
Programming Language Technology

Exam, 11 January 2017 at 8.30–12.30 in J

Course codes: Chalmers DAT150/151, GU DIT231. As re-exam, also TIN321
and DIT229/230.
Exam supervision: Fredrik Lindblad (+46 31 772 2038), visits at 9:30 and 11:30.
[Examiner: Andreas Abel (+49 176 400 333 23)]

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: Tuesday 24 January 2017 at 10-12 in room EDIT 5128.

Please answer the questions in English. Questions requiring answers in code
can be answered in any of: C, C++, Haskell, Java, or precise pseudocode.

For any of the six questions, an answer of roughly one page should be enough.

Question 1 (Grammars): Write a BNF grammar that covers the following
kinds of constructs in Java/C++:
• statements:

– blocks: lists of statements (possibly empty) in curly brackets { }
– variable initialization statement: a type followed by an identifier and

an initializing expression, e.g. int x = 4

ERRATUM: Missing here: followed by a semicolon.
Example should be int x = 4;

– expressions as statements: an expression followed by a semicolon
• types: int
• expressions:

– variables
– integer literals
– addition +

– multiplication *

– assignment to variables, e.g. x = (y = 3) + z

Both arithmetic operations are left associative. It is enough to consider
4 precedence levels of expressions (from lowest to highest): assignment
(right associative), addition, multiplication, and atoms. Parentheses are
used, as usual, to lift an expression to the highest level.

1

An example statement is shown in question 2. You can use the standard BNFC
categories Integer and Ident, as well as coercions. Do not use list categories
or terminator/separator rules. (10p)

SOLUTION:

SNil. Stms ::= ;

SCons. Stms ::= Stm Stms ;

SBlock. Stm ::= "{" Stms "}" ;

SInit. Stm ::= Type Ident "=" Exp ";" ;

SExp. Stm ::= Exp ";" ;

TInt. Type ::= "int" ;

EVar. Exp3 ::= Ident ;

EInt. Exp3 ::= Integer ;

EMul. Exp2 ::= Exp2 "*" Exp3 ;

EAdd. Exp1 ::= Exp1 "+" Exp2 ;

EAss. Exp ::= Ident "=" Exp ;

coercions Exp 3;

2

Question 2 (Trees): Show the parse tree and the abstract syntax tree of the
statement

ERRATUM: Should be list of statements

int x = 1; { int x = 2; } x = x * 3 + 4;

in the grammar that you wrote in Question 1. Note: Ident and Integer

wrappers for identifier and integer tokens should be either always supplied, or
always dropped; be consistent! (10p)

SOLUTION:
The abstract syntax tree is:

SCons

SInit

TInt “x” EInt

1

SCons

SBlock

SCons

SInit

TInt “x” EInt

2

SNil

SCons

SExp

EAss

“x” EAdd

EMul

EVar

“x”

EInt

3

EInt

4

SNil

Alternatively, identifiers could be wrapped in an Ident constructor; this is
what bnfc does. Note that this constructor would not come from the parser,
but from the lexer.

The parse tree should not use rule names, but non-terminals and terminals
only. Also, it needs to explicit about coercions. (Parse tree omitted here due to
lack of artistic ambition, see similar question in old exams.)

3

S
t
m

s

S
t
m

T
y
p
e

“
in

t
”

“
x
”

“
=

”
E
x
p

E
x
p
1

E
x
p
2

E
x
p
3

1

“
;”

S
t
m

s

S
t
m

{
S
t
m

s

S
t
m

T
y
p
e

“
in

t
”

“
x
”

“
=

”
E
x
p

E
x
p
1

E
x
p
2

E
x
p
3

2

S
t
m

s

}

S
t
m

s

S
t
m

E
x
p

“
x
”

“
=

”
E
x
p

E
x
p
1

E
x
p
1

E
x
p
2

E
x
p
2

E
x
p
3

“
x
”

“
*
”

E
x
p
3

3

“
+

”
E
x
p
2

E
x
p
3

4

“
;”

S
t
m

s

Question 3 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the statement forms and lists
of Question 1. The typing environment must be made explicit. You can
assume a type-checking judgement for expressions. (5p)

SOLUTION: We use a judgement Γ ` s⇒ Γ′ that expresses that state-
ment s is well-formed in context Γ and might introduce new declarations,
resulting in context Γ′.

A context Γ is a stack of blocks ∆, separated by a dot. Each block ∆ is a
map from variables x to types t. We write ∆, x:t for adding the binding
x 7→ t to the map. Duplicate declarations of the same variable in the same
block are forbidden; with x 6∈ ∆ we express that x is not bound in block
∆. We use a judgement Γ ` e : t, which reads “in context Γ, expression e
has type t”.

Γ ` e : t

Γ ` SExp e⇒ Γ

Γ. ` ss ⇒ Γ.∆

Γ ` SBlock ss ⇒ Γ

Γ.∆ ` e : t

Γ.∆ ` SInit t x e⇒ (Γ.∆, x:t)
x 6∈ ∆

This judgement is extended to sequences of statements Γ ` ss ⇒ Γ′ by
the following rules:

Γ ` SNil⇒ Γ

Γ ` s⇒ Γ′ Γ′ ` ss ⇒ Γ′′

Γ ` SCons s ss ⇒ Γ′′

Alternative solution: Lists of statements are denoted by ss and ε is
the empty list. The judgement Γ ` ss reads “in context Γ, the sequence
of statements ss is well-formed”. Here, concrete syntax is used for the
statements:

Γ ` ε
Γ. ` ss Γ ` ss ′

Γ ` {ss}ss ′

Γ ` e : t Γ ` ss

Γ ` e; ss
Γ.∆ ` e : t Γ.∆, x : t ` ss

Γ.∆ ` t x = e; ss
x 6∈ ∆

5

2. Write syntax-directed interpretation rules for the expression forms of Ques-
tion 1. The environment must be made explicit, as well as all possible side
effects. (5p)

SOLUTION:

The judgement γ ` e ⇓ 〈v; γ′〉 reads “in environment γ, evaluation of the
expression e results in value v and environment γ′”.

γ ` EInt i ⇓ 〈i; γ〉 γ ` EVarx ⇓ 〈γ(x); γ〉

γ ` e1 ⇓ 〈i1; γ1〉 γ1 ` e2 ⇓ 〈i2; γ2〉
γ ` EAdd e1 e2 ⇓ 〈i1 + i2; γ2〉

γ ` e1 ⇓ 〈i1; γ1〉 γ1 ` e2 ⇓ 〈i2; γ2〉
γ ` EMul e1 e2 ⇓ 〈i1 ∗ i2; γ2〉

γ ` e ⇓ 〈v; γ′〉
γ ` EAssx e ⇓ 〈v; γ′[x := v]〉

6

Question 4 (Parsing): Step by step, trace the LR-parsing of the expression

x = x * 3 + 4

showing how the stack and the input evolves and which actions are performed.
Be careful that the actions match your grammar in Question 1. (8p)

SOLUTION: x is actually token Ident. 1, 3, 4 are token Integer, abbre-
viated to Int. Actions are S (shift), R (reduce with rule(s)), and A (accept).

. x = x * 3 + 4 // SSS

Ident = Ident . * 3 + 4 // R: Ident -> Exp3 -> Exp2

Ident = Exp2 . * 3 + 4 // SS

Ident = Exp2 * Int . + 4 // R: Int -> Exp3

Ident = Exp2 * Exp3 . + 4 // R: Exp2 * Exp3 -> Exp2

Ident = Exp2 . + 4 // R: Exp2 -> Exp1

Ident = Exp1 . + 4 // SS

Ident = Exp1 + Int // R: Int -> Exp3 -> Exp2

Ident = Exp1 + Exp2 // R: Exp1 + Exp2 -> Exp1

Ident = Exp1 // R: Exp1 -> Exp

Ident = Exp // R: Ident = Exp -> Exp

Exp // A

7

Question 5 (Compilation):

1. Write compilation schemes in pseudo-code for each of the grammar con-
structions in Question 1 generating JVM (i.e. Jasmin assembler). It is not
necessary to remember exactly the names of the instructions – only what
arguments they take and how they work. (6p)

SOLUTION:

// Blocks

compile (SBlock ss) = do

newBlock

mapM_ compile ss

popBlock

compile (SInit t x e) = do

newVar t x

a <- lookupVar x

compile e

emit (istore a)

compile (SExp e) = do

compile e

emit pop

compile (EVar x) = do

a <- lookupVar x

emit (iload a)

compile (EInt i) = do

emit (ldc i)

compile (EAdd e1 e2) = do

compile e1

compile e2

emit (iadd)

compile (EMul e1 e2) = do

compile e1

compile e2

emit (imul)

compile (EAss x e) = do

compile e

8

a <- lookupVar x

istore a

iload a

2. Give the small-step semantics of the JVM instructions you used in the
compilation schemes in part 1. Write the semantics in the form

i : (P, V, S) −→ (P ′, V ′, S′)

where (P, V, S) is the program counter, variable store, and stack before
execution of instruction i, and (P ′, V ′, S′) are the respective values after
the execution. For adjusting the program counter, you can assume that
each instruction has size 1. (6p)

SOLUTION:

ldc a : (P, V, S) −→ (P + 1, V, S.a)
iload x : (P, V, S) −→ (P + 1, V, S.V (x))
istore x : (P, V, S.a) −→ (P + 1, V [x = a], S)
pop : (P, V, S.a) −→ (P + 1, V, S)
iadd : (P, V, S.a.b) −→ (P + 1, V, S.(a+ b))
imul : (P, V, S.a.b) −→ (P + 1, V, S.(a ∗ b))

9

Question 6 (Functional languages):

1. Give the typing rules for simply-typed lambda-calculus!
Simple types are given by the grammar t ::= int | t→ t, and expressions
by e ::= x | λx→ e | e e. (5p)

SOLUTION:

Γ ` x : Γ(x)

Γ, x : t ` e : t′

Γ ` λx→ e : t→ t′
Γ ` e : t′ → t Γ ` e′ : t′

Γ ` e e′ : t

2. Give a typing derivation of λg → λf → f (g f). (5p)

SOLUTION:

Γ := (g : (t→ t′)→ t, f : t→ t′)

Γ ` g f : t

Γ ` f (g f) : t′

` λg → λf → f (g f) : ((t→ t′)→ t)→ (t→ t′)→ t′

10

