
Programming Language Technology

Exam, 11 January 2017 at 8.30–12.30 in J

Course codes: Chalmers DAT150/151, GU DIT231. As re-exam, also TIN321
and DIT229/230.
Exam supervision: Fredrik Lindblad (+46 31 772 2038), visits at 9:30 and 11:30.
[Examiner: Andreas Abel (+49 176 400 333 23)]

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: Tuesday 24 January 2017 at 10-12 in room EDIT 5128.

Please answer the questions in English. Questions requiring answers in code
can be answered in any of: C, C++, Haskell, Java, or precise pseudocode.

For any of the six questions, an answer of roughly one page should be enough.

Question 1 (Grammars): Write a BNF grammar that covers the following
kinds of constructs in Java/C++:
• statements:

– blocks: lists of statements (possibly empty) in curly brackets { }
– variable initialization statement: a type followed by an identifier and

an initializing expression, e.g. int x = 4

ERRATUM: Missing here: followed by a semicolon.
Example should be int x = 4;

– expressions as statements: an expression followed by a semicolon
• types: int
• expressions:

– variables
– integer literals
– addition +

– multiplication *

– assignment to variables, e.g. x = (y = 3) + z

Both arithmetic operations are left associative. It is enough to consider
4 precedence levels of expressions (from lowest to highest): assignment
(right associative), addition, multiplication, and atoms. Parentheses are
used, as usual, to lift an expression to the highest level.

1

An example statement is shown in question 2. You can use the standard BNFC
categories Integer and Ident, as well as coercions. Do not use list categories
or terminator/separator rules. (10p)

Question 2 (Trees): Show the parse tree and the abstract syntax tree of the
statement

ERRATUM: Should be list of statements

int x = 1; { int x = 2; } x = x * 3 + 4;

in the grammar that you wrote in Question 1. Note: Ident and Integer

wrappers for identifier and integer tokens should be either always supplied, or
always dropped; be consistent! (10p)

Question 3 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the statement forms and lists
of Question 1. The typing environment must be made explicit. You can
assume a type-checking judgement for expressions. (5p)

2. Write syntax-directed interpretation rules for the expression forms of Ques-
tion 1. The environment must be made explicit, as well as all possible side
effects. (5p)

Question 4 (Parsing): Step by step, trace the LR-parsing of the expression

x = x * 3 + 4

showing how the stack and the input evolves and which actions are performed.
Be careful that the actions match your grammar in Question 1. (8p)

Question 5 (Compilation):

1. Write compilation schemes in pseudo-code for each of the grammar con-
structions in Question 1 generating JVM (i.e. Jasmin assembler). It is not
necessary to remember exactly the names of the instructions – only what
arguments they take and how they work. (6p)

2. Give the small-step semantics of the JVM instructions you used in the
compilation schemes in part 1. Write the semantics in the form

i : (P, V, S) −→ (P ′, V ′, S′)

where (P, V, S) is the program counter, variable store, and stack before
execution of instruction i, and (P ′, V ′, S′) are the respective values after
the execution. For adjusting the program counter, you can assume that
each instruction has size 1. (6p)

2

Question 6 (Functional languages):

1. Give the typing rules for simply-typed lambda-calculus!
Simple types are given by the grammar t ::= int | t→ t, and expressions
by e ::= x | λx→ e | e e. (5p)

2. Give a typing derivation of λg → λf → f (g f). (5p)

3

