Decidability Proof of LTL

The goal of this note is to explain why LTL is decidable. Given an LTL formula ψ we explain how to build a finite transition system S with a "partial" labelling function L (this is explained below) such that ψ has a model iff S, L is a model of ψ . In a sense S, L can be seen as a kind of minimal model (if there is one) of ψ .

This can be used to decide if a formula ϕ is valid in the usual way: we try to find a model for $\neg \phi$. If there is one, we know that ϕ is not valid. If our systematic attempt to find such a model fails, then we know that ϕ is valid.

To simplify the presentation we limit ourselves to the modalities F, G, X (no Until modality). We take also the following syntax for the formulae

$$\psi ::= \psi \land \psi \mid \psi \lor \psi \mid \mu \qquad \mu ::= p \mid \neg p \mid F \psi \mid G \psi \mid X \mu$$

It is clear that any formula can be put on this form, using de Morgan laws and the equivalences

$$X \ (\psi_1 \land \psi_2) \leftrightarrow X \ \psi_1 \land X \ \psi_2 \qquad X \ (\psi_1 \lor \psi_2) \leftrightarrow X \ \psi_1 \lor X \ \psi_2$$

A state will be a finite set of formulae Γ satisfing the following properties

- 1. If $\psi_1 \wedge \psi_2 \in \Gamma$ then $\psi_1 \in \Gamma$ and $\psi_2 \in \Gamma$
- 2. If $\psi_1 \lor \psi_2 \in \Gamma$ then $\psi_1 \in \Gamma$ or $\psi_2 \in \Gamma$
- 3. We cannot have both $p \in \Gamma$ and $\neg p \in \Gamma$
- 4. If $G \ \psi \in \Gamma$ then $\psi \in \Gamma$ and $XG \ \psi \in \Gamma$
- 5. If $F \ \psi \in \Gamma$ then $\psi \in \Gamma$ or $XF \ \psi \in \Gamma$

The last two clauses reflect the equivalences

$$G \ \psi \leftrightarrow \psi \land XG \ \psi \qquad F \ \psi \leftrightarrow \psi \lor XF \ \psi$$

The main remark is that give a (finite) set of formulae Γ we can always find a finite number of states $\Gamma_1, \ldots, \Gamma_n$ such that $\wedge \Gamma$ is equivalent to $\wedge \Gamma_1 \vee \ldots \vee \wedge \Gamma_n$. (We can have n = 0 in which case Γ is incompatible.) There is furthermore a natural closure algorithm $C(\Gamma)$ that produces $\Gamma_1, \ldots, \Gamma_n$ from Γ , which can be specified by

- 1. $C(\Gamma) = \Gamma$ if Γ is a state
- 2. If $\psi_1 \wedge \psi_2 \in \Gamma$ then $C(\Gamma) = C(\Gamma, \psi_1, \psi_2)$
- 3. If $\psi_1 \lor \psi_2 \in \Gamma$ then $C(\Gamma) = C(\Gamma, \psi_1) \cup C(\Gamma, \psi_2)$
- 4. If $p, \neg p \in \Gamma$ then $C(\Gamma) = \emptyset$
- 5. If $G \ \psi \in \Gamma$ then $C(\Gamma) = C(\Gamma, \psi, XG \ \psi)$
- 6. If $F \ \psi \in \Gamma$ then $C(\Gamma) = C(\Gamma, \psi) \cup C(\Gamma, XF \ \psi)$

Some examples

If Γ is $\neg q \lor p, \neg p \lor r, q$ then $C(\Gamma)$ has only one element Γ, p, q, r .

If Γ is $p \lor q, \neg p \lor r$ then $C(\Gamma)$ has three elements Γ, p, r and $\Gamma, q, \neg p$ and Γ, q, r .

In the *propositional* case, we get a quite good algorithm for computing the conjunctive normal form in this way:

$$\begin{array}{rccc} (\neg q \lor p) \land (\neg p \lor r) \land q & \leftrightarrow & p \land q \land r \\ (p \lor q) \land (\neg p \lor r) & \leftrightarrow & (p \land r) \lor (\neg p \land q) \lor (q \land r) \end{array}$$

In this case, we can think of each state of $C(\Gamma)$ as a *partial* valuation which ensures the truth of all formulae in Γ . For instance, if Γ is $p \lor q, \neg p \lor r$ it is enough to take p = r = 1 to make all formulae in Γ to be true (we don't need to specify the value of q) or to take p = 0, q = 1 or to take q = r = 1.

Example 1

If Γ is G p, F q, $G (\neg p \lor \neg q)$ then $C(\Gamma)$ has only one element

$$\Gamma$$
, p , $\neg q$, $XG (\neg p \lor \neg q)$, $XF q$, $XG p$

Example 2

If Γ is $G (\neg p \lor X p)$, $p, F (\neg p)$ then $C(\Gamma)$ has only one element

$$\Gamma$$
, X p, XG ($\neg p \lor X$ p), XF ($\neg p$)

Example 3

If Γ is $G \ (p \lor q)$, $F \ (\neg p)$, $F \ (\neg q)$ then $C(\Gamma)$ has for elements $\Gamma_1 = \Gamma$, p, $\neg q$, $XG \ (p \lor q)$, $XF \ (\neg p)$ $\Gamma_2 = \Gamma$, p, $XG \ (p \lor q)$, $XF \ (\neg p)$, $XF \ (\neg q)$ $\Gamma_3 = \Gamma$, q, $\neg p$, $XG \ (p \lor q)$, $XF \ (\neg q)$ $\Gamma_4 = \Gamma$, q, $XG \ (p \lor q)$, $XF \ (\neg p)$, $XF \ (\neg q)$

Transition relation and minimal potential models

If Γ is a set of formulae, we write $X^{-1}(\Gamma)$ the set of formulae μ such that $X \ \mu \in \Gamma$.

The transition relation is now defined as $\Gamma \to \Gamma'$ iff Γ' is one of the state in $C(X^{-1}(\Gamma))$.

We can now define the minimal potential model of a set of formulae Γ . The initial states are the elements of $C(\Gamma)$, and the transition system is obtained by taking the states related to these initial states by the transitive closure of the relation $\Delta \to \Delta'$.

This is a finite transition system, which can be called the *minimal potential* model of Γ . To be a model of Γ we have to find a path

$$\sigma = \Gamma_1 \to \Gamma_2 \to \dots$$

in this transition system which satisfies: if $F \ \mu \in \Gamma_i$ then there exists $j \ge i$ such that $\mu \in \Gamma_j$. This is a fairness condition, and the existence of such a path can be checked in the following way. We say that Δ is good for μ iff $F \ \mu \in \Delta$ implies $\mu \in \Delta$. We list then the subformulae $F \ \mu_1, \ldots, F \ \mu_k$ of Γ and the condition is that there is a path $\Delta_1 \to^* \Delta_2 \ldots \to^* \Delta_k \to^* \Delta_1$ where Δ_i is good for μ_i .

It is then possible to show that this method is *sound*: if we have such a path, then we have a model for Γ . For this, one consider the path

$$\sigma = \Gamma_1 \to \Gamma_2 \to \dots$$

and one shows by induction on ψ that $\sigma^k \Vdash \psi$ if $\psi \in \Gamma_k$, where one takes $L(\Gamma_k)$ to be the set of atomic formulae p such that p is in Γ_k . What matters really is that we have $\sigma_k \Vdash p$ if p is in Γ_k and $\sigma_k \Vdash \neg p$ if $\neg p$ is in Γ_k . The value of q at σ_k actually does not matter if neither q nor $\neg q$ figures in Γ_k . The fact that $\sigma^k \Vdash \psi$ if $\psi \in \Gamma_k$ is clear if ψ is p or $\neg p$, and it holds by induction if ψ is a conjunction or a disjunction. It holds also by induction if ψ is of the form $X \mu$. If $\psi = G \psi_1$ we have by induction $\sigma_l \Vdash \psi_1$ for all $l \ge k$ and hence $\sigma_k \Vdash \psi$ if ψ is in Γ_k . Finally if $\psi = F \psi_1$ and ψ is in Γ_k then there exists $l \ge k$ such that we have both $F \psi_1$ and ψ_1 in Γ_l and then we have by induction $\sigma_l \Vdash \psi_1$ and hence $\sigma_k \Vdash \psi$ as desired.

One can show also that this method is *complete*: if there is a model $M, \pi = s_1 \rightarrow s_2 \rightarrow \ldots$ then it is possible to approximate this model by a path

$$\sigma = \Gamma_1 \to \Gamma_2 \to \dots$$

such that M, π^k validates all formulae of Γ_k . Indeed, M, s_1 validates all formulae of Γ and hence it is possible to find Γ_1 in $C(\Gamma)$ such that M, s_1 validates all formulae in Γ_1 . It then follows that M, s_2 validates all formulae in $X^{-1}(\Gamma_1)$ and hence it is possible to find Γ_2 in $C(X^{-1}(\Gamma_1))$ such that M, s_2 validates all formulae in Γ_2 , and so on. Furthemore if $XF \mu$ is in Γ_k and s_{k+1} validates μ then we can choose Γ_{k+1} such that both $F \mu$ and μ are in Γ_{k+1} . If $XF \mu$ is in Γ_k and s_{k+1} does not validate μ then it validates $XF \mu$ and we have $XF \mu$ in Γ_{k+1} . Since M, π^k is a model of all formulae in Γ_k eventually we find $l \ge k$ such that M, s_l validates μ . Hence we can choose σ such that there are infinitely many good states for each μ , where μ is a subformula of one formula in Γ .

Some examples

It is actually possible to run this method by hand on some small examples.

Example 1

If Γ is G p, F q, $G (\neg p \lor \neg q)$ then $C(\Gamma)$ has only one element

$$\Gamma_1 = \Gamma, p, \neg q, XG (\neg p \lor \neg q), XF q, XG p$$

We get a transition system with only one transition $\Gamma_1 \to \Gamma_1$. Since Γ_1 is not good for q, this is not a model. Hence there is no model and the set G p, F q, $G (\neg p \lor \neg q)$ is *incompatible* which means that we have $G p \land F q \to F (p \lor q)$.

Example 2

If Γ is $G (\neg p \lor X p)$, $p, F (\neg p)$ then $C(\Gamma)$ has only one element

$$\Gamma_1 = \Gamma, X p, XG (\neg p \lor X p), XF (\neg p)$$

We get a transition system with only one transition $\Gamma_1 \to \Gamma_1$. Since Γ_1 is not good for $\neg p$, this is not a model. Hence there is *no* model and the set $G (\neg p \lor X p)$, $p, F (\neg p)$ is *incompatible* which means that we have $G (p \to X p) \land p \to G p$.

Example 3

If Γ is $G (p \lor q)$, $F (\neg p)$, $F (\neg q)$ then $C(\Gamma)$ has for elements $\Gamma_1 = \Gamma, p, \neg q, XG (p \lor q), XF (\neg p)$ $\Gamma_2 = \Gamma, p, XG (p \lor q), XF (\neg p), XF (\neg q)$ $\Gamma_3 = \Gamma, q, \neg p, XG (p \lor q), XF (\neg q)$ $\Gamma_4 = \Gamma, q, XG (p \lor q), XF (\neg p), XF (\neg q)$ For building the minimal potential model, we need to consider the closures of $X^{-1}(\Gamma_i)$. Notice that $X^{-1}(\Gamma_2) = X^{-1}(\Gamma_4) = \Gamma$. We have $X^{-1}(\Gamma_1) = G \ (p \lor q), \ F \ (\neg p)$ which generates $\Gamma_5 = G \ (p \lor q), \ F \ (\neg p), \ p, \ XG \ (p \lor q), \ XF \ (\neg p)$ $\Gamma_6 = G \ (p \lor q), \ F \ (\neg p), \ q, \ \neg \ p, \ XG \ (p \lor q)$ $\Gamma_7 = G \ (p \lor q), \ F \ (\neg p), \ q, \ XG \ (p \lor q), \ XF \ (\neg p)$ and $X^{-1}(\Gamma_3) = G \ (p \lor q), \ F \ (\neg q)$ which generates $\Gamma_8 = G \ (p \lor q), \ F \ (\neg q), \ q, \ XG \ (p \lor q), \ XF \ (\neg q)$ $\Gamma_9 = G \ (p \lor q), \ F \ (\neg q), \ p, \ \neg \ q, \ XG \ (p \lor q)$ $\Gamma_{10} = G \ (p \lor q), \ F \ (\neg q), \ p, \ XG \ (p \lor q), \ XF \ (\neg q)$ We need then to add the states $\Gamma_{11} = G \ (p \lor q), \ p, \ XG \ (p \lor q)$ $\Gamma_{12} = G \ (p \lor q), \ q, \ XG \ (p \lor q)$ We find then the model

$$\Gamma_1 \to \Gamma_6 \to \Gamma_{11} \to \Gamma_{11} \to \dots$$

which shows that Γ is not incompatible. Hence we conclude from this that the formula

$$G \ (p \lor q) \to G \ p \lor G \ q$$

is not valid (it has a counter-model).

Example 4

The reader can now test this method on the example GF p, $FG(\neg p)$ (we find one model) and FG p, $FG(\neg p)$ (no model).

Connection with first-order logic

There is a natural interpretation of LTL in the first-order logic over the language with one successor symbol, one relation symbol (\leq) and where each atomic formula p is interpreted as a unary predicate p(x).

For instance $G \ (p \land q) \to G \ p \land G \ q$ becomes

$$(\forall x.(p(x) \land q(x))) \to \forall x.p(x) \land \forall x.q(x)$$

and $G \ (p \to X \ p) \land p \to G \ p$ becomes

$$\forall x. (p(x) \to p(s \ x)) \land p(z) \to \forall y. z \leqslant y \to p(y)$$

We have just given a *decision procedure* for this fragment of first-order logic: monadic (only unary predicates) theory of integers.

By considering a version of LTL with two next operations X_0, X_1 it would be possible similarly to give a decision procedure for the corresponding fragment of first-order logic: monadic theory of binary words.