
Logic in Computer Science

For a given language F ,P, a first-order theory is a set T of sentences (closed formulae) in this given
language. The elements of T are also called axioms of T .

A model of T is a model M of the given language such that M |= ψ for all sentences ψ in T .

T ` ϕ means that we can find ψ1, . . . , ψn in T such that ψ1, . . . , ψn ` ϕ.
T |= ϕ means that M |= ϕ for all models M of T .

The generalized form of soundness is that T ` ϕ implies T |= ϕ and completness is that T |= ϕ
implies T ` ϕ.

If T is a finite set ψ1, . . . , ψn this follows from the usual statement of soundness (` δ implies |= δ)
and completness (|= δ implies ` δ). Indeed, in this case, we have T ` ϕ iff ` (ψ1 ∧ · · · ∧ ψn) → ϕ and
T |= ϕ iff |= (ψ1 ∧ · · · ∧ ψn)→ ϕ.

Theory of equivalence relations

The language is P = {E}, binary relation, and F = ∅. The axioms are

∀x. E(x, x) ∀x y z. (E(x, z) ∧ E(y, z))→ E(x, y)

We can then show T ` ∀x y.E(x, y)→ E(y, x) and T ` ∀x y z. (E(x, y) ∧ E(y, z))→ E(x, z).

Theory about orders

The theory of strict order. The language is P = {R}, binary relation, and F = ∅. The axioms are

∀x.¬R(x, x) ∀x y z. (R(x, y) ∧R(y, z))→ R(x, z)

We can add equality and get the theory Tlin of linear orders

∀x y. (x 6= y)→ (R(x, y) ∨R(y, x))

Models are given by the usual order on N,Q,R. The model of rationals (Q, <) also satisfies

ψ1 = ∀x.∃y. R(x, y) ψ2 = ∀x.∃y. R(y, x) ψ3 = ∀x y. R(x, y)→ ∃z. R(x, z) ∧R(z, y)

It can be shown that we have (Q, <) |= ϕ iff (R, <) |= ϕ iff Tlin, ψ1, ψ2, ψ3 ` ϕ and furthermore, there
is an algorithm to decide whether (Q, <) |= ϕ holds or not.

The theory of preorder has for axioms

∀x.R(x, x) ∀x y z. (R(x, y) ∧R(y, z))→ R(x, z)

and for the theory of poset is this theory together with the antisymmetry

∀x y. (R(x, y) ∧R(y, x))→ x = y

A poset is linear if it also satisfies the axiom

∀x y. R(x, y) ∨R(y, x)

(Q,6) and (R,6) are two linear posets that are not isomorphic but they satisfy the same first-order
formula. Furthermore we can decide whether (Q,6) ` ϕ holds or not.
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Theory about arithmetic

The language is F = {zero,S} and P = ∅, but we have equality.
The first theory T0 is

∀x.zero 6= S(x) ∀x y.S(x) = S(y)→ x = y

A model of this theory is a set A with a constant a ∈ A and a function f ∈ A → A such that f is
injective and a is not in the image of f .

A particular model N is given by the set of natural numbers and 0 ∈ N and the successor function s
on N.

The formulae δ1 = ∀x.x 6= S(x), δ2 = ∀x.x 6= S(S(x)), . . . are not provable in T0 but are valid in
the model (N, 0, s). The formula ψ = ∀x.x = 0 ∨ ∃y.(x = S(y)) is not provable in T0, δ1, δ2, . . . but is
also valid in the model (N, 0, s). We can look at the possible shape of the models of T0, δ1, δ2, . . . Such a
model is a disjoint union of copies of N and Z and it there are several copies of N the formula ψ will not
be satisfied.

It can be shown that we have (N, 0, s) |= ϕ iff T0, δ1, δ2, . . . , ψ ` ϕ and furthermore, there is an
algorithm to decide (N, 0, s) |= ϕ. The models of T0, δ1, δ2, . . . , ψ consist of one copy of N and zero or
several copies of Z

Presburger arithmetic

We add the binary function symbol (+) and add to T0 the axioms

∀x. x+ zero = x ∀x y. x+ S(y) = S(x+ y)

and the induction schema

∀y1 . . . ym.ϕ(y1, . . . , ym, zero) ∧ ∀x.(ϕ(y1, . . . , ym, x)→ ϕ(y1, . . . , ym,S(x)))→ ∀z.ϕ(y1, . . . , ym, z)

The resulting theory PrA is called Presburger arithmetic. It can be shown that (N, 0, s,+) |= ϕ iff
PrA ` ϕ and there is an algorithm to decide (N, 0, s,+) |= ϕ.

Peano arithmetic

We add the binary function symbol (·) and add to PrA the axioms for multiplication

∀x. x · zero = zero ∀x y. x · S(y) = x · y + x

with the induction schema, where the formula ϕ(y1, . . . , ym, x) can also used multiplication. The resulting
theory PA is called Peano arithmetic. It has been shown by Gödel that PA is incomplete: there is a
formula ϕ such that (N, 0, s,+, ·) |= ϕ but we don’t have PA ` ϕ.

Furthermore (N, 0, s,+, ·) |= ϕ is undecidable (there is no algorithm to decide N |= ϕ) and there is no
effective way to enumerate all sentences ϕ valid in the model (N, 0, s,+, ·).
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The decision problem

The decision problem (Hilbert-Ackermann 1928) is the problem of deciding if a sentence in a given
language is provable or not.

More generally the problem is to decide if we have ψ1, . . . , ψn ` ϕ or not.
There are special cases where this problem has a positive answer.
A general method is to apply the following Lemma, which follows from soundness and completeness.

Lemma 0.1 We have ψ1, . . . , ψn ` ϕ iff the following theory ψ1, . . . , ψn,¬ϕ has no models.

Bernays-Schönfinkel decidable case

This is the particular case where F has only constant symbols and all formulae ψ1, . . . , ψn, ϕ are of the
form ∀y1 . . . ym.δ or ∃y1 . . . ym.δ where δ is quantifier-free.

In this case the following algorithm, that I illustrate on some examples, gives a way to decide whether
ψ1, . . . , ψn,¬ϕ has a model or not. (If it has a model, it always has a finite model.) In this way, we
decide whether ψ1, . . . , ψn ` ϕ holds or not.

We take the example

T1 = ∃x.(P (x) ∧ ¬M(x)),∃y.(M(y) ∧ ¬S(y)),∀z.(¬P (z) ∨ S(z))

The first step is to eliminate the existential quantifiers by introducing constants

T2 = P (a) ∧ ¬M(a), M(b) ∧ ¬S(b),∀z.(¬P (z) ∨ S(z))

It should be clear that T1 has a model iff T2 has a model.
The second step is to eliminate the universal quantifiers by instantiating on all constants

T3 = P (a) ∧ ¬M(a), M(b) ∧ ¬S(b), ¬P (a) ∨ S(a), ¬P (b) ∨ S(b)

In this way we find a model with two elements P (a),¬M(a), S(a),M(b),¬S(b),¬P (b).
This implies that ∃x.(P (x) ∧ ¬M(x)),∃y.(M(y) ∧ ¬S(y)) ` ∃z.(P (z) ∧ ¬S(z)) is not valid.

Other examples

∀x ¬R(x, x) ` ∀x y (R(x, y)→ ¬R(y, x)) is not valid since we find a model of

T1 = ∀x ¬R(x, x), ∃x y R(x, y) ∧R(y, x)

by eliminating existentials
T2 = ∀x ¬R(x, x), R(a, b) ∧R(b, a)

and then universals
T3 = ¬R(a, a), ¬R(b, b), R(a, b) ∧R(b, a)

and we get a counter-model with two elements.
On the other hand ∀x y (R(x, y)→ ¬R(y, x) ` ¬R(x, x) is valid, since if we try to find a model of

T1 = ∀x y (R(x, y)→ ¬R(y, x)), ∃x R(x, x)

by eliminating existentials
T2 = ∀x y (R(x, y)→ ¬R(y, x)), R(a, a)

and then universals
T3 = R(a, a)→ ¬R(a, a), R(a, a)

we should have R(a, a) and ¬R(a, a) and we cannot find a counter-model.
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Universal theories

It is possible to extend Bernays-Schönfinkel algorithm to theories with equality by axiomatising directly
the equality relation as a new binary relation. This was first done by Ramsey, 1928 (by another method
however).

Ramsey’s goal was to analyse sequents of the form ψ1, . . . , ψn ` ψ where all formulae are purely
universal, i.e. of the form ∀x1 . . . ∀xmϕ where ϕ is a quantifier-free formula.

Here is a typical example. The theory of linear orders, where the axioms are

ψ1 = ∀x x < y → ¬(y < x) ψ2 = ∀x y z (x < y ∧ y < z → x < z)

and
ψ3 = ∀x y (x 6= y → (x < y ∨ y < x))

We can prove ψ1, ψ2, ψ3 ` ψ where ψ = ∀x y z (x < y → (x < z ∨ z < y)).

For eliminating equality, one adds a new relation E(x, y) with axioms

δ1 = ∀x E(x, x) δ2 = ∀x y z (E(x, z) ∧ E(y, z)→ E(x, y))

and
δ3 = ∀x x1 y y1 (E(x, x1) ∧ E(y, y1) ∧R(x, y)→ R(x1, y1))

δ4 = ∀x y (E(x, y) ∨R(x, y) ∨R(y, x))

It is then possible to see in a purely automatic way that

ψ1, ψ2, ψ3, δ1, δ2, δ3, δ4 a < b, ¬(a < c), ¬(c < b)

is contradictory. This is by looking at all 4 cases

E(a, c), E(c, b) E(a, c), b < c c < a,E(c, b) c < a, b < c

and proving a contradiction in all cases.

Theory of cyclic order

(Not covered in the lecture, but a nice example of a theory and of the use of the Bernays-Schönfinkel
algorithm.)

A cyclic order is a way to arrange a set of objects in a circle (examples: seven days in a week, twelve
notes in the chromatic scale, . . . ). The language is P = {S} which is a ternary predicate symbol and
the first 3 axioms are

ψ1 = ∀x y z.S(x, y, z)→ S(y, z, x) ψ2 = ∀x y z.S(x, y, z)→ ¬S(x, z, y)

ψ3 = ∀x y z t.(S(x, y, z) ∧ S(x, z, t))→ S(x, y, t)

One can then use the Bernays-Schönfinkel algorithm to show automatically that these axioms are inde-
pendent: we don’t have ψ1, ψ2 ` ψ3 or ψ2, ψ3 ` ψ1 or ψ3, ψ1 ` ψ2.

The last axiom of the theory of cyclic order uses equality

ψ4 = ∀x y z.(x 6= y ∧ y 6= z ∧ z 6= x)→ S(x, y, z) ∨ S(x, z, y)
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