Programming Language Technology

Exam, 11 January 2017 at 8.30-12.30 in J

Course codes: Chalmers DAT150/151, GU DIT231. As re-exam, also TIN321
and DIT229/230.

Exam supervision: Fredrik Lindblad (+46 31 772 2038), visits at 9:30 and 11:30.
[Examiner: Andreas Abel (+49 176 400 333 23)]

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: Tuesday 24 January 2017 at 10-12 in room EDIT 5128.

Please answer the questions in English. Questions requiring answers in code
can be answered in any of: C, C++, Haskell, Java, or precise pseudocode.

For any of the six questions, an answer of roughly one page should be enough.

Question 1 (Grammars): Write a BNF grammar that covers the following
kinds of constructs in Java/C++:
e statements:
— blocks: lists of statements (possibly empty) in curly brackets { }
— variable initialization statement: a type followed by an identifier and
an initializing expression, e.g. int x = 4

ERRATUM: Missing here: followed by a semicolon.
Example should be int x = 4;

— expressions as statements: an expression followed by a semicolon
e types: int
e expressions:

— variables
integer literals
— addition +
multiplication *

— assignment to variables, e.g. x = (y = 3) + z

Both arithmetic operations are left associative. It is enough to consider
4 precedence levels of expressions (from lowest to highest): assignment
(right associative), addition, multiplication, and atoms. Parentheses are
used, as usual, to lift an expression to the highest level.

An example statement is shown in question 2. You can use the standard BNFC
categories Integer and Ident, as well as coercions. Do not use list categories
or terminator/separator rules. (10p)

Question 2 (Trees): Show the parse tree and the abstract syntax tree of the
statement

ERRATUM: Should be list of statements

int x=1; {int x =2; } x =x *x 3 + 4;

in the grammar that you wrote in Question 1. Note: Ident and Integer
wrappers for identifier and integer tokens should be either always supplied, or
always dropped; be consistent! (10p)

Question 3 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the statement forms and lists
of Question 1. The typing environment must be made explicit. You can
assume a type-checking judgement for expressions. (5p)

2. Write syntax-directed interpretation rules for the expression forms of Ques-
tion 1. The environment must be made explicit, as well as all possible side
effects. (5p)

Question 4 (Parsing): Step by step, trace the LR-parsing of the expression
x=x %3+ 4

showing how the stack and the input evolves and which actions are performed.
Be careful that the actions match your grammar in Question 1. (8p)

Question 5 (Compilation):

1. Write compilation schemes in pseudo-code for each of the grammar con-
structions in Question 1 generating JVM (i.e. Jasmin assembler). It is not
necessary to remember exactly the names of the instructions — only what
arguments they take and how they work. (6p)

2. Give the small-step semantics of the JVM instructions you used in the
compilation schemes in part 1. Write the semantics in the form

i:(P,V,S)— (P,V'S)

where (P,V,S) is the program counter, variable store, and stack before
execution of instruction ¢, and (P’, V', S’) are the respective values after
the execution. For adjusting the program counter, you can assume that
each instruction has size 1. (6p)

Question 6 (Functional languages):

1. Give the typing rules for simply-typed lambda-calculus!
Simple types are given by the grammar ¢ ::= int | ¢ — ¢, and expressions
by ex=z | x —e]|ee. (5p)

2. Give a typing derivation of A\g = Af — f (g f). (5p)

