Part I

Concepts

The structure of a design proof

* Aproof is a pyramid
- “Bricks” are assertions, models, efc...

- Each assertion rests on lower-level assertions

So what happens if we remove some bricks?

I Specification

Abstract models and properties

Gates, transistors, efc...

Local property verification

* Verify properties of small parts of design, e.qg...

- Bus protocol conformance

- No pipeline hazards

* Like type checking, rules out certain localized errors

Although this leaves a rather large gap...

I Specification

GAP

Properties verified (or RTL equivalence)

Gates, transistors, etc...

Abstract models

* Make an ad-hoc abstraction of the design
* Verify that it satisfies specification

* Separate, e.g., protocol and implementation correctness

But how do we know we have implemented this abstraction?

] Specification verified
OB Abstract model

GAP

Properties verified

Gates, transistors, etc...

Partial refinement verification

* Verify that key RTL components implement abstraction
* Abstract model provides environment for RTL verification

* Make interface assumptions explicit

- Can transfer interface assumptions to simulation

We can rule out errors in certain RTL components,
assuming our interface constraints are met.

] Specification verified

[— Abstract model
E
E
GAP Il GAP

1 RTL level models
N

Gates, transistors, etc...

Overview

* Property specification and verification

- temporal logic model checking

- finite automata and language containment

- symbolic trajectory evaluation
* Abstraction

- system-level finite-state abstractions

- abstraction with uninterpreted function symbols
* Refinement verification

- refinement maps

- cache coherence example

* output
— - yes

- no + counterexample

* input:
- temporal logic spec

- finite-state model

(look ma, no vectors!)

Linear temporal logic (LTL)

* Alogical notation that allows to:

- specify relations in time

- conveniently express finite control properties
¢ Temporal operators

-Gp “henceforth p”
-Fp “eventually p”
-Xp “p at the next time”

-pWq “p unless q”

Types of temporal properties

* Safety (nothing bad happens)
G ~(ackl & ack2) “mutual exclusion”
G (req>(reqW ack)) “req must hold until ack’

* Liveness (something good happens)

G (req > F ack) “if req, eventually ack’

* Fairne
GF req -

Example: traffic light controller

S
/]!
|‘|
E >
- I
—(M
N

e (Guarantee no collisions

e Guarantee eventual service

Controller program

module main (N_SENSE,S SENSE,E_SENSE,N GO,S _GO,E_GO);

input
output

reg
/* set
always

always

always

N_SENSE, S _SENSE, E_SENSE;
N GO, S_GO, E_GO;
NS_LOCK, EW _LOCK, N_REQ, S _REQ, E_REQ;

request bits when sense is high */

begin if (!N_REQ & N_SENSE) N _REQ = 1;
begin if (!S_REQ & S_SENSE) S _REQ = 1;
begin if (!E_REQ & E_SENSE) E_REQ = 1;

end
end

end

Example continued...

/* controller for North light */
always begin
if (N_REQ)
begin
wait (!EW_LOCK);
NS_LOCK = 1; N.GO = 1;
wait (IN_SENSE);

/* South light is similar . . . */

Example code, cont...

/* Controller for East light */
always begin
if (E_REQ)
begin
EW_LOCK = 1;
wait (!NS_LOCK);
E_GO = 1;
wait (!E_SENSE);
EW_LOCK = 0; E_GO = 0; E_REQ = 0;
end

Specifications in temporal logic

e Safety (no collisions)
G ~(E_Go & (N.Go | S _Go));
* Liveness
G (~N_Go & N _Sense -> F N_Go);
G (~S_ Go & S Sense —> F S_Go);
G (~E_Go & E_Sense —-> F E_Go);
* Fairness constraints
GF ~(N_Go & N_Sense);
GF ~(S_Go & S_Sense);
GF ~(E_Go & E_Sense);

/* assume each sensor off infinitely often */

Counterexample

e East and North lights on at same time...

E_Go [T
E_Req

E_Sense

/
/ \
NS Lock /[N\
N _Go /

N_Req /
N_Sense /[\
S Go /

S Req /
S Sense AN

JIIR

Fixing the error

* Don’t allow N light to go on while south
light is going off.

always begin
if (N_REQ)
begin
wait (!EW_LOCK & !(S_GO & !S_SENSE));
NS ILOCK = 1; N GO = 1;
wait (!N_SENSE);
if (!S_GO) NS_LOCK = 0
N GO = 0; N REQ =
end
end

Another counterexample

® North traffic is never served...

E_Go

E_Req /
E_Sense / \

NS Lock /[

N Go /T N\
N_Req / \
N_Sense \ /
S_Go /1T \
S Req / \
S Sense EERN

Fixing the liveness error

* When N light goes off, test whether S light is also going
off, and if so reset lock.

always begin
if (N_REQ)

begin
wait (!'EW_LOCK & !(S_GO & !S_SENSE));
NS ILOCK = 1; N GO = 1;
wait (!N_SENSE);
if (!S_GO | !S_SENSE) NS _LOCK = 0;

N GO = 0; N REQ = 0;
end
end

All properties verified

* Guarantee no collisions
* Guarantee service assuming fairness

* Computational resources used:

- 57 states searched
- 0.1 CPU seconds

Computation tree logic (CTL)

* Branching time model

* Path quantifiers

- A = “for all future paths”

- E = “for some future path” o
* Example: AF p = “inevitably p” O/"
2
Q/ O—0»
\A

AFp O
@ r

* Every operator has a path quantifier
- AG AF p instead of GF p

Difference between CTL and LTL

* Think of CTL formulas as approximations to LTL
- AG EF p isweakerthan GFp

CH Good for finding bugs...

Y

- AF AG p is strongerthan F G p

O? =. ‘?Q Good for verifying...

e CTL formulas easier to verify

So, use CTL when it applies...

CTL model checking algorithm

* Example: AF p = “inevitably p”

@ @—®

* Complexity

= linear 1n size of model (FSM)
- linear in size of specification formula

Note: general LTL problem is exponential in formula size

Specifying using w-automata

* An automaton accepting infinite sequences

Gp->Fq)

- Finite set of states (with initial state)
- Transitions labeled with Boolean conditions
- Set of accepting states

Interpretation:

* A run is accepting if it visits an accepting state infinitely often
* Language = set of sequences with accepting runs

Verifying using w-automata

® Construct parallel product of model and automaton

* Search for “bad cycles”
- Very similar algorithm to temporal logic model checking
* Complexity (deterministic automaton)

- Linear in model size
- Linear in number of automaton states

- Complexity in number of acceptance conditions varies

Comparing automata and temporal logic

* Tableau procedure

- LTL formulas can be translated into equivalent automata

- Translation is exponential

* w-automata are strictly more expressive than LTL

Example: ‘ ﬁpﬁA “p at even times”

N

T

* LTL with "auxiliary” variables = wm-automata

Example: where:
G (even -> p) init(even) := 1;
next(even) := ~even;

State explosion problem

* What if the state space is too large?
- too much parallelism
- data in model

* Approaches
- “Symbolic” methods (BDD’s)

- Abstraction/refinement
- Exploit symmetry

- Exploit independence of actions

Binary Decision Diagrams (Bryant)

ab + cd

® Ordered decision tree for f

OBDD reduction

* Reduced (OBDD) form:

(@)
0 \16

‘/0\1
1

0*/ \1

0
/
0 1

* Key idea: combine equivalent sub-cases

OBDD properties

® Canonical form (for fixed order)

- direct comparison

e Efficient algorithms

- build BDD's for large circuits

A _
o ollfl Ial) A

* Variable order strongly affects size

Symbolic Model Checking

* Represent sets and relations with Boolean functions

Can T

* Breadth-first search using BDD’s

S..,=S,VEXS,

Example: buffer allocation controller

> nack
> alloc_addr

alloc

free
free _addr

Verilog description

assign nack = alloc & (count == “SIZE);
assign count = count + (alloc & ~nack) - free;

always begin

if (free) busy[free_addr] = O;

if (alloc & ~nack) busy[alloc_ addr] = 1;
end

always begin
for(i = ('SIZE - 1); i >= 0;
if (~busy[i]) alloc_addr =

i=1i-1)
i;

end

LTL specifications

* Alloc’d buffer may not be realloc’d until freed

allocd[1i]
freed[1i]

alloc & ~nack & alloc_addr = i;
free & free_addr = i;

G (allocd[i] -> (~allocd[i] W freed[i]);

* Must assume the following always holds:

- G (free —> busy[free_addr]);

Verification results

SIZE = 32 buffers:

Why are BDD's effective?

* Combining equivalent subcases:

count[0]

7

4
count[1] {?

0

\

1

Symbolic simulation

e Simulate with Boolean functions instead of logic values

* Use BDD's to represent functions

Q0 T

Example: sequential parity circuit

—) b

2\
| clk

* Specification
- Initial state b,=q
- Input sequence a, =1, a,=s, a,=t

- Final state
b,=q ®Pr®s ot

* Symbolic simulation = unfolding

Pipeline verification

R <
unpipelined
> >
' step ‘
commutative diagram
flush flush
pipeline step
—> > >
L)L)
pipelined
R <

Property verification

| Specification

GAP

Properties verified (or RTL equivalence)

1 [[
[[[[[[[Gates, transistors, efc...

* Like type checking...

- Rules out certain localized errors

- Static -- requires no vectors

* Does not guarantee correct interaction of components

Abstraction
* Reduces state space by hiding some information

* |Introduces non-determinism

/(% , \ Abstract states
) \ [} \
] \) \
\ I \
\
\
\

1
II ///// \\
// \\ \ ! // N
\\ /7 \\
O \
O"
7~ | Concrete states

* Allows verification at system level

Example: “Gigamax” cache protocol

global bus

ol B @

cluster bus

* Bus snooping maintains local consistency

* Message passing protocol for global consistency

Protocol example

global bus
UIC; ; ; . o
MW
y \
uUiC uUiC
cluster bus
A A
| owned copy | read miss

® Cluster B read --> cluster A
® Cluster Aresponse --> B and main memory
e Clusters A and B end shared

Protocol correctness issues

®* Protocol issues

- deadlock
- unexpected messages
- liveness

® Coherence

- each address is sequentially consistent
- store ordering (system dependent)

* Abstraction is relative to properties specified

One-address abstraction

® Cache replacement is non-deterministic

* Message queue latency is arbitrary

IN_, 2|A[2 2|2 OouT

A
i output of A may or may not
occur at any given time

Specifications

e Absence of deadlock

SPEC AG (EF p.readable & EF p.writable);

®* Coherence
SPEC AG((p.readable & bit ->

~EF (p.readable & ~bit));

Counterexample: deadlock in 13 steps

global bus

ol B @

cluster bus

owned copy from cluster A

® Cluster Aread --> global (waits, takes lock)
® Cluster C read --> cluster B

® Cluster B response --> C and main memory
® Cluster C read --> cluster A (takes lock)

Abstract modeling

] Specification verified
OB Abstract model

GAP

Properties verified

1 [[
[[[[[[[Gates, transistors, efc...

* Model entire system as finite state machine
- Verify system-level properties
- Separate protocol/implementation issues

- Can precede actual implementation

* Doesn’t guarantee implementation correctness

Refinement maps

Abstract model
-- protocol
-- architecture, etc...

Refinement Maps

I

* Maps translate abstract events to
Implementation level

* Allows verification of component
iIn context of abstract model

Auxiliary signals

Abstract model
-- protocol
-- architecture, etc...

Refinement Maps

* |Imaginary signals:

- identifying tags

- future values

to relate high/low level

Example -- pipelines

Fully executed
instructions

Bypass path

Register file

Decomposition

‘ * Verify bypass for register O
* Infer others by symmetry

Fully executed

instructions

Bypass path

Register file

Out of order processors

Fully executed issue retire
instructions > >

A AN

tags

Refinement of cache protocol

* Non-deterministic abstract model
* Atomic actions
* Single address abstraction

¢ Verified coherence, etc...

host host
Distributed - -
cache ¥\ /4

coherence

* Y
< S/F network >

Mapping protocol to RTL

h
o> o Do
mod protocol
@ @ refinement
maps

. ~30K lines of Verilog
A > >

— > CAM [- N

| ocal refinement verification

- Specification verified
[— Abstract model
1]

]
GAP W GAP

1] RTL level models
E R R

U s | o f — Gates, transistors, efc...

* Specifying refinement maps allows

- use of abstract model as verification context
- explicit interface definitions (can transfer to simulation)

- formal verification of RTL units, without vectors

* System correctness at RTL level not guaranteed

And note, this is not a highly automated process...

Summary

* Basic specification and verification techniques
- Temporal logic model checking
- Finite automata

- Symbolic simulation

* Application at different levels

- Local property verification
- Abstract model verification

- Local refinement verification

* Benefits
- Find design errors (negative results)
- Make assumptions explicit

- Systematically rule out classes of design errors

	Part II Concepts
	The structure of a design proof
	Local property verification
	Abstract models
	Partial refinement verification
	Overview
	Model Checking (Clarke and Emerson)
	Linear temporal logic (LTL)
	Types of temporal properties
	Example: traffic light controller
	Controller program
	Example continued...
	Example code, cont…
	Specifications in temporal logic
	Counterexample
	Fixing the error
	Another counterexample
	Fixing the liveness error
	All properties verified
	Computation tree logic (CTL)
	Difference between CTL and LTL
	CTL model checking algorithm
	Specifying using w-automata
	Verifying using w-automata
	Comparing automata and temporal logic
	State explosion problem
	Binary Decision Diagrams (Bryant)
	OBDD reduction
	OBDD properties
	Symbolic Model Checking
	Example: buffer allocation controller
	Verilog description
	LTL specifications
	Verification results
	Why are BDD’s effective?
	Symbolic simulation
	Example: sequential parity circuit
	Pipeline verification
	Property verification
	Abstraction
	Example: “Gigamax” cache protocol
	Protocol example
	Protocol correctness issues
	One-address abstraction
	Specifications
	Counterexample: deadlock in 13 steps
	Abstract modeling
	Refinement maps
	Auxiliary signals
	Example -- pipelines
	Decomposition
	Out of order processors
	Refinement of cache protocol
	Mapping protocol to RTL
	Local refinement verification
	Summary

