
Logical rules for natural deduction

We describe when Γ ` ψ, i.e. ψ is derivable from a finite set Γ = ψ1, . . . , ψn by the following
rules. We write ` ψ for Γ ` ψ if Γ is empty.

ψ ∈ Γ

Γ ` ψ

Γ, ψ ` ϕ
Γ ` ψ → ϕ

Γ ` ψ → ϕ Γ ` ψ
Γ ` ϕ

Γ ` ψ ∧ ϕ
Γ ` ψ

Γ ` ψ ∧ ϕ
Γ ` ϕ

Γ ` ψ Γ ` ϕ
Γ ` ψ ∧ ϕ

Γ ` ψ
Γ ` ψ ∨ ϕ

Γ ` ϕ
Γ ` ψ ∨ ϕ

Γ ` ψ ∨ ϕ Γ, ψ ` δ Γ, ϕ ` δ
Γ ` δ

Γ, ψ `⊥
Γ ` ¬ψ

Γ ` ¬ψ Γ ` ψ
Γ `⊥

Γ `⊥
Γ ` ψ

Γ ` ψ[x0/x]

Γ ` ∀x ψ
Γ ` ∀x ψ
Γ ` ψ[t/x]

Γ ` ψ[t/x]

Γ ` ∃x ψ
Γ ` ∃x ψ Γ, ψ[x0/x] ` δ

Γ ` δ
In the rule of ∀ introduction x0 should not occur free in the conclusion. This was essentially

the rule found by Frege (1879).
In the rule of ∃ elimination x0 should not occur free in Γ and δ and ∃x ψ.

The following example illustrates well the use of Frege’s rule for ∀ introduction

∀x (P (x) → Q(x)), ∀x P (x) ` ∀x Q(x)

Russell, who was the one of the first to understand the importance of Frege’s discovery, talks
about the difference between all and any. In order to prove ∀x Q(x) we prove that Q(x0) holds
for any x0

∀x (P (x) → Q(x)), ∀x P (x) ` Q(x0)

and this we can prove since we have from the hypotheses P (x0) → Q(x0) and P (x0) and we
can use modus-ponens.
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0.1 Classical logic

The rule for classical logic (how to prove something true by assuming something false) is

Γ,¬ψ ` ψ
Γ ` ψ

(1)

or, alternatively
Γ,¬ψ `⊥

Γ ` ψ
(2)

It is a good exercise to show that these rules (1) and (2) are equivalent. The formulation (1) is
due to Peirce (1885), who even had a (apparently more general) equivalent formulation

Γ, ψ → ϕ ` ψ
Γ ` ψ

(3)

It is remarkable that it corresponds to the type of continuation operators in programming
languages.

The formulations (1) and (3) are interesting since they illustrate how to use classical logic:
in order to prove ψ from some hypotheses, we can always add ¬ψ, or any formula ψ → δ in the
hypotheses. For instance, we can show p from Γ = (p → q) → r, r → p since we can show r,
and hence p, from Γ, p→ q.

0.2 Soundness Theorem

All these rules are valid for the relation Γ � ψ. For instance if both ψ → ϕ and ψ are valid in a
model, then so is ϕ.

Since Γ ` ψ is (by definition) the least relation satisfying these rules, it follows that we have

Γ ` ψ ⇒ Γ � ψ

which is precisely the soundness Theorem.

0.3 Equality

The rules for equality are.

Γ ` t = t

Γ ` t = u Γ ` ψ[t/x]

Γ ` ψ(u/x)

This implies symmetry and transitivity of equality.
This implies that we have t = v, u = v ` t = u: the relation of equality is euclidean, two

objects which are “equal to the same are equal to each other”.

Equality reasoning can be really powerful.
Here is an example: if we know f(a, x) = x and f(x, g(x)) = a then we deduce g(a) = a.
This is because, if we consider the substitution [a/x], we both get f(a, g(a)) = g(a) and

f(a, g(a)) = a and hence g(a) = a.
(This is connected to the Knuth-Bendix algorithm, which is a general technique to deduce

interesting equational consequences from a set of equations.)
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0.4 Non empty domain

The following is a valid derivation: we have ` x0 = x0 hence ` ∃x (x = x). It corresponds to
the fact that we want to describe the logic of non empty universes.

Similarly we can show ∀x ψ ` ∃x ψ.

0.5 Examples

We show ∀x ¬P (x) from Γ = ¬(∃x P (x)).
This is because Γ, P (x0) is contradictory.
We show ψ = ∃x ¬P (x) from Γ = ¬(∀x P (x)). This is because Γ′ = Γ,¬ψ is contradictory,

which is because we can show P (x0) ∀x P (x) from Γ′. In turn this is because Γ′,¬P (x0) is
contradictory.
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