Part I

Concepts



The structure of a design proof

* Aproof is a pyramid
- “Bricks” are assertions, models, efc...

- Each assertion rests on lower-level assertions

So what happens if we remove some bricks?

I Specification

Abstract models and properties

Gates, transistors, efc...



Local property verification

* Verify properties of small parts of design, e.qg...

- Bus protocol conformance

- No pipeline hazards

* Like type checking, rules out certain localized errors

Although this leaves a rather large gap...

I Specification

GAP

Properties verified (or RTL equivalence)

Gates, transistors, etc...



Abstract models

* Make an ad-hoc abstraction of the design
* Verify that it satisfies specification

* Separate, e.g., protocol and implementation correctness

But how do we know we have implemented this abstraction?

] Specification verified
OB Abstract model

GAP

Properties verified

Gates, transistors, etc...



Partial refinement verification

* Verify that key RTL components implement abstraction
* Abstract model provides environment for RTL verification

* Make interface assumptions explicit

- Can transfer interface assumptions to simulation

We can rule out errors in certain RTL components,
assuming our interface constraints are met.

] Specification verified

[ — Abstract model
E
E
GAP Il GAP

1 RTL level models
N

Gates, transistors, etc...



Overview

* Property specification and verification

- temporal logic model checking

- finite automata and language containment

- symbolic trajectory evaluation
* Abstraction

- system-level finite-state abstractions

- abstraction with uninterpreted function symbols
* Refinement verification

- refinement maps

- cache coherence example



* output
— - yes

- no + counterexample

* input:
- temporal logic spec

- finite-state model

(look ma, no vectors!)



Linear temporal logic (LTL)

* Alogical notation that allows to:

- specify relations in time

- conveniently express finite control properties
¢ Temporal operators

-Gp “henceforth p”
-Fp “eventually p”
-Xp “p at the next time”

-pWq “p unless q”




Types of temporal properties

* Safety (nothing bad happens)
G ~(ackl & ack2) “mutual exclusion”
G (req>(reqW ack)) “req must hold until ack’

* Liveness (something good happens)

G (req > F ack) “if req, eventually ack’

* Fairne
GF req -




Example: traffic light controller
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e (Guarantee no collisions

e Guarantee eventual service



Controller program

module main (N_SENSE,S SENSE,E_SENSE,N GO,S _GO,E_GO);

input
output

reg
/* set
always

always

always

N_SENSE, S _SENSE, E_SENSE;
N GO, S_GO, E_GO;
NS_LOCK, EW _LOCK, N_REQ, S _REQ, E_REQ;

request bits when sense is high */

begin if (!N_REQ & N_SENSE) N _REQ = 1;
begin if (!S_REQ & S_SENSE) S _REQ = 1;
begin if (!E_REQ & E_SENSE) E_REQ = 1;

end
end

end



Example continued...

/* controller for North light */
always begin
if (N_REQ)
begin
wait (!EW_LOCK);
NS_LOCK = 1; N.GO = 1;
wait (IN_SENSE);

/* South light is similar . . . */



Example code, cont...

/* Controller for East light */
always begin
if (E_REQ)
begin
EW_LOCK = 1;
wait (!NS_LOCK);
E_GO = 1;
wait (!E_SENSE);
EW_LOCK = 0; E_GO = 0; E_REQ = 0;
end




Specifications in temporal logic

e Safety (no collisions)
G ~(E_Go & (N.Go | S _Go));
* Liveness
G (~N_Go & N _Sense -> F N_Go);
G (~S_ Go & S Sense —> F S_Go);
G (~E_Go & E_Sense —-> F E_Go);
* Fairness constraints
GF ~(N_Go & N_Sense);
GF ~(S_Go & S_Sense);
GF ~(E_Go & E_Sense);

/* assume each sensor off infinitely often */



Counterexample

e East and North lights on at same time...

E_Go [T
E_Req

E_Sense

/
/ \
NS Lock /[ N\
N _Go /

N_Req /
N_Sense /[ \
S Go /

S Req /
S Sense AN

JIIR




Fixing the error

* Don’t allow N light to go on while south
light is going off.

always begin
if (N_REQ)
begin
wait (!EW_LOCK & !(S_GO & !S_SENSE));
NS ILOCK = 1; N GO = 1;
wait (!N_SENSE);
if (!S_GO) NS_LOCK = 0
N GO = 0; N REQ =
end
end



Another counterexample

® North traffic is never served...

E_Go

E_Req /
E_Sense / \

NS Lock /[

N Go /T N\
N_Req / \
N_Sense \ /
S_Go /1T \
S Req / \
S Sense EERN




Fixing the liveness error

* When N light goes off, test whether S light is also going
off, and if so reset lock.

always begin
if (N_REQ)

begin
wait (!'EW_LOCK & !(S_GO & !S_SENSE));
NS ILOCK = 1; N GO = 1;
wait (!N_SENSE);
if (!S_GO | !S_SENSE) NS _LOCK = 0;

N GO = 0; N REQ = 0;
end
end



All properties verified

* Guarantee no collisions
* Guarantee service assuming fairness

* Computational resources used:

- 57 states searched
- 0.1 CPU seconds



Computation tree logic (CTL)

* Branching time model

* Path quantifiers

- A = “for all future paths”

- E = “for some future path” o
* Example: AF p = “inevitably p” O/"
2
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* Every operator has a path quantifier
- AG AF p instead of GF p



Difference between CTL and LTL

* Think of CTL formulas as approximations to LTL
- AG EF p isweakerthan GFp

CH Good for finding bugs...

Y

- AF AG p is strongerthan F G p

O? =. ‘?Q Good for verifying...

e CTL formulas easier to verify

So, use CTL when it applies...



CTL model checking algorithm

* Example: AF p = “inevitably p”

@ @—®

* Complexity

= linear 1n size of model (FSM)
- linear in size of specification formula

Note: general LTL problem is exponential in formula size



Specifying using w-automata

* An automaton accepting infinite sequences

Gp->Fq)

- Finite set of states (with initial state)
- Transitions labeled with Boolean conditions
- Set of accepting states

Interpretation:

* A run is accepting if it visits an accepting state infinitely often
* Language = set of sequences with accepting runs



Verifying using w-automata

® Construct parallel product of model and automaton

* Search for “bad cycles”
- Very similar algorithm to temporal logic model checking
* Complexity (deterministic automaton)

- Linear in model size
- Linear in number of automaton states

- Complexity in number of acceptance conditions varies



Comparing automata and temporal logic

* Tableau procedure

- LTL formulas can be translated into equivalent automata

- Translation is exponential

* w-automata are strictly more expressive than LTL

Example: ‘ ﬁpﬁA “p at even times”

N

T

* LTL with "auxiliary” variables = wm-automata

Example: where:
G (even -> p) init(even) := 1;
next(even) := ~even;



State explosion problem

* What if the state space is too large?
- too much parallelism
- data in model

* Approaches
- “Symbolic” methods (BDD’s)

- Abstraction/refinement
- Exploit symmetry

- Exploit independence of actions



Binary Decision Diagrams (Bryant)

ab + cd

® Ordered decision tree for f



OBDD reduction

* Reduced (OBDD) form:
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* Key idea: combine equivalent sub-cases



OBDD properties

® Canonical form (for fixed order)

- direct comparison

e Efficient algorithms

- build BDD's for large circuits

A _
o ollfl Ial) A

* Variable order strongly affects size




Symbolic Model Checking

* Represent sets and relations with Boolean functions

Can T

* Breadth-first search using BDD’s

S..,=S,VEXS,



Example: buffer allocation controller

> nack
> alloc_addr

alloc

free
free _addr




Verilog description

assign nack = alloc & (count == “SIZE);
assign count = count + (alloc & ~nack) - free;

always begin

if (free) busy[free_addr] = O;

if (alloc & ~nack) busy[alloc_ addr] = 1;
end

always begin
for(i = ('SIZE - 1); i >= 0;
if (~busy[i]) alloc_addr =

i=1i-1)
i;

end



LTL specifications

* Alloc’d buffer may not be realloc’d until freed

allocd[1i]
freed[1i]

alloc & ~nack & alloc_addr = i;
free & free_addr = i;

G (allocd[i] -> (~allocd[i] W freed[i]);

* Must assume the following always holds:

- G (free —> busy[free_addr]);



Verification results

SIZE = 32 buffers:




Why are BDD's effective?

* Combining equivalent subcases:

count[0]

7

4
count[1] {?

0

\
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Symbolic simulation

e Simulate with Boolean functions instead of logic values

* Use BDD's to represent functions

Q0 T



Example: sequential parity circuit

—) b
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| clk

* Specification
- Initial state b,=q
- Input sequence a, =1, a,=s, a,=t

- Final state
b,=q ®Pr®s ot

* Symbolic simulation = unfolding




Pipeline verification
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Property verification

| Specification

GAP

Properties verified (or RTL equivalence)

1 [ [
[ [ [ [ [ [ [ Gates, transistors, efc...

* Like type checking...

- Rules out certain localized errors

- Static -- requires no vectors

* Does not guarantee correct interaction of components



Abstraction
* Reduces state space by hiding some information

* |Introduces non-determinism

/(% , \ Abstract states
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* Allows verification at system level



Example: “Gigamax” cache protocol

global bus

ol B @

cluster bus

* Bus snooping maintains local consistency

* Message passing protocol for global consistency



Protocol example

global bus
UIC; ; ; . o
MW
y \
uUiC uUiC
cluster bus
A A
| owned copy | read miss

® Cluster B read --> cluster A
® Cluster Aresponse --> B and main memory
e Clusters A and B end shared



Protocol correctness issues

®* Protocol issues

- deadlock
- unexpected messages
- liveness

® Coherence

- each address is sequentially consistent
- store ordering (system dependent)

* Abstraction is relative to properties specified




One-address abstraction

® Cache replacement is non-deterministic

* Message queue latency is arbitrary

IN_, 2|A[2 2|2 OouT

A
i output of A may or may not
occur at any given time



Specifications

e Absence of deadlock

SPEC AG (EF p.readable & EF p.writable);

®* Coherence
SPEC AG((p.readable & bit ->

~EF (p.readable & ~bit));




Counterexample: deadlock in 13 steps

global bus

ol B @

cluster bus

owned copy from cluster A

® Cluster Aread --> global (waits, takes lock)
® Cluster C read --> cluster B

® Cluster B response --> C and main memory
® Cluster C read --> cluster A (takes lock)



Abstract modeling

] Specification verified
OB Abstract model

GAP

Properties verified

1 [ [
[ [ [ [ [ [ [ Gates, transistors, efc...

* Model entire system as finite state machine
- Verify system-level properties
- Separate protocol/implementation issues

- Can precede actual implementation

* Doesn’t guarantee implementation correctness



Refinement maps

Abstract model
-- protocol
-- architecture, etc...

Refinement Maps

I

* Maps translate abstract events to
Implementation level

* Allows verification of component
iIn context of abstract model



Auxiliary signals

Abstract model
-- protocol
-- architecture, etc...

Refinement Maps

* |Imaginary signals:

- identifying tags

- future values

to relate high/low level



Example -- pipelines

Fully executed
instructions

Bypass path

Register file




Decomposition

‘ * Verify bypass for register O
* Infer others by symmetry

Fully executed

instructions

Bypass path

Register file




Out of order processors

Fully executed issue retire
instructions > >

A AN

tags




Refinement of cache protocol

* Non-deterministic abstract model
* Atomic actions
* Single address abstraction

¢ Verified coherence, etc...

host host
Distributed - -
cache ¥\ /4

coherence

* Y
< S/F network >




Mapping protocol to RTL

h
o> o Do
mod protocol
@ @ refinement
maps

. ~30K lines of Verilog
A > >

— > CAM [ - N




| ocal refinement verification

- Specification verified
[ — Abstract model
1]

]
GAP W GAP

1] RTL level models
E R R

U s | o f — Gates, transistors, efc...

* Specifying refinement maps allows

- use of abstract model as verification context
- explicit interface definitions (can transfer to simulation)

- formal verification of RTL units, without vectors

* System correctness at RTL level not guaranteed

And note, this is not a highly automated process...



Summary

* Basic specification and verification techniques
- Temporal logic model checking
- Finite automata

- Symbolic simulation

* Application at different levels

- Local property verification
- Abstract model verification

- Local refinement verification

* Benefits
- Find design errors (negative results)
- Make assumptions explicit

- Systematically rule out classes of design errors
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