
Decidability Proof of LTL

The goal of this note is to explain why LTL is decidable. Given an LTL formula ψ we explain
how to build a finite transition system S with a “partial” labelling function L (this is explained
below) such that ψ has a model iff S,L is a model of ψ. In a sense S,L can be seen as a kind
of minimal model (if there is one) of ψ.

This can be used to decide if a formula φ is valid in the usual way: we try to find a model
for ¬φ. If there is one, we know that φ is not valid. If our systematic attempt to find such a
model fails, then we know that φ is valid.

To simplify the presentation we limit ourselves to the modalities F,G,X (no Until modality).
We take also the following syntax for the formulae

ψ ::= ψ ∧ ψ | ψ ∨ ψ | µ µ ::= p | ¬ p | F ψ | G ψ | X µ

It is clear that any formula can be put on this form, using de Morgan laws and the equivalences

X (ψ1 ∧ ψ2) ↔ X ψ1 ∧X ψ2 X (ψ1 ∨ ψ2) ↔ X ψ1 ∨X ψ2

A state will be a finite set of formulae Γ satisying the following properties

1. If ψ1 ∧ ψ2 ∈ Γ then ψ1 ∈ Γ and ψ2 ∈ Γ

2. If ψ1 ∨ ψ2 ∈ Γ then ψ1 ∈ Γ or ψ2 ∈ Γ

3. We cannot have both p ∈ Γ and ¬p ∈ Γ

4. If G ψ ∈ Γ then ψ ∈ Γ and XG ψ ∈ Γ

5. If F ψ ∈ Γ then ψ ∈ Γ or XF ψ ∈ Γ

The last two clauses reflect the equivalences

G ψ ↔ ψ ∧XG ψ F ψ ↔ ψ ∨XF ψ

The main remark is that give a (finite) set of formulae Γ we can always find a finite number
of states Γ1, . . . ,Γn such that ∧Γ is equivalent to ∧Γ1 ∨ . . .∨∧Γn. (We can have n = 0 in which
case Γ is incompatible.) There is furthermore a natural closure algorithm C(Γ) that produces
Γ1, . . . ,Γn from Γ, which can be specified by

1. C(Γ) = Γ if Γ is a state

2. If ψ1 ∧ ψ2 ∈ Γ then C(Γ) = C(Γ, ψ1, ψ2)

3. If ψ1 ∨ ψ2 ∈ Γ then C(Γ) = C(Γ, ψ1) ∪ C(Γ, ψ2)

4. If p,¬p ∈ Γ then C(Γ) = ∅

5. If G ψ ∈ Γ then C(Γ) = C(Γ, ψ,XG ψ)

6. If F ψ ∈ Γ then C(Γ) = C(Γ, ψ) ∪ C(Γ, XF ψ)
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Some examples

If Γ is ¬q ∨ p,¬p ∨ r, q then C(Γ) has only one element Γ, p, q, r.
If Γ is p ∨ q,¬p ∨ r then C(Γ) has three elements Γ, p, r and Γ, q,¬p and Γ, q, r.
In the propositional case, we get a quite good algorithm for computing the conjunctive

normal form in this way:

(¬q ∨ p) ∧ (¬p ∨ r) ∧ q ↔ p ∧ q ∧ r

(p ∨ q) ∧ (¬p ∨ r) ↔ (p ∧ r) ∨ (¬p ∧ q) ∨ (q ∧ r)

In this case, we can think of each state of C(Γ) as a partial valuation which ensures the truth
of all formulae in Γ. For instance, if Γ is p∨ q,¬p∨ r it is enough to take p = r = 1 to make all
formulae in Γ to be true (we don’t need to specify the value of q) or to take p = 0, q = 1 or to
take q = r = 1.

Example 1

If Γ is G p, F q, G (¬p ∨ ¬q) then C(Γ) has only one element

Γ, p, ¬q, XG (¬p ∨ ¬q), XF q, XG p

Example 2

If Γ is G (¬p ∨X p), p, F (¬p) then C(Γ) has only one element

Γ, X p, XG (¬p ∨X p), XF (¬p)

Example 3

If Γ is G (p ∨ q), F (¬p), F (¬q) then C(Γ) has for elements
Γ1 = Γ, p, ¬q, XG (p ∨ q), XF (¬p)
Γ2 = Γ, p, XG (p ∨ q), XF (¬p), XF (¬q)
Γ3 = Γ, q, ¬ p, XG (p ∨ q), XF (¬q)
Γ4 = Γ, q, XG (p ∨ q), XF (¬p), XF (¬q)

Transition relation and minimal potential models

If Γ is a set of formulae, we write X−1(Γ) the set of formulae µ such that X µ ∈ Γ.
The transition relation is now defined as Γ → Γ′ iff Γ′ is one of the state in C(X−1(Γ)).
We can now define the minimal potential model of a set of formulae Γ. The initial states

are the elements of C(Γ), and the transition system is obtained by taking the states related to
these initial states by the transitive closure of the relation ∆ → ∆′.

This is a finite transition system, which can be called the minimal potential model of Γ. To
be a model of Γ we have to find a path

σ = Γ1 → Γ2 → . . .

in this transition system which satisfies: if F µ ∈ Γi then there exists j > i such that µ ∈ Γj .
This is a fairness condition, and the existence of such a path can be checked in the following
way. We say that ∆ is good for µ iff F µ ∈ ∆ implies µ ∈ ∆. We list then the subformulae
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F µ1, . . . , F µk of Γ and the condition is that there is a path ∆1 →∗ ∆2 . . . →∗ ∆k →∗ ∆1

where ∆i is good for µi.
It is then possible to show that this method is sound: if we have such a path, then we have

a model for Γ. For this, one consider the path

σ = Γ1 → Γ2 → . . .

and one shows by induction on ψ that σk  ψ if ψ ∈ Γk, where one takes L(Γk) to be the set
of atomic formulae p such that p is in Γk. What matters really is that we have σk  p if p is in
Γk and σk  ¬p if ¬p is in Γk. The value of q at σk actually does not matter if neither q nor ¬q
figures in Γk. The fact that σk  ψ if ψ ∈ Γk is clear if ψ is p or ¬p, and it holds by induction
if ψ is a conjunction or a disjunction. It holds also by induction if ψ is of the form X µ. If
ψ = G ψ1 we have by induction σl  ψ1 for all l > k and hence σk  ψ if ψ is in Γk. Finally if
ψ = F ψ1 and ψ is in Γk then there exists l > k such that we have both F ψ1 and ψ1 in Γl and
then we have by induction σl  ψ1 and hence σk  ψ as desired.

One can show also that this method is complete: if there is a model M,π = s1 → s2 → . . .
then it is possible to approximate this model by a path

σ = Γ1 → Γ2 → . . .

such that M,πk validates all formulae of Γk. Indeed, M, s1 validates all formulae of Γ and hence
it is possible to find Γ1 in C(Γ) such that M, s1 validates all formulae in Γ1. It then follows
that M, s2 validates all formulae in X−1(Γ1) and hence it is possible to find Γ2 in C(X−1(Γ1))
such that M, s2 validates all formulae in Γ2, and so on. Furthemore if XF µ is in Γk and sk+1

validates µ then we can choose Γk+1 such that both F µ and µ are in Γk+1. if XF µ is in Γk

and sk+1 does not validate µ then it validates XF µ and we have XF µ in Γk+1. Since M,πk is
a model of all formulae in Γk eventually we find l > k such that M, sl validates µ. Hence we can
choose σ such that there are infinitely many good states for each µ, where µ is a subformula of
one formula in Γ.

Some examples

It is actually possible to run this method by hand on some small examples.

Example 1

If Γ is G p, F q, G (¬p ∨ ¬q) then C(Γ) has only one element

Γ1 = Γ, p, ¬q, XG (¬p ∨ ¬q), XF q, XG p

We get a transition system with only one transition Γ1 → Γ1. Since Γ1 is not good for q, this is
not a model. Hence there is no model and the set G p, F q, G (¬p∨¬q) is incompatible which
means that we have G p ∧ F q → F (p ∨ q).

Example 2

If Γ is G (¬p ∨X p), p, F (¬p) then C(Γ) has only one element

Γ1 = Γ, X p, XG (¬p ∨X p), XF (¬p)

We get a transition system with only one transition Γ1 → Γ1. Since Γ1 is not good for ¬p, this
is not a model. Hence there is no model and the set G (¬p ∨X p), p, F (¬p) is incompatible
which means that we have G (p→ X p) ∧ p→ G p.
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Example 3

If Γ is G (p ∨ q), F (¬p), F (¬q) then C(Γ) has for elements
Γ1 = Γ, p, ¬q, XG (p ∨ q), XF (¬p)
Γ2 = Γ, p, XG (p ∨ q), XF (¬p), XF (¬q)
Γ3 = Γ, q, ¬ p, XG (p ∨ q), XF (¬q)
Γ4 = Γ, q, XG (p ∨ q), XF (¬p), XF (¬q)
For building the minimal potential model, we need to consider the closures of X−1(Γi).

Notice that X−1(Γ2) = X−1(Γ4) = Γ. We have X−1(Γ1) = G (p ∨ q), F (¬p) which generates
Γ5 = G (p ∨ q), F (¬p), p, XG (p ∨ q), XF (¬ p)
Γ6 = G (p ∨ q), F (¬p), q, ¬ p, XG (p ∨ q)
Γ7 = G (p ∨ q), F (¬p), q, XG (p ∨ q), XF (¬ p)
and X−1(Γ3) = G (p ∨ q), F (¬q) which generates
Γ8 = G (p ∨ q), F (¬q), q, XG (p ∨ q), XF (¬ q)
Γ9 = G (p ∨ q), F (¬q), p, ¬ q, XG (p ∨ q)
Γ10 = G (p ∨ q), F (¬q), p, XG (p ∨ q), XF (¬ q)
We need then to add the states
Γ11 = G (p ∨ q), p, XG (p ∨ q)
Γ12 = G (p ∨ q), q, XG (p ∨ q)
We find then the model

Γ1 → Γ6 → Γ11 → Γ11 → . . .

which shows that Γ is not incompatible. Hence we conclude from this that the formula

G (p ∨ q) → G p ∨G q

is not valid (it has a counter-model).

Example 4

The reader can now test this method on the example GF p, FG (¬p) (we find one model) and
FG p, FG (¬p) (no model).

Connection with first-order logic

There is a natural interpretation of LTL in the first-order logic over the language with one
successor symbol, one relation symbol (6) and where each atomic formula p is interpreted as a
unary predicate p(x).

For instance G (p ∧ q) → G p ∧G q becomes

(∀x.(p(x) ∧ q(x))) → ∀x.p(x) ∧ ∀x.q(x)

and G (p→ X p) ∧ p→ G p becomes

∀x.(p(x) → p(s x)) ∧ p(z) → ∀y.z 6 y → p(y)

We have just given a decision procedure for this fragment of first-order logic: monadic (only
unary predicates) theory of integers.

By considering a version of LTL with two next operations X0, X1 it would be possible
similarly to give a decision procedure for the corresponding fragment of first-order logic: monadic
theory of binary words.
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