Breadth-first search

Breadth-first search

A breadth-first search (BFS) in a graph visits the nodes in the following order:

- First it visits some node (the start node)
- Then all the start node's immediate neighbours
- Then their neighbours
- and so on
- but only visiting each node once

So it visits the nodes in order of how far away they are from the start node

Implementing breadth-first search

We maintain a queue of nodes that we are going to visit soon

- Initially, the queue contains the start node

We also remember which nodes we've already visited or added to the queue
Then repeat the following process:

- Remove a node from the queue
- Visit it
- Find all adjacent nodes and add them to the queue, unless they've previously been added to the queue

Example of a breadth-first search

Queue:
0 Visit order:

Initially,
 queue contains

 start node

Example of a breadth-first search

Queue:

Visit order:
0

Step 1:
remove node from queue and visit it

Example of a breadth-first search

Queue:
31
Visit order:
0

Step 2: add adjacent nodes
to queue
(only unvisited ones)

Example of a breadth-first search

Queue:
1
Visit order:
03

remove node from queue and visit it

Example of a be
 0 is already visited, so arch we don't add it to the queue

Queue:
12
Visit order:
03

Step 2: add adjacent nodes
to queue
(only unvisited ones)

Example of a breadth-first search

Queue:
2
Visit order:
031

Step 1:
remove node from queue and visit it

Example of a bre

2 is already $\exists \mathrm{arch}$

 in the queue, so we don't add it again
031

Step 2: add adjacent nodes to queue
(only unvisited ones)

Example of a breadth-first search

Queue:
467
Visit order:
0312

Step 1:
remove node from queue and visit it

Example of a breadth-first search

Queue:
46798
Visit order
0312
Skip to the end...

Step 2: add adjacent nodes
to queue
(only unvisited ones)

Example of a breadth-first search

Queue:

Visit order:
03124
67985

We reach step 1, but the queue is empty, and we're finished!

Why does using a queue work?

Suppose the queue contains all nodes that are distance n from the starting node:

distance n

We remove the first node and add its neighbours, which are at a distance of $n+1$:

Since queues are FIFO, we then visit all the other distance n nodes, adding each node's neighbours to the queue. The queue now consists only of distance $n+1$ nodes!
So we explore all nodes of distance n before getting to nodes of distance $n+1$.

Side note: if we use a stack instead of a queue, we get depth-first search!

Application: unweighted shortest path

We can represent a maze as a graph - nodes are junctions, edges are paths. We want to find the simplest way (fewest choices) to get from entrance to exit. This is the shortest path

Application: unweighted shortest path

We do a breadth-first search from the entrance and remember the distance from the entrance to each node

- Distance to a node = distance to "parent node" +1

Using these distances, we can trace back from the exit to the entrance!

Dijkstra's algorithm

Weighted graphs

In a weighted graph, each edge is labelled with a weight, a number:

The weight typically represents the "cost" of following the edge

The (weighted) shortest path problem

Find the path with least total weight from point A to point B in a weighted graph
(If there are no weights: can be solved with BFS)
Useful in e.g., route planning, network routing
Most common approach: Dijkstra's algorithm, which works when all edges have non-negative weight

Dijkstra's algorithm

Dijkstra's algorithm computes the distance from a start node to all other nodes
It visits the nodes of the graph in order of distance from the start node, and computes the distance We first visit the start node, which has a distance of 0
We are going to use the idea of a border edge, which is an edge from a visited node to an unvisited node (yellow here)

- If you want to get from the start node to an unvisited node, you have to go via a border edge

Dijkstra's algorithm

At each step we visit the closest node that we haven't visited yet
This node must be the neighbour of a visited node (why?)

- Here either Blaxhall or Harwich
- That means it must be the target of a border edge
For each border edge $\mathrm{x} \rightarrow \mathrm{y}$:
- Add the distance to x and the weight of the edge $x \rightarrow y$
- This is the total distance to y, going via that border edge
Whichever node y has the shortest total distance, visit it!

Dijkstra's algorithm

Visited nodes (red): Dunwich distance 0 Border edges lead to: Blaxhall (distance 15), Harwich (distance 53)

So visit Blaxhall (distance 15)

Dijkstra's algorithm

Visited nodes:

Dunwich distance 0 Blaxhall distance 15

Border edges lead to:

- Feering (distance $15+46=61$)
- Harwich (via Dunwich, distance 53)
- Harwich (via Blaxhall, distance $15+40=55$)
So visit Harwich (distance 53)

Dijkstra's algorithm

Visited nodes:

Dunwich distance 0
Blaxhall distance 15
Harwich distance 53
Neighbours (yellow) are:

- Feering (distance
$15+46=61$)
- Tiptree (distance $53+31=84)$
- Clacton (distance $53+17=70$)
So visit Feering (distance 61)

Dijkstra's algorithm

Visited nodes:

Dunwich distance 0 Blaxhall distance 15
Harwich distance 53
Feering distance 61
Neighbours are:

- Tiptree via Feering (distance $61+3=64$)
- Tiptree via Harwich (distance $55+29=84$)
- Clacton (distance $53+17=70$)
- Malden (distance $61+11=72$)

So visit Tiptree (distance 64)

Dijkstra's algorithm

Visited nodes:

Dunwich distance 0
Blaxhall distance 15
Harwich distance 53
Feering distance 61
Tiptree distance 64
Neighbours are:

- Clacton (distance $53+17=70$, also via Tiptree $64+29=93$)
- Maldon (distance $61+11=72$, also via Tiptree $64+8=72$)
So visit Clacton (distance 70)

Dijkstra's algorithm

Visited nodes:

Dunwich distance 0
Blaxhall distance 15
Harwich distance 53
Feering distance 61 Tiptree distance 64
Clacton distance 70
Neighbours are:

- Maldon (distance $61+11=72$, also via Tiptree $64+8=72$, also via Clacton $70+40=110$)
So visit Maldon (distance 72)

Dijkstra's algorithm

Visited nodes:
Dunwich distance 0 Blaxhall distance 15 Harwich distance 53 Feering distance 61 Tiptree distance 64 Clacton distance 70 Maldon distance 72 Finished!

Two problems

1. How to implement this efficiently?

- Naive implementation takes $\mathrm{O}(|\mathrm{E}| \times|\mathrm{V}|)$ time, where $|\mathrm{E}|=$ number of edges, $|\mathrm{V}|=$ number of nodes
- This is because, in order to choose the next node to visit, we have to go through all border edges to find the best one
- We can solve this by storing the border edges in a priority queue!

2. How to find not only the distance to each node, but the shortest path?

- One possibility: use the same trick as we did for breadth-first search - work backwards from the target node, only following edges that reduce the total distance sufficiently
- A simpler approach: when we visit a node, remember which edge we came from to get to the node

Dijkstra's algorithm, made efficient

To find the closest unvisited node, we store the targets of all border edges in a priority queue

- The priority is the total distance to the node via that edge
- To make it easier to find paths, we also record the source of the border edge
- To determine which node to visit next, we just take the node with the smallest priority from the priority queue
- The node might already have been visited, in which case we ignore it

Whenever we visit a node, we will add the target of all of its outgoing edges to the priority queue
When the priority queue is empty, we are done!

Dijkstra's algorithm

S is the visited set and Q is the priority queue of neighbouring nodes Initially, no nodes have been visited, and the priority queue contains the start node:
$S=\{ \}$
$\mathrm{Q}=\{$ Dunwich 0$\}$
The smallest element of Q is "Dunwich 0":

- Remove it from Q
- Add "Dunwich 0" to S
- Add Dunwich's outgoing edges to Q

Dijkstra's algorithm

$S=\{$ Dunwich 0$\}$
$\mathrm{Q}=\{$ Blaxhall 15 via Dunwich, Harwich 53 via Dunwich\}
The smallest element of Q is "Blaxhall 15 via Dunwich":

- Remove it from Q
- Add "Blaxhall 15 via Dunwich" to S
- Add Blaxhall's outgoing edges to Q

Dijkstra's algorithm

$S=\{$ Dunwich 0 , Blaxhall 15 via Dunwich\}
Q = \{Harwich 53 via Dunwich, Feering 61 via Blaxhall, Harwich 55 via Blaxhall\}
The smallest element of Q is "Harwich 53 via Dunwich":

- Remove it from Q
- Add "Harwich 53 via Dunwich" to S

Add Harwich's outgoing edges to Q

Dijkstra's algorithm

$S=\{$ Dunwich 0,
Blaxhall 15 via Dunwich, Harwich 53 via Dunwich
$\mathrm{Q}=\{$ Feering 61 via Blaxhall, Harwich 55 via Blaxhall, Tiptree 84 via Harwich, Clacton 70 via Harwich\}

Dijkstra's algorithm

$S=\{$ Dunwich 0,
Blaxhall 15 via Dunwich, Harwich 53 via Dunwich\}
$\mathrm{Q}=\{$ Feering 61 via Blaxhall, Tiptree 84 via Harwich, Clacton 70 via Harwich\}
The smallest element of Q is "Feering 61 via Blaxhall":

- Remove it from Q
- Add "Feering 61 via Blaxhall" to S
- Add Feering's outgoing edges to Q

Dijkstra's algorithm

$S=\{$ Dunwich 0,
Blaxhall 15 via Dunwich, Harwich 53 via Dunwich, Feering 61 via Blaxhall\}
$\mathrm{Q}=\{$ Tiptree 84 via Harwich, Tiptree 64 via Feering, Maldon 72 via Feering, Clacton 70 via Harwich\}
Note: the shortest path to Feering is:

Dunwich \rightarrow Blaxhall \rightarrow Feering and we can tell this by looking at S since we get to Feering via Blaxhall and to Blaxhall via Dunwich.

Dijkstra's algorithm, efficiently

Let $S=\{ \}$ and $\mathrm{Q}=\{$ start node 0$\}$
While Q is not empty:

- Remove the node x from Q that has the smallest priority (distance), and let that distance be d
- If x is in S, do nothing
- Otherwise, add x to S with distance d, and for each outgoing edge $x \rightarrow y$, add y to Q with priority $d+($ weight of edge $x \rightarrow y$)
Implementation notes:
- Each entry in Q and S should also record "via" information, in order to easily find paths
- S can be implemented via a map, or by adding extra fields to the node class Each edge in the graph is processed once, and added to Q at most once, so complexity is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ where $\mathrm{n}=$ number of edges in graph. Good!

Prim's algorithm

Minimum spanning trees

A spanning tree of a graph is a subgraph (a graph obtained by deleting some of the edges) which:

- is acyclic
- is connected

A minimum spanning tree is one where the total weight of the edges is as low as possible

Minimum spanning trees

Prim's algorithm

We will build a minimum spanning tree by starting with no edges and adding edges until the graph is connected
Keep a set S of all the nodes that are in the tree so far, initially containing one arbitrary node
We call an edge a border edge if it connects a node in S to a node not in S
While there is a node not in S :

- Pick the lowest-weight border edge
- Add that edge to the spanning tree, and add the newlyconnected node to S

Minimun

$S=\{$ Feering, Tiptree, Maldon\} Lowest-weight

 border edge is Tiptree \rightarrow Clacton

Prim's algorithm, efficiently

The operation

- Pick the lowest-weight edge between a node in S and a node not in S takes $\mathrm{O}(\mathrm{n})$ time if we're not careful! Then Prim's algorithm will be $\mathrm{O}\left(\mathrm{n}^{2}\right)$
To implement Prim's algorithm, use a priority queue containing all border edges
- Whenever you add a node to S, add all of its edges (that are not to nodes in S) to a priority queue
- To find the lowest-weight edge, just find the minimum element of the priority queue
- Just like in Dijkstra's algorithm, the priority queue might return an edge between two elements that are now in S: ignore it
New time: $O(n \log n):)$

Why does it work? (not on exam)

Proof sketch (drawing a diagram helps):
Suppose that Prim's algorithm gives a non-minimal spanning tree, and imagine that we are at the earliest point in the algorithm where it goes wrong:

- We have a minimum spanning tree T for S ; the smallest border edge e goes to node x (not in S)
- T can be extended to a minimum spanning tree T ' for the whole graph, but T plus e cannot
We will show that T plus e can be extended to a minimal spanning tree, which is a contradiction:
- Observation: in a tree, there is exactly one path between every pair of nodes.
- Therefore, in T', there is exactly one path from an arbitrary node in S to x
- This path must go through a border edge of S. Remove this border edge; now S is disconnected from x . Add the edge e; this results in a spanning tree. This new spanning tree is minimal, since T^{\prime} is minimal and e had minimum weight among all border edges.

Summary

Breadth-first search - finding shortest paths in unweighted graphs, using a queue
Dijkstra's algorithm - finding shortest paths in weighted graphs - some extensions for those interested:

- Bellman-Ford: works when weights are negative (Dijkstra allows weights to be zero but not negative)
- A^{*} - faster - tries to move towards the target node, where Dijkstra's algorithm explores equally in all directions
Prim's algorithm - finding minimum spanning trees
Dijkstra's and Prim's algorithms are based on the idea of choosing the "best" border edge
- This is called a greedy algorithms - it repeatedly finds the "best" next element
- Common style of algorithm design when trying to find the "best" solution to a problem; finds at least a locally optimal solution - but for the algorithms today is globally optimal
Both use a priority queue to get $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- Dijkstra's algorithm is sort of BFS but using a priority queue instead of a queue

Many many many more graph algorithms

A* search (not on exam)

A problem with Dijkstra's algorithm

We can use Dijkstra's algorithm to find the shortest route from A to B
But it explores all nodes in the graph that are closer than B!
A person planning a route would try to move towards B

The A^{*} algorithm

Often we have a notion of distance in a graph

- e.g., Gothenburg to Stockholm is 400 km as the crow flies
- No possible route can be shorter than this!
A^{*} uses distance to guide the search towards the destination
- Try to pick edges that reduce the distance to the destination, avoid edges that increase the distance
- But still guaranteeing to find the shortest path!

The A^{*} algorithm

We assume there is a function $h(x)$ (the heuristic)

- In our example, $\mathrm{h}(\mathrm{x})$ is the distance from x to Stockholm as the crow flies
When we take an edge $\mathrm{x} \rightarrow \mathrm{y}$, we are interested not only in the weight but also in how h changes:
- If $\mathrm{h}(\mathrm{y})>\mathrm{h}(\mathrm{x})$, we moved away from the target (bad); if $\mathrm{h}(\mathrm{y})<\mathrm{h}(\mathrm{x})$, we moved towards the target (good)
Idea: give a bonus to edges that reduce the value of h !
- If we have an edge from x to y, we increase its weight by $h(y)-h(x)$ - so "good" edges get cheaper and "bad" edges get more expensive
Then we run Dijkstra's algorithm on this new graph!

A* - an example

A* was originally invented for robot motion planning! Here is a floor with an obstacle in. (Edges given directions for simplicity.)
The robot wants to get from the blue node to the black node.
The shortest path has weight 9 - Dijkstra's algorithm will explore the whole graph!

A* - an example

Now let's use the heuristic $\mathrm{h}(\mathrm{x})=$ "Manhattan distance" (x coordinate $+y$ coordinate) from x to black node e.g., h (blue node) $=5$, because black node is 2 right and 3 up from black node
If there is an edge from x to y, we add $h(y)-h(x)$, so for this graph:

- If the edge goes up or right, we decrease its weight by 1
- If it goes down or left, we increase its weight by 1

A* - an example

In the new graph, the up and right edges have weight 0 , and the left and down edges have weight 2
The shortest path has weight 4 - you have to go left twice
The area the algorithm explores is highlighted in red

Bergen
 Gothenburg to Stockholm

A* - why does it work?

In A^{*}, we change the weights of all the edges - are we still going to get the shortest path for the original graph? Yes! Let's look at a path $\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{c}$:

- Assume the weights of the two edges are w_{ab} and w_{bc}
- A^{*} modifies the weights to $\mathrm{w}_{\mathrm{ab}}+\mathrm{h}(\mathrm{b})-\mathrm{h}(\mathrm{a})$ and $\mathrm{w}_{\mathrm{bc}}+\mathrm{h}(\mathrm{c})-\mathrm{h}(\mathrm{b})$
- The weight of the path becomes $\mathrm{w}_{\mathrm{ab}}+\mathrm{h}(\mathrm{b})-\mathrm{h}(\mathrm{a})+\mathrm{w}_{\mathrm{bc}}+\mathrm{h}(\mathrm{c})-\mathrm{h}(\mathrm{b})=$ $\mathrm{w}_{\mathrm{ab}}+\mathrm{w}_{\mathrm{bc}}+\mathrm{h}(\mathrm{c})-\mathrm{h}(\mathrm{a})$
- In other words, the weight of the path increases by $\mathrm{h}(\mathrm{c})-\mathrm{h}(\mathrm{a})$. In fact, the same thing happens for paths of any length!
So the total weight of each path from source to target is increased by h(target) - h (source) - a constant
The weight of each path changes, but by the same amount - so the shortest path is still the shortest path!

Some technicalities

Dijkstra's algorithm doesn't work if there is an edge with a negative weight
So we'd better be sure that modifying the weights never makes them negative
If we have an edge from x to y of weight w, the new weight is $\mathrm{w}+\mathrm{h}(\mathrm{y})-\mathrm{h}(\mathrm{x})$, so this is fine as long as:

- $\mathrm{h}(\mathrm{x}) \leq \mathrm{w}+\mathrm{h}(\mathrm{y})$

That is, by following an edge you can't reduce the distance to the target by more than the weight of that edge - this is true e.g. of distance in maps

A* - summary

An extension of Dijkstra's algorithm that uses distance information to move towards the destination instead of exploring in all directions

- Still guaranteed to find the shortest path

Works very well in practice!
If we multiply the heuristic function by a constant, we can direct the search less or more aggressively

- But if we're too aggressive and the heuristic function returns too large values, the edge weights will become negative
- In this case we can't use Dijkstra's algorithm, but there is a more complex version of A^{*} we can use instead
- But this aggressive version of A^{*} can find suboptimal paths

