
Logic in Computer Science

For a given language F ,P, a first-order theory is a set T of sentences (closed formulae) in this given
language. The elements of T are also called axioms of T .

A model of T is a model M of the given language such that M |= ψ for all sentences ψ in T .

T ` ϕ means that we can find ψ1, . . . , ψn in T such that ψ1, . . . , ψn ` ϕ.
T |= ϕ means that M |= ϕ for all models M of T .

The generalized form of soundness is that T ` ϕ implies T |= ϕ and completness is that T |= ϕ
implies T ` ϕ.

If T is a finite set ψ1, . . . , ψn this follows from the usual statement of soundness (` δ implies |= δ)
and completness (|= δ implies ` δ). Indeed, in this case, we have T ` ϕ iff ` (ψ1 ∧ · · · ∧ ψn) → ϕ and
T |= ϕ iff |= (ψ1 ∧ · · · ∧ ψn)→ ϕ.

Theory of equivalence relations

The language is P = {E}, binary relation, and F = ∅. The axioms are

∀x. E(x, x) ∀x y z. (E(x, z) ∧ E(y, z))→ E(x, y)

We can then show T ` ∀x y.E(x, y)→ E(y, x) and T ` ∀x y z. (E(x, y) ∧ E(y, z))→ E(x, z).

Theory about orders

The theory of strict order. The language is P = {R}, binary relation, and F = ∅. The axioms are

∀x.¬R(x, x) ∀x y z. (R(x, y) ∧R(y, z))→ R(x, z)

We can add equality and get the theory Tlin of linear orders

∀x y. (x 6= y)→ (R(x, y) ∨R(y, x))

Models are given by the usual order on N,Q,R. The model of rationals (Q, <) also satisfies

ψ1 = ∀x.∃y. R(x, y) ψ2 = ∀x.∃y. R(y, x) ψ3 = ∀x y. R(x, y)→ ∃z. R(x, z) ∧R(z, y)

It can be shown that we have (Q, <) |= ϕ iff (R, <) |= ϕ iff Tlin, ψ1, ψ2, ψ3 ` ϕ and furthermore, there
is an algorithm to decide whether (Q, <) |= ϕ holds or not.

The theory of preorder has for axioms

∀x.R(x, x) ∀x y z. (R(x, y) ∧R(y, z))→ R(x, z)

and for the theory of poset is this theory together with the antisymmetry

∀x y. (R(x, y) ∧R(y, x))→ x = y

A poset is linear if it also satisfies the axiom

∀x y. R(x, y) ∨R(y, x)

(Q,6) and (R,6) are two linear posets that are not isomorphic but they satisfy the same first-order
formula. Furthermore we can decide whether (Q,6) ` ϕ holds or not.
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Theory about arithmetic

The language is F = {zero,S} and P = ∅, but we have equality.
The first theory T0 is

∀x.zero 6= S(x) ∀x y.S(x) = S(y)→ x = y

A model of this theory is a set A with a constant a ∈ A and a function f ∈ A → A such that f is
injective and a is not in the image of f .

A particular model N is given by the set of natural numbers and 0 ∈ N and the successor function s
on N.

The formulae δ1 = ∀x.x 6= S(x), δ2 = ∀x.x 6= S(S(x)), . . . are not provable in T0 but are valid in
the model (N, 0, s). The formula ψ = ∀x.x = 0 ∨ ∃y.(x = S(y)) is not provable in T0, δ1, δ2, . . . but is
also valid in the model (N, 0, s). We can look at the possible shape of the models of T0, δ1, δ2, . . . Such a
model is a disjoint union of copies of N and Z and it there are several copies of N the formula ψ will not
be satisfied.

It can be shown that we have (N, 0, s) |= ϕ iff T0, δ1, δ2, . . . , ψ ` ϕ and furthermore, there is an
algorithm to decide (N, 0, s) |= ϕ. The models of T0, δ1, δ2, . . . , ψ consist of one copy of N and zero or
several copies of Z

Presburger arithmetic

We add the binary function symbol (+) and add to T0 the axioms

∀x. x+ zero = x ∀x y. x+ S(y) = S(x+ y)

and the induction schema

∀y1 . . . ym.ϕ(y1, . . . , ym, zero) ∧ ∀x.(ϕ(y1, . . . , ym, x)→ ϕ(y1, . . . , ym,S(x)))→ ∀z.ϕ(y1, . . . , ym, z)

The resulting theory PrA is called Presburger arithmetic. It can be shown that (N, 0, s,+) |= ϕ iff
PrA ` ϕ and there is an algorithm to decide (N, 0, s,+) |= ϕ.

Complete theory

A theory T is called complete iff for any closed formulae ψ we have T ` ψ or T ` ¬ψ.

Presburger arithmetic is complete.

Proposition 0.1 If M is a model of T and T is complete then we have T ` ψ iff M � ψ.

So a complete theory describes completely validity in any of its model. In particular, Presburger
arithmetic describes completely the behavior of addition for its model N.

Peano arithmetic

We add the binary function symbol (·) and add to PrA the axioms for multiplication

∀x. x · zero = zero ∀x y. x · S(y) = x · y + x

with the induction schema, where the formula ϕ(y1, . . . , ym, x) can also used multiplication. The resulting
theory PA is called Peano arithmetic. It has been shown by Gödel that PA is incomplete: there is a
formula ϕ such that (N, 0, s,+, ·) |= ϕ but we don’t have PA ` ϕ.

Furthermore (N, 0, s,+, ·) |= ϕ is undecidable (there is no algorithm to decide N |= ϕ) and there is no
effective way to enumerate all sentences ϕ valid in the model (N, 0, s,+, ·).
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Undecidability

We consider the theory with language zero and the addition and multiplication functions symbols and
the theory T

∀x. x+ zero = x ∀x y. x+ S(y) = S(x+ y)

∀x. x · zero = zero ∀x y. x · S(y) = x · y + x

and no other axioms. We have T ` ∃x (x + x = S100 zero) iff we have N � ∃x (100 − 2x = 0). In this
way, we can prove that T ` ψ is not decidable, even for ψ purely existential formula.

This follows from the fact that we can encode that the existence of a solution of a natural solution of a
polynomial equation P (x1, . . . , xn) = 0 for P in Z[x1, . . . , xn] (non decidability for Hilbert Xth problem).
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The decision problem

The decision problem (Hilbert-Ackermann 1928) is the problem of deciding if a sentence in a given
language is provable or not.

More generally the problem is to decide if we have ψ1, . . . , ψn ` ϕ or not.
There are special cases where this problem has a positive answer.
A general method is to apply the following Lemma, which follows from soundness and completeness.

Lemma 0.2 We have ψ1, . . . , ψn ` ϕ iff the following theory ψ1, . . . , ψn,¬ϕ has no models.

We say that a formula is (purely) universal if it is of the form ∀y1 . . . ym.δ where δ is quantifier-free
and it is (purely) existential if it is of the form ∃y1 . . . ym.δ where δ is quantifier-free

Bernays-Schönfinkel decidable case

This is the particular case where F has only constant symbols (there can be relations of arbitrary arities)
and all formulae ψ1, . . . , ψn, ϕ are universal or existential.

In this case the following algorithm, that I illustrate on some examples, gives a way to decide whether
ψ1, . . . , ψn,¬ϕ has a model or not. (If it has a model, it always has a finite model.) In this way, we
decide whether ψ1, . . . , ψn ` ϕ holds or not.

The reason why this method works is the following Lemma. If M is a model of universe A with no
function symboles of arity > 0 (there can be constants) and all interpretation of constants are in a subset
B ⊆ A we can consider the restriction M|B of the model to B where the universe A is replaced to B.

Lemma 0.3 If ψ is universal and l is a lookup table with values in B then M �l ψ implies M|B �l ψ

This is not valid if ψ is not universal. For instance ∀x∃y x 6= y is valid in a domain with > 1 elements
but is not valid in a domain with only 1 element.

Using this Lemma, we see that we can bound a priori the size of a model which satisfies ψ1, . . . , ψn.

We take the example

T1 = ∃x.(P (x) ∧ ¬M(x)),∃y.(M(y) ∧ ¬S(y)),∀z.(¬P (z) ∨ S(z))

The first step is to eliminate the existential quantifiers by introducing constants

T2 = P (a) ∧ ¬M(a), M(b) ∧ ¬S(b),∀z.(¬P (z) ∨ S(z))

It should be clear that T1 has a model iff T2 has a model.
The second step is to eliminate the universal quantifiers by instantiating on all constants

T3 = P (a) ∧ ¬M(a), M(b) ∧ ¬S(b), ¬P (a) ∨ S(a), ¬P (b) ∨ S(b)

In this way we find a model with two elements P (a),¬M(a), S(a),M(b),¬S(b),¬P (b).
This implies that ∃x.(P (x) ∧ ¬M(x)),∃y.(M(y) ∧ ¬S(y)) ` ∃z.(P (z) ∧ ¬S(z)) is not valid.

Other examples

∀x ¬R(x, x) ` ∀x y (R(x, y)→ ¬R(y, x)) is not valid since we find a model of

T1 = ∀x ¬R(x, x), ∃x y R(x, y) ∧R(y, x)

by eliminating existentials
T2 = ∀x ¬R(x, x), R(a, b) ∧R(b, a)

and then universals
T3 = ¬R(a, a), ¬R(b, b), R(a, b) ∧R(b, a)

and we get a counter-model with two elements.
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On the other hand ∀x y (R(x, y)→ ¬R(y, x) ` ¬R(x, x) is valid, since if we try to find a model of

T1 = ∀x y (R(x, y)→ ¬R(y, x)), ∃x R(x, x)

by eliminating existentials
T2 = ∀x y (R(x, y)→ ¬R(y, x)), R(a, a)

and then universals
T3 = R(a, a)→ ¬R(a, a), R(a, a)

we should have R(a, a) and ¬R(a, a) and we cannot find a counter-model.

The same method show that if T is the theory of linear orders we don’t have

T ` ∀x∃y x < y

by finding the following counter-model: we take the model with only one element a with a < a false.
This defines a linear order, and in this model we don’t have ∃y a < y.

Universal theories

It is possible to extend Bernays-Schönfinkel algorithm to theories with equality by axiomatising directly
the equality relation as a new binary relation. This was first done by Ramsey, 1928 (by another method
however).

Ramsey’s goal was to analyse sequents of the form ψ1, . . . , ψn ` ψ where all formulae are purely
universal, i.e. of the form ∀x1 . . . ∀xmϕ where ϕ is a quantifier-free formula.

Here is a typical example. The theory of linear orders, where the axioms are

ψ1 = ∀x x < y → ¬(y < x) ψ2 = ∀x y z (x < y ∧ y < z → x < z)

and
ψ3 = ∀x y (x 6= y → (x < y ∨ y < x))

We can prove ψ1, ψ2, ψ3 ` ψ where ψ = ∀x y z (x < y → (x < z ∨ z < y)).

For eliminating equality, one adds a new relation E(x, y) with axioms

δ1 = ∀x E(x, x) δ2 = ∀x y z (E(x, z) ∧ E(y, z)→ E(x, y))

and
δ3 = ∀x x1 y y1 (E(x, x1) ∧ E(y, y1) ∧R(x, y)→ R(x1, y1))

δ4 = ∀x y (E(x, y) ∨R(x, y) ∨R(y, x))

It is then possible to see in a purely automatic way that

ψ1, ψ2, ψ3, δ1, δ2, δ3, δ4 a < b, ¬(a < c), ¬(c < b)

is contradictory. This is by looking at all 4 cases

E(a, c), E(c, b) E(a, c), b < c c < a,E(c, b) c < a, b < c

and proving a contradiction in all cases.
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Theory of cyclic order

(Not covered in the lecture, but a nice example of a theory and of the use of the Bernays-Schönfinkel
algorithm.)

A cyclic order is a way to arrange a set of objects in a circle (examples: seven days in a week, twelve
notes in the chromatic scale, . . . ). The language is P = {S} which is a ternary predicate symbol and
the first 3 axioms are

ψ1 = ∀x y z.S(x, y, z)→ S(y, z, x) ψ2 = ∀x y z.S(x, y, z)→ ¬S(x, z, y)

ψ3 = ∀x y z t.(S(x, y, z) ∧ S(x, z, t))→ S(x, y, t)

One can then use the Bernays-Schönfinkel algorithm to show automatically that these axioms are inde-
pendent: we don’t have ψ1, ψ2 ` ψ3 or ψ2, ψ3 ` ψ1 or ψ3, ψ1 ` ψ2.

As an exercise, we can show

ψ1, ψ2 ` ∀x y z S(x, y, z)→ (x 6= y ∧ y 6= z ∧ x 6= z)

since if we have S(a, b, c) we get S(b, c, a), S(c, a, b) and ¬S(b, a, c), ¬S(a, c, b), 6= S(c, b, a). If we also
have a = b we get S(b, a, c) = S(a, b, c) and ¬S(b, a, c) hence a contradiction. We see in a similar way
that we cannot have b = c and we cannot have a = c.

The last axiom of the theory of cyclic order uses equality

ψ4 = ∀x y z.(x 6= y ∧ y 6= z ∧ z 6= x)→ S(x, y, z) ∨ S(x, z, y)

There is a closely related theory, which expresses that a, b, c is a clockwise oriented triangle in the
plane. This theory has been used by Knuth for expressing convex hull algorithms.
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