Decidability Proof of LTL

The goal of this note is to explain why LTL is decidable. Given an LTL formula ψ we explain how to build a finite transition system S with a "partial" labelling function L (this is explained below) such that ψ has a model iff S, L is a model of ψ. In a sense S, L can be seen as a kind of minimal model (if there is one) of ψ.

This can be used to decide if a formula ϕ is valid in the usual way: we try to find a model for $\neg \phi$. If there is one, we know that ϕ is not valid. If our systematic attempt to find such a model fails, then we know that ϕ is valid.

To simplify the presentation we limit ourselves to the modalities F, G, X (no Until modality). We take also the following syntax for the formulae

$$
\psi::=\psi \wedge \psi|\psi \vee \psi| \mu \quad \mu::=p|\neg p| F \psi|G \psi| X \mu
$$

It is clear that any formula can be put on this form, using de Morgan laws and the equivalences

$$
X\left(\psi_{1} \wedge \psi_{2}\right) \leftrightarrow X \psi_{1} \wedge X \psi_{2} \quad X\left(\psi_{1} \vee \psi_{2}\right) \leftrightarrow X \psi_{1} \vee X \psi_{2}
$$

A state will be a finite set of formulae Γ satisying the following properties

1. If $\psi_{1} \wedge \psi_{2} \in \Gamma$ then $\psi_{1} \in \Gamma$ and $\psi_{2} \in \Gamma$
2. If $\psi_{1} \vee \psi_{2} \in \Gamma$ then $\psi_{1} \in \Gamma$ or $\psi_{2} \in \Gamma$
3. We cannot have both $p \in \Gamma$ and $\neg p \in \Gamma$
4. If $G \psi \in \Gamma$ then $\psi \in \Gamma$ and $X G \psi \in \Gamma$
5. If $F \psi \in \Gamma$ then $\psi \in \Gamma$ or $X F \psi \in \Gamma$

The last two clauses reflect the equivalences

$$
G \psi \leftrightarrow \psi \wedge X G \psi \quad F \psi \leftrightarrow \psi \vee X F \psi
$$

The main remark is that give a (finite) set of formulae Γ we can always find a finite number of states $\Gamma_{1}, \ldots, \Gamma_{n}$ such that $\wedge \Gamma$ is equivalent to $\wedge \Gamma_{1} \vee \ldots \vee \wedge \Gamma_{n}$. (We can have $n=0$ in which case Γ is incompatible.) There is furthermore a natural closure algorithm $C(\Gamma)$ that produces $\Gamma_{1}, \ldots, \Gamma_{n}$ from Γ, which can be specified by

1. $C(\Gamma)=\Gamma$ if Γ is a state
2. If $\psi_{1} \wedge \psi_{2} \in \Gamma$ then $C(\Gamma)=C\left(\Gamma, \psi_{1}, \psi_{2}\right)$
3. If $\psi_{1} \vee \psi_{2} \in \Gamma$ then $C(\Gamma)=C\left(\Gamma, \psi_{1}\right) \cup C\left(\Gamma, \psi_{2}\right)$
4. If $p, \neg p \in \Gamma$ then $C(\Gamma)=\emptyset$
5. If $G \psi \in \Gamma$ then $C(\Gamma)=C(\Gamma, \psi, X G \psi)$
6. If $F \psi \in \Gamma$ then $C(\Gamma)=C(\Gamma, \psi) \cup C(\Gamma, X F \psi)$

Some examples

If Γ is $\neg q \vee p, \neg p \vee r, q$ then $C(\Gamma)$ has only one element Γ, p, q, r.
If Γ is $p \vee q, \neg p \vee r$ then $C(\Gamma)$ has three elements Γ, p, r and $\Gamma, q, \neg p$ and Γ, q, r.
In the propositional case, we get a quite good algorithm for computing the conjunctive normal form in this way:

$$
\begin{gathered}
(\neg q \vee p) \wedge(\neg p \vee r) \wedge q \quad \leftrightarrow \quad p \wedge q \wedge r \\
(p \vee q) \wedge(\neg p \vee r) \quad \leftrightarrow \quad(p \wedge r) \vee(\neg p \wedge q) \vee(q \wedge r)
\end{gathered}
$$

In this case, we can think of each state of $C(\Gamma)$ as a partial valuation which ensures the truth of all formulae in Γ. For instance, if Γ is $p \vee q, \neg p \vee r$ it is enough to take $p=r=1$ to make all formulae in Γ to be true (we don't need to specify the value of q) or to take $p=0, q=1$ or to take $q=r=1$.

Example 1

If Γ is $G p, F q, G(\neg p \vee \neg q)$ then $C(\Gamma)$ has only one element

$$
\Gamma, p, \neg q, X G(\neg p \vee \neg q), X F q, X G p
$$

Example 2

If Γ is $G(\neg p \vee X p), p, F(\neg p)$ then $C(\Gamma)$ has only one element

$$
\Gamma, X p, X G(\neg p \vee X p), X F(\neg p)
$$

Example 3

If Γ is $G(p \vee q), F(\neg p), F(\neg q)$ then $C(\Gamma)$ has for elements
$\Gamma_{1}=\Gamma, p, \neg q, X G(p \vee q), X F(\neg p)$
$\Gamma_{2}=\Gamma, p, X G(p \vee q), X F(\neg p), X F(\neg q)$
$\Gamma_{3}=\Gamma, q, \neg p, X G(p \vee q), X F(\neg q)$
$\Gamma_{4}=\Gamma, q, X G(p \vee q), X F(\neg p), X F(\neg q)$

Transition relation and minimal potential models

If Γ is a set of formulae, we write $X^{-1}(\Gamma)$ the set of formulae μ such that $X \mu \in \Gamma$.
The transition relation is now defined as $\Gamma \rightarrow \Gamma^{\prime}$ iff Γ^{\prime} is one of the state in $C\left(X^{-1}(\Gamma)\right)$.
We can now define the minimal potential model of a set of formulae Γ. The initial states are the elements of $C(\Gamma)$, and the transition system is obtained by taking the states related to these initial states by the transitive closure of the relation $\Delta \rightarrow \Delta^{\prime}$.

This is a finite transition system, which can be called the minimal potential model of Γ. To be a model of Γ we have to find a path

$$
\sigma=\Gamma_{1} \rightarrow \Gamma_{2} \rightarrow \ldots
$$

in this transition system which satisfies: if $F \mu \in \Gamma_{i}$ then there exists $j \geqslant i$ such that $\mu \in \Gamma_{j}$. This is a fairness condition, and the existence of such a path can be checked in the following way. We say that Δ is good for μ iff $F \mu \in \Delta$ implies $\mu \in \Delta$. We list then the subformulae
$F \mu_{1}, \ldots, F \mu_{k}$ of Γ and the condition is that there is a path $\Delta_{1} \rightarrow^{*} \Delta_{2} \ldots \rightarrow^{*} \Delta_{k} \rightarrow^{*} \Delta_{1}$ where Δ_{i} is good for μ_{i}.

It is then possible to show that this method is sound: if we have such a path, then we have a model for Γ. For this, one consider the path

$$
\sigma=\Gamma_{1} \rightarrow \Gamma_{2} \rightarrow \ldots
$$

and one shows by induction on ψ that $\sigma^{k} \Vdash \psi$ if $\psi \in \Gamma_{k}$, where one takes $L\left(\Gamma_{k}\right)$ to be the set of atomic formulae p such that p is in Γ_{k}. What matters really is that we have $\sigma_{k} \Vdash p$ if p is in Γ_{k} and $\sigma_{k} \Vdash \neg p$ if $\neg p$ is in Γ_{k}. The value of q at σ_{k} actually does not matter if neither q nor $\neg q$ figures in Γ_{k}. The fact that $\sigma^{k} \Vdash \psi$ if $\psi \in \Gamma_{k}$ is clear if ψ is p or $\neg p$, and it holds by induction if ψ is a conjunction or a disjunction. It holds also by induction if ψ is of the form $X \mu$. If $\psi=G \psi_{1}$ we have by induction $\sigma_{l} \Vdash \psi_{1}$ for all $l \geqslant k$ and hence $\sigma_{k} \Vdash \psi$ if ψ is in Γ_{k}. Finally if $\psi=F \psi_{1}$ and ψ is in Γ_{k} then there exists $l \geqslant k$ such that we have both $F \psi_{1}$ and ψ_{1} in Γ_{l} and then we have by induction $\sigma_{l} \Vdash \psi_{1}$ and hence $\sigma_{k} \Vdash \psi$ as desired.

One can show also that this method is complete: if there is a model $M, \pi=s_{1} \rightarrow s_{2} \rightarrow \ldots$ then it is possible to approximate this model by a path

$$
\sigma=\Gamma_{1} \rightarrow \Gamma_{2} \rightarrow \ldots
$$

such that M, π^{k} validates all formulae of Γ_{k}. Indeed, M, s_{1} validates all formulae of Γ and hence it is possible to find Γ_{1} in $C(\Gamma)$ such that M, s_{1} validates all formulae in Γ_{1}. It then follows that M, s_{2} validates all formulae in $X^{-1}\left(\Gamma_{1}\right)$ and hence it is possible to find Γ_{2} in $C\left(X^{-1}\left(\Gamma_{1}\right)\right)$ such that M, s_{2} validates all formulae in Γ_{2}, and so on. Furthemore if $X F \mu$ is in Γ_{k} and s_{k+1} validates μ then we can choose Γ_{k+1} such that both $F \mu$ and μ are in Γ_{k+1}. if $X F \mu$ is in Γ_{k} and s_{k+1} does not validate μ then it validates $X F \mu$ and we have $X F \mu$ in Γ_{k+1}. Since M, π^{k} is a model of all formulae in Γ_{k} eventually we find $l \geqslant k$ such that M, s_{l} validates μ. Hence we can choose σ such that there are infinitely many good states for each μ, where μ is a subformula of one formula in Γ.

Some examples

It is actually possible to run this method by hand on some small examples.

Example 1

If Γ is $G p, F q, G(\neg p \vee \neg q)$ then $C(\Gamma)$ has only one element

$$
\Gamma_{1}=\Gamma, p, \neg q, X G(\neg p \vee \neg q), X F q, X G p
$$

We get a transition system with only one transition $\Gamma_{1} \rightarrow \Gamma_{1}$. Since Γ_{1} is not good for q, this is not a model. Hence there is no model and the set $G p, F q, G(\neg p \vee \neg q)$ is incompatible which means that we have $G p \wedge F q \rightarrow F(p \vee q)$.

Example 2

If Γ is $G(\neg p \vee X p), p, F(\neg p)$ then $C(\Gamma)$ has only one element

$$
\Gamma_{1}=\Gamma, X p, X G(\neg p \vee X p), X F(\neg p)
$$

We get a transition system with only one transition $\Gamma_{1} \rightarrow \Gamma_{1}$. Since Γ_{1} is not good for $\neg p$, this is not a model. Hence there is no model and the set $G(\neg p \vee X p), p, F(\neg p)$ is incompatible which means that we have $G(p \rightarrow X p) \wedge p \rightarrow G p$.

Example 3

If Γ is $G(p \vee q), F(\neg p), F(\neg q)$ then $C(\Gamma)$ has for elements
$\Gamma_{1}=\Gamma, p, \neg q, X G(p \vee q), X F(\neg p)$
$\Gamma_{2}=\Gamma, p, X G(p \vee q), X F(\neg p), X F(\neg q)$
$\Gamma_{3}=\Gamma, q, \neg p, X G(p \vee q), X F(\neg q)$
$\Gamma_{4}=\Gamma, q, X G(p \vee q), X F(\neg p), X F(\neg q)$
For building the minimal potential model, we need to consider the closures of $X^{-1}\left(\Gamma_{i}\right)$.
Notice that $X^{-1}\left(\Gamma_{2}\right)=X^{-1}\left(\Gamma_{4}\right)=\Gamma$. We have $X^{-1}\left(\Gamma_{1}\right)=G(p \vee q), F(\neg p)$ which generates
$\Gamma_{5}=G(p \vee q), F(\neg p), p, X G(p \vee q), X F(\neg p)$
$\Gamma_{6}=G(p \vee q), F(\neg p), q, \neg p, X G(p \vee q)$
$\Gamma_{7}=G(p \vee q), F(\neg p), q, X G(p \vee q), X F(\neg p)$
and $X^{-1}\left(\Gamma_{3}\right)=G(p \vee q), F(\neg q)$ which generates
$\Gamma_{8}=G(p \vee q), F(\neg q), q, X G(p \vee q), X F(\neg q)$
$\Gamma_{9}=G(p \vee q), F(\neg q), p, \neg q, X G(p \vee q)$
$\Gamma_{10}=G(p \vee q), F(\neg q), p, X G(p \vee q), X F(\neg q)$
We need then to add the states
$\Gamma_{11}=G(p \vee q), p, X G(p \vee q)$
$\Gamma_{12}=G(p \vee q), q, X G(p \vee q)$
We find then the model

$$
\Gamma_{1} \rightarrow \Gamma_{6} \rightarrow \Gamma_{11} \rightarrow \Gamma_{11} \rightarrow \ldots
$$

which shows that Γ is not incompatible. Hence we conclude from this that the formula

$$
G(p \vee q) \rightarrow G p \vee G q
$$

is not valid (it has a counter-model).

Example 4

The reader can now test this method on the example $G F p, F G(\neg p)$ (we find one model) and $F G p, F G(\neg p)$ (no model).

Connection with first-order logic

There is a natural interpretation of LTL in the first-order logic over the language with one successor symbol, one relation symbol (\leqslant) and where each atomic formula p is interpreted as a unary predicate $p(x)$.

For instance $G(p \wedge q) \rightarrow G p \wedge G q$ becomes

$$
(\forall x \cdot(p(x) \wedge q(x))) \rightarrow \forall x \cdot p(x) \wedge \forall x \cdot q(x)
$$

and $G(p \rightarrow X p) \wedge p \rightarrow G p$ becomes

$$
\forall x .(p(x) \rightarrow p(s x)) \wedge p(z) \rightarrow \forall y . z \leqslant y \rightarrow p(y)
$$

We have just given a decision procedure for this fragment of first-order logic: monadic (only unary predicates) theory of integers.

By considering a version of LTL with two next operations X_{0}, X_{1} it would be possible similarly to give a decision procedure for the corresponding fragment of first-order logic: monadic theory of binary words.

