Logical rules for natural deduction

We describe when $\Gamma \vdash \psi$, i.e. ψ is derivable from a finite set $\Gamma = \psi_1, \ldots, \psi_n$ by the following rules. We write $\vdash \psi$ for $\Gamma \vdash \psi$ if Γ is empty.

$$\begin{split} \frac{\psi \in \Gamma}{\Gamma \vdash \psi} \\ \frac{\Gamma, \psi \vdash \varphi}{\Gamma \vdash \psi \rightarrow \varphi} & \frac{\Gamma \vdash \psi \rightarrow \varphi}{\Gamma \vdash \varphi} \\ \frac{\Gamma \vdash \psi \land \varphi}{\Gamma \vdash \psi} & \frac{\Gamma \vdash \psi \land \varphi}{\Gamma \vdash \varphi} & \frac{\Gamma \vdash \psi}{\Gamma \vdash \psi \land \varphi} \\ \frac{\Gamma \vdash \psi}{\Gamma \vdash \psi} & \frac{\Gamma \vdash \psi \land \varphi}{\Gamma \vdash \psi \lor \varphi} & \frac{\Gamma \vdash \psi \lor \varphi}{\Gamma \vdash \psi \land \varphi} \\ \frac{\Gamma \vdash \psi}{\Gamma \vdash \psi \lor \varphi} & \frac{\Gamma \vdash \neg \psi \qquad \Gamma \vdash \psi}{\Gamma \vdash \bot} \\ & \frac{\Gamma \vdash \bot}{\Gamma \vdash \psi} \\ \frac{\Gamma \vdash \psi[x_0/x]}{\Gamma \vdash \forall x \ \psi} & \frac{\Gamma \vdash \forall x \ \psi}{\Gamma \vdash \psi[t/x]} \\ \frac{\Gamma \vdash \forall [t/x]}{\Gamma \vdash \exists x \ \psi} & \frac{\Gamma \vdash \exists x \ \psi}{\Gamma \vdash \delta} \end{split}$$

In the rule of \forall introduction x_0 should not occur free in the conclusion. This was essentially the rule found by Frege (1879).

In the rule of \exists elimination x_0 should not occur free in Γ and δ and $\exists x \psi$.

The following example illustrates well the use of Frege's rule for \forall introduction

 $\forall x \ (P(x) \to Q(x)), \ \forall x \ P(x) \vdash \forall x \ Q(x)$

Russell, who was the one of the first to understand the importance of Frege's discovery, talks about the difference between *all* and *any*. In order to prove $\forall x \ Q(x)$ we prove that $Q(x_0)$ holds for *any* x_0

$$\forall x \ (P(x) \to Q(x)), \ \forall x \ P(x) \vdash Q(x_0)$$

and this we can prove since we have from the hypotheses $P(x_0) \to Q(x_0)$ and $P(x_0)$ and we can use modus-ponens.

0.1 Classical logic

The rule for classical logic (how to prove something true by assuming something false) is

$$\frac{\Gamma, \neg \psi \vdash \psi}{\Gamma \vdash \psi}(1)$$

or, alternatively

$$\frac{\Gamma, \neg \psi \vdash \bot}{\Gamma \vdash \psi}(2)$$

It is a good exercise to show that these rules (1) and (2) are equivalent. The formulation (1) is due to Peirce (1885), who even had a (apparently more general) equivalent formulation

$$\frac{\Gamma, \psi \to \varphi \vdash \psi}{\Gamma \vdash \psi}(3)$$

It is remarkable that it corresponds to the type of *continuation operators* in programming languages.

The formulations (1) and (3) are interesting since they illustrate how to use classical logic: in order to prove ψ from some hypotheses, we can always add $\neg \psi$, or any formula $\psi \rightarrow \delta$ in the hypotheses. For instance, we can show p from $\Gamma = (p \rightarrow q) \rightarrow r, r \rightarrow p$ since we can show r, and hence p, from $\Gamma, p \rightarrow q$.

0.2 Soundness Theorem

All these rules are valid for the relation $\Gamma \vDash \psi$. For instance if both $\psi \rightarrow \varphi$ and ψ are valid in a model, then so is φ .

Since $\Gamma \vdash \psi$ is (by definition) the *least* relation satisfying these rules, it follows that we have

$$\Gamma \vdash \psi \quad \Rightarrow \quad \Gamma \vDash \psi$$

which is precisely the *soundness* Theorem.

0.3 Equality

The rules for equality are.

$$\frac{\Gamma \vdash t = u \qquad \Gamma \vdash \psi[t/x]}{\Gamma \vdash \psi(u/x)}$$

This implies symmetry and transitivity of equality.

This implies that we have t = v, $u = v \vdash t = u$: the relation of equality is *euclidean*, two objects which are "equal to the same are equal to each other".

Equality reasoning can be really powerful.

Here is an example: if we know f(a, x) = x and f(x, g(x)) = a then we deduce g(a) = a.

This is because, if we consider the substitution [a/x], we both get f(a, g(a)) = g(a) and f(a, g(a)) = a and hence g(a) = a.

(This is connected to the *Knuth-Bendix algorithm*, which is a general technique to deduce interesting equational consequences from a set of equations.)

0.4 Non empty domain

The following is a valid derivation: we have $\vdash x_0 = x_0$ hence $\vdash \exists x \ (x = x)$. It corresponds to the fact that we want to describe the logic of *non empty* universes.

Similarly we can show $\forall x \ \psi \vdash \exists x \ \psi$.

0.5 Examples

We show $\forall x \neg P(x)$ from $\Gamma = \neg (\exists x P(x))$.

This is because Γ , $P(x_0)$ is contradictory.

We show $\psi = \exists x \neg P(x)$ from $\Gamma = \neg(\forall x P(x))$. This is because $\Gamma' = \Gamma, \neg \psi$ is contradictory, which is because we can show $P(x_0) \forall x P(x)$ from Γ' . In turn this is because $\Gamma', \neg P(x_0)$ is contradictory.