
Programming Language Technology

Exam, 24 August 2017 at 14.00–18.00 in M

Course codes: Chalmers DAT151, GU DIT231. As re-exam, also DAT150, DIT229/230,
and TIN321.
Exam supervision: Andreas Abel (+46 31 772 1731), visits at 15:00 and 17:00.

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: Tuesday 12 September 2017 at 13.30 in room EDIT 8103 (past the CSE
lunchroom).

Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the following
constructs of a C-like imperative language: A program is a list of statements. Types are
int and bool. Statement constructs are:
• variable declarations (e.g. int x;), not multiple variables, no initial value
• expression statements (E;)
• while loops
• blocks: (possibly empty) lists of statements enclosed in braces

Expression constructs are:
• identifiers/variables
• integer literals
• post-increments of identifiers (x++)
• less-or-equal-than comparisons (E <= E ′)
• assignments of identifiers (x = E)

Less-or-equal is non-associative and binds stronger than assignment. Parentheses around
and expression are allowed and have the usual meaning. An example program would be:

int x; x = 0; while (x++ <= 9) {}

You can use the standard BNFC categories Integer and Ident as well as list short-hands,
and terminator, separator, and coercions rules. (10p)

1

Question 2 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the statement forms and lists of Ques-
tion 1. The typing environment must be made explicit. You can assume a type-
checking judgement for expressions.

Alternatively, you can write the type-checker in pseudo code or Haskell.

Please pay attention to scoping details; in particular, the program

while (0 <= 1) int x; x = 0;

should not pass your type checker! (5p)

2. Write syntax-directed interpretation rules for the expression forms of Question 1.
The environment must be made explicit, as well as all possible side effects.

Alternatively, you maybe write an interpeter in pseudo code or Haskell. (5p)

Question 3 (Compilation):

1. Write compilation schemes in pseudo code for each of the expression constructions in
Question 1 generating JVM (i.e. Jasmin assembler). It is not necessary to remember
exactly the names of the instructions – only what arguments they take and how
they work. (6p)

2. Give the small-step semantics of the JVM instructions you used in the compilation
schemes in part 1. Write the semantics in the form

i : (P, V, S) −→ (P ′, V ′, S ′)

where (P, V, S) are the program counter, variable store, and stack before execution
of instruction i, and (P ′, V ′, S ′) are the respective values after the execution. For
adjusting the program counter, you can assume that each instruction has size 1.
(6p)

2

Question 4 (Regular Languages): Company SaniSol develops showers and has
bought a water-proof robot from company RoboCRP for testing its newest shower mod-
els. The testing environment consists of two adjacent square rooms separated by a swing
door. Room 1 is empty, except for the swing door to room 2. Room 2 contains the shower
(and of course the swing door back to room 1). RoboCRP has programmed the test robot
with two actions.

a Move forward through the swing door and spin by 180◦. This action can be carried
out whenever the robot faces a door into another room.

b Take a shower, spinning by 360◦. This action can be carried out whenever the robot
is in a room with a shower.

If the robot is asked to perform an action it cannot carry out, it will explode according
to the RoboCRP SelfDestruct R© mechanism.

In the beginning, the robot is in room 1 facing the swing door to room 2. A valid
action sequence is a non-empty sequence of a and/or b actions that does not make the
robot explode and returns it to room 1 in the end. For example, the sequences abbba and
aaabbaaba are valid and aaa, ab, and ba are invalid.

1. Give a regular expression for valid action sequences. Demonstrate that your regular
expression accepts the two valid examples and rejects the three invalid ones. (5p)

2. Give a deterministic or non-deterministic automaton for recognizing valid action
sequences. Demonstrate that your automaton accepts the two valid examples and
rejects the three invalid ones. (5p)

Question 5 (Parsing): Consider the following LBNF-Grammar for arithmetical ex-
pressions (written in bnfc). The starting non-terminal is S.

Plus. S ::= S "+" P ; -- Sums

Product. S ::= P ;

Times. P ::= P "*" A ; -- Products

Atom. P ::= A ;

X. A ::= "x" ; -- Atoms

Y. A ::= "y" ;

Z. A ::= "z" ;

Parens. A ::= "(" S ")" ;

Step by step, trace the LR-parsing of the expression

x + y * z

showing how the stack and the input evolves and which actions are performed. For each
reduce action, mention the grammar rule used to reduce the stack. (8p)

3

Question 6 (Functional languages):

1. For lambda-calculus expressions we use the abstract grammar

e ::= n | x | λx→ e | e e

and for simple types t ::= N | t → t. Non-terminal x ranges over variable names
and n over non-negative integer constants 0, 1, etc.

For the following typing judgements Γ ` e : t, decide whether they are valid or not.
Your answer should be just “valid” or “not valid”.

(a) y : N→ N, f : N ` f y : N.

(b) y : (N→ N)→ N ` y (λx→ 1) : N.

(c) f : (N→ N)→ (N→ N) ` (λx→ f (x x)) (λx→ f (x x)) : N→ N.

(d) ` λx→ λy → (f x) y : N→ (N→ N).

(e) f : N→ N ` λx→ f (f x) : N→ N.

The usual rules for multiple-choice questions apply: For a correct answer you get
1 point, for a wrong answer −1 points. If you choose not to give an answer for a
judgement, you get 0 points for that judgement. Your final score will be between 0
and 5 points, a negative sum is rounded up to 0. (5p)

2. Write a call-by-value interpreter for above lambda-calculus either with inference
rules, or in pseudo-code or Haskell. (5p)

Good luck!

4

