ (P + 1, V [x = a], S)
pop : (P, V, S.a) −→ (P + 1, V, S)
iadd : (P, V, S.a.b) −→ (P + 1, V, S.(a+ b))
if icmpge L : (P, V, S.a.b) −→ (L, V, S) if a ≥ b
if icmpge L : (P, V, S.a.b) −→ (P + 1, V, S) otherwise

Question 6 (Functional languages):

1. For lambda-calculus expressions we use the grammar

e ::= n | x | λx→ e | e e

and for simple types t ::= int | t→ t. Non-terminal x ranges over variable
names and n over integer constants 0, 1, etc.

For the following typing judgements Γ ` e : t, decide whether they are
valid or not. Your answer should be just “valid” or “not valid”.

(a) ` λx→ λy → (f x) y : int→ (int→ int).

(b) y : (int→ int)→ int ` y (λx→ 1) : int.

(c) f : int→ int ` λx→ f (f x) : int→ int.

(d) y : int→ int, f : int ` f y : int.

(e) f : (int → int) → (int → int) ` (λx → f (xx)) (λ → f (xx)) : int →
int.

The usual rules for multiple-choice questions apply: For a correct answer
you get 1 point for a wrong answer −1 points. If you choose not to give an
answer for a judgement, you get 0 points for that judgement. Your final
score will be between 0 and 5 points, a negative sum is rounded up to 0.
(5p)

SOLUTION:

(a) not valid (f is unbound)

8

(b) valid

(c) valid

(d) not valid (f does not have a function type)

(e) not valid (self application xx is not typable)

2. Write a call-by-value interpreter for above lambda-calculus either with
inference rules, or in pseudo-code or Haskell. (5p)

SOLUTION:

type Var = String

data Exp = EInt Integer | EVar Var | EAbs Var Exp | EApp Exp Exp

data Val = VInt Integer | VClos Var Exp Env

type Env = [(Var,Val)]

eval :: Exp -> Env -> Maybe Val

eval e0 rho = case e0 of

EInt n -> return $ VInt n

EAbs x e -> return $ VClos x e rho

EVar x -> lookup x rho

EApp f e -> do

VClos x e’ rho’ <- eval f rho

v <- eval e rho

eval e’ $ (x,v):rho’

9

