
Programming Language Technology

Exam, 14 January 2019 at 8.30–12.30 in M

Course codes: Chalmers DAT151, GU DIT231. As re-exam, also DAT150 and DIT230.
Exam supervision: Daniel Schoepe (+46 31 772 6166), visits at 9:30 and 11:30.

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: 1 February 2019 10-11.30 in room EDIT 6128.

Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the following
kinds of constructs of C (also C++, Java):
• Programs: A list of statements enclosed between “int main() {” and “}”.
• Statements:

– statements formed from expressions by adding a semicolon ;

– single variable declarations, e.g., int x;

– while loops
• Expressions:

– integer literals
– identifiers
– function calls, i.e., identifiers applied to a tuple of expressions
– addition (+) and multiplication (*)
– less-than comparison of integer expressions (<)
– assignments
– parenthesized expressions

Function calls, multiplication and addition are left-associative, comparison is non-
associative, assignment is right-associative. Function calls bind strongest, then
multiplication, then addition, then comparison, then assignment.
• Types: int and bool

Lines starting with # are comments. An example program is:

#include <stdio.h>

#define printInt(e) printf("%d\n",e)

int main () {

int i; int n;

i = n = 0;

while (i < 5) n = n + (i = i + 1) * i;

printInt(n);

}

You can use the standard BNFC categories Integer and Ident, list categories via the
terminator and separator pragmas, and the coercions pragma.
(10p)

1

CLARIFICATION: Clarification: blocks are not explicitely mentioned in the list
of constructs to be covered, thus, they are not included in this grammar. However, it is
not considered a mistake if a solution includes them.

SOLUTION:

Program. Prg ::= "int" "main" "(" ")" "{" Stms "}" ;

TInt. Type ::= "int" ;

TBool. Type ::= "bool" ;

SNil. Stms ::= ;

SCons. Stms ::= Stm Stms ;

SDecl. Stm ::= Type Ident ";" ;

SExp. Stm ::= Exp ";" ;

SWhile. Stm ::= "while" "(" Exp ")" Stm ;

EInt. Exp3 ::= Integer ;

EId. Exp3 ::= Ident ;

ECall. Exp3 ::= Ident "(" [Exp] ")" ;

ETimes. Exp2 ::= Exp2 "*" Exp3 ;

EPlus. Exp1 ::= Exp1 "+" Exp2 ;

ELt. Exp ::= Exp1 "<" Exp1 ;

EAssign. Exp ::= Ident "=" Exp ;

coercions Exp 3 ;

separator Exp "," ;

comment "#" ;

2

Question 2 (Lexing): Consider the alphabet Σ = {0, 1} and the language L ⊆ Σ∗ of
words in which the number of consecutive 1s is always even.

1. Give a regular expression for language L.

2. Give a deterministic finite automaton for L with no more than 6 states.

(4p)

CLARIFICATION: The number of consecutive 1s is always even could be read
to allow a single 1, since then there are no consecutive 1s, meaning 0 of them, which is
an even number. It would habe been clearer to avoid Latin and write the number of 1s
following each other without a 0 inbetween.

Any of the two interpretations will be accepted as solution.

SOLUTION:

1. RE: (0∗(11)∗)∗

2. DFA:

// L

0

��
1 // 1L
1

jj
0 // ∅

0,1

��

3

Question 3 (LR Parsing): Consider the following labeled BNF-Grammar (written in
bnfc). The starting non-terminal is P.

P1. P ::= P "*" F ;

P2. P ::= F ;

F1. F ::= F "^" E ;

F2. F ::= E ;

EX. E ::= "x" ;

EY. E ::= "y" ;

EN. E ::= "-" E ;

EP. E ::= "(" P ")" ;

Step by step, trace the shift-reduce parsing of the expression

- x ^ - - y * x

showing how the stack and the input evolves and which actions are performed. (8p)

SOLUTION: The actions are S (shift), R (reduce with rule(s)), and Accept. Stack
and input are separated by a dot.

. - x ^ - - y * x // SS

- x . ^ - - y * x // R EX : x → E

- E . ^ - - y * x // RR EN, F2 : -E → E → F

F . ^ - - y * x // SSSS

F ^ - - y . * x // RRR EY,EN,EN : --y → --E → -E → E

F ^ E . * x // RR F1, P2 : F ^ E → F → P

P . * x // SS

P * x . // RR EX, F1 : x → E → F

P * F . // R P1 : P * F → P

P . // Accept

4

Question 4 (Type checking and evaluation):

1. Write syntax-directed typing rules for the expressions of Question 1. Alternatively,
you can write the type-checker in pseudo code or Haskell. In any case, the environ-
ment must be made explicit. (7p)

CLARIFICATION: A function lookupVar can be assumed if its behavior is
described.

SOLUTION: The type checking judgement Γ `Σ e : t for expressions is the least
relation closed under the following rules.

Γ `Σ EId x : Γ(x) Γ `Σ EInt i : int

Γ `Σ e1 : t1 . . . Γ `Σ en : tn
Γ `Σ ECall f (e1, . . . , en) : t

Σ(f) = (t1, . . . , tn)→ t

Γ `Σ e1 : int Γ `Σ e2 : int

Γ `Σ ETimes e1 e2 : int

Γ `Σ e1 : int Γ `Σ e2 : int

Γ `Σ EPlus e1 e2 : int

Γ `Σ e1 : int Γ `Σ e2 : int

Γ `Σ ELt e1 e2 : bool

Γ `Σ e : t

Γ `Σ EAssign x e : t
Γ(x) = t

Herein, Γ is a finite map from identifiers x to types t, and Σ a finite map from
identifiers f to function types (t1, . . . , tn)→ t.

2. Write syntax-directed interpretation rules for the statements of Question 1, assum-
ing an interpreter for expressions γ ` e ⇓ 〈v; γ′〉. Alternatively, you can write the
interpreter in pseudo code or Haskell. In any case, the environment must be made
explicit. (5p)

CLARIFICATION: A function lookupVar can be assumed if its behavior is
described.

SOLUTION: The evaluation judgement γ ` s ⇓ γ′ for statements is the least
relation closed under the following rules.

γ ` SDecl t x ⇓ (γ, x=void)

γ ` e ⇓ 〈v; γ′〉
γ ` SExp e ⇓ γ′

γ ` e ⇓ 〈false; γ′〉
γ ` SWhile e s ⇓ γ′

γ ` e ⇓ 〈true; γ′〉 (γ′.ε) ` s ⇓ (γ′′.δ) γ′′ ` SWhile e s ⇓ γ′′′

γ ` SWhile e s ⇓ γ′′′

Herein, environment γ is a dot-separated list of blocks δ, each of which is a finite
map from identifiers x to values v. We write ε for the empty map and γ, x = v for
extending the top block of γ by the binding x = v.

5

Question 5 (Compilation):

1. Write compilation schemes in pseudo code or Haskell for the statement and ex-
pressions constructions of Question 1. The compiler should output symbolic JVM
instructions (i.e. Jasmin assembler). It is not necessary to remember exactly the
names of the instructions—only what arguments they take and how they work. (9p)

CLARIFICATION: A function lookupVar can be assumed if its behavior is
described.

SOLUTION:

-- Compilation of expressions

compile (EInt i) = do

emit (ldc i)

compile (EId x) = do

a <- lookupVar x -- variable x has address a in variable store

emit (iload a)

compile (ECall f es) = do

m <- lookupFun f -- get the Jasmin name of function f

mapM_ compile es

emit (invokestatic m)

compile (EAssign x e) = do

a <- lookupVar x -- variable x has address a in variable store

compile e

emit (istore a)

emit (iload a)

compile (ETimes e e’) = do

compile e

compile e’

emit (imul)

compile (EPlus e e’) = do

compile e

compile e’

emit (iadd)

compile (ELt e e’) = do

done <- newLabel

emit (ldc 1) -- speculate that e < e’ holds

compile e

6

compile e’

emit (if_icmplt done) -- test e < e’

emit (pop) -- test failed, replace 1 by 0

emit (ldc 0)

emit (done:)

-- Compilation of statements

compile (SDecl t x) = do

addVar t x -- register local variable x, emit no code

compile (SExp e) = do

compile e

emit (pop)

compile (SWhile e s) = do

start, done <- newLabel

emit (start:)

compile e -- condition

emit (ifeq done) -- if false, exit loop

compile s

emit (goto start) -- rerun loop

emit (done:)

7

2. Give the small-step semantics of the JVM instructions you used in the compilation
schemes in part 1. Write the semantics in the form

i : (P, V, S) −→ (P ′, V ′, S ′)

where (P, V, S) is the program counter, variable store, and stack before execution
of instruction i, and (P ′, V ′, S ′) are the respective values after the execution. For
adjusting the program counter, you can assume that each instruction has size 1.
(7p)

SOLUTION: Stack S.v shall mean that the top value on the stack is v, the rest is
S. Jump targets L are used as instruction addresses, and P + 1 is the instruction
address following P .

instruction state before state after
goto L (P, V, S) → (L, V, S)
ifeq L (P, V, S.0) → (L, V, S)
ifeq L (P, V, S.v) → (P + 1, V, S) if v 6= 0
if icmplt L (P, V, S.v.w) → (L, V, S) if v < w
if icmplt L (P, V, S.v.w) → (P + 1, V, S) unless v < w
iload a (P, V, S) → (P + 1, V, S.V (a))
istore a (P, V, S.v) → (P + 1, V [a := v], S)
ldc i (P, V, S) → (P + 1, V, S.i)
imul (P, V, S.v.w) → (P + 1, V, S.(v · w))
iadd (P, V, S.v.w) → (P + 1, V, S.(v + w))
pop (P, V, S.v) → (P + 1, V, S)
invokestatic m (P, V, S.v1 . . . vn) → (P + 1, V, S.v) where v = m(v1, . . . , vn)

8

Question 6 (Functional languages):

1. For the expressions of lambda-calculus with integers and integer addition we use
the grammar

e ::= n | e+ e | x | λx→ e | e e

and for simple types t ::= N | t → t. Non-terminal x ranges over variable names
and n over integer constants 0, 1, etc.

For the following typing judgements Γ ` e : t, decide whether they are valid or not.
Your answer should be just “valid” or “not valid”.

(a) k : (N→ N)→ N ` 1 + k (λx→ x) : N
(b) ` λy → λh→ (h 1) y : N→ (N→ N)
(c) x : N→ N, g : N ` (g + 1)x : N
(d) f : (N→ N)→ (N→ N) ` (λg → f g) (λy → f (λz → z) y) : N→ N
(e) f : N→ N ` λx→ f (1 + f (f x)) : N→ N

The usual rules for multiple-choice questions apply: For a correct answer you get
1 point for a wrong answer −1 points. If you choose not to give an answer for a
judgement, you get 0 points for that judgement. Your final score will be between 0
and 5 points, a negative sum is rounded up to 0. (5p)

CLARIFICATION: The original problem (d) had a spurious parenthesis at the
end: (d) f : (N→ N)→ (N→ N) ` (λg → f g) (λy → f (λz → z) y)) : N→ N

SOLUTION:

(a) valid

(b) not valid (h is not a function, cannot apply it to 1)

(c) not valid (g + 1 is not a function)

(d) valid

(e) valid

9

2. Write a call-by-value interpreter for above lambda-calculus either with inference
rules, or in pseudo code or Haskell. (5p)

SOLUTION:

type Var = String

data Exp = EInt Integer | EPlus Exp Exp

| EVar Var | EAbs Var Exp | EApp Exp Exp

data Val = VInt Integer | VClos Var Exp Env

type Env = [(Var,Val)]

eval :: Exp -> Env -> Maybe Val

eval e0 rho = case e0 of

EInt n -> return (VInt n)

EAbs x e -> return (VClos x e rho)

EVar x -> lookup x rho

EApp f e -> do

VClos x e’ rho’ <- eval f rho

v <- eval e rho

eval e’ ((x,v) : rho’)

EPlus e1 e2 -> do

VInt i1 <- eval e1 rho

VInt i2 <- eval e2 rho

return (VInt (i1 + i2))

10

