
Breadth-first search

Breadth-first search

A breadth-first search (BFS) in a graph visits
the nodes in the following order:
● First it visits some node (the start node)
● Then all the start node's immediate neighbours
● Then their neighbours
● and so on
● but only visiting each node once

So it visits the nodes in order of how far
away they are from the start node

Implementing breadth-first search

We maintain a queue of nodes that we are
going to visit soon
● Initially, the queue contains the start node

We also remember which nodes we've
already visited or added to the queue
Then repeat the following process:
● Remove a node from the queue
● Visit it
● Find all adjacent nodes and add them to the queue,

unless they've previously been added to the queue

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
0

Visit order:

Initially,
queue contains

start node

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:

Visit order:
0

Step 1:
remove node
from queue
and visit it

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
3 1

Visit order:
0

Step 2:
add adjacent nodes

to queue
(only unvisited ones)

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
1

Visit order:
0 3

Step 1:
remove node
from queue
and visit it

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
1 2

Visit order:
0 3

Step 2:
add adjacent nodes

to queue
(only unvisited ones)

0 is already
visited, so

we don't add
it to the queue

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
2

Visit order:
0 3 1

Step 1:
remove node
from queue
and visit it

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
2 4 6 7

Visit order:
0 3 1

Step 2:
add adjacent nodes

to queue
(only unvisited ones)

2 is already
in the queue, so

we don't add
it again

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
4 6 7

Visit order:
0 3 1 2

Step 1:
remove node
from queue
and visit it

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
4 6 7 9 8

Visit order:
0 3 1 2

Step 2:
add adjacent nodes

to queue
(only unvisited ones)

Skip to the end...

Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:

Visit order:
0 3 1 2 4
6 7 9 8 5

We reach step 1, but
the queue is empty,

and we're finished!

Why does using a queue work?

Suppose the queue contains all nodes that are distance n from the starting
node:

We remove the first node and add its neighbours, which are at a distance
of n+1:

Since queues are FIFO, we then visit all the other distance n nodes, adding
each node’s neighbours to the queue. The queue now consists only of
distance n+1 nodes!
So we explore all nodes of distance
n before getting to nodes of distance
n+1.
Side note: if we use a stack instead of a queue, we get depth-first search!

...

distance n

... ...

distance n distance n+1

... ...

distance n+1

Application: unweighted shortest path

We can represent a maze as a graph – nodes are junctions,
edges are paths. We want to find the simplest way (fewest
choices) to get from entrance to exit. This is the shortest path

Application: unweighted shortest path

We do a breadth-first search from the entrance and remember the distance
from the entrance to each node

● Distance to a node = distance to “parent node” + 1

Using these distances, we can trace back from the exit to the entrance!

0
1

3
2

4

2

3

32
4

2 4 3
4

4

Dijkstra's algorithm

Weighted graphs

In a weighted graph, each edge is labelled
with a weight, a number:

The weight typically represents the “cost” of
following the edge

The (weighted) shortest path problem

Find the path with least total weight from point A to
point B in a weighted graph
(If there are no weights:
can be solved with BFS)
Useful in e.g.,
route planning,
network routing
Most common approach:
Dijkstra's algorithm,
which works when all
edges have non-negative weight

Dijkstra's algorithm

Dijkstra's algorithm computes the distance from
a start node to all other nodes
It visits the nodes of the graph in
order of distance from the start node,
and computes the distance
We first visit the start node,
which has a distance of 0
We are going to use the idea
of a border edge, which is an
edge from a visited node to an
unvisited node (yellow here)
● If you want to get from the start node to an

unvisited node, you have to go via a border edge

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

At each step we visit the closest node that
we haven't visited yet
This node must be the neighbour
of a visited node (why?)
● Here either Blaxhall or Harwich
● That means it must be the target

of a border edge

For each border edge x y:→
● Add the distance to x and the weight

of the edge x → y
● This is the total distance to y, going via

that border edge

Whichever node y has the shortest
total distance, visit it!

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Visited nodes (red):
Dunwich distance 0
Border edges lead to:
Blaxhall (distance 15),
Harwich (distance 53)
So visit Blaxhall
(distance 15)

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Visited nodes:
Dunwich distance 0
Blaxhall distance 15
Border edges lead to:
● Feering (distance

15 + 46 = 61)
● Harwich (via Dunwich,

distance 53)
● Harwich (via Blaxhall,

distance 15 + 40 = 55)

So visit Harwich (distance 53)

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Visited nodes:
Dunwich distance 0
Blaxhall distance 15
Harwich distance 53
Neighbours (yellow) are:
● Feering (distance

15 + 46 = 61)
● Tiptree (distance

53 + 31 = 84)
● Clacton (distance

53 + 17 = 70)

So visit Feering (distance 61)

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Visited nodes:
Dunwich distance 0
Blaxhall distance 15
Harwich distance 53
Feering distance 61
Neighbours are:
● Tiptree via Feering

(distance 61 + 3 = 64)
● Tiptree via Harwich

(distance 55 + 29 = 84)
● Clacton (distance 53 + 17 = 70)
● Malden (distance 61 + 11 = 72)

So visit Tiptree (distance 64)

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Visited nodes:
Dunwich distance 0
Blaxhall distance 15
Harwich distance 53
Feering distance 61
Tiptree distance 64
Neighbours are:
● Clacton (distance 53 + 17 = 70,

also via Tiptree 64 + 29 = 93)
● Maldon (distance 61 + 11 = 72,

also via Tiptree 64 + 8 = 72)

So visit Clacton (distance 70)

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Visited nodes:
Dunwich distance 0
Blaxhall distance 15
Harwich distance 53
Feering distance 61
Tiptree distance 64
Clacton distance 70
Neighbours are:
● Maldon (distance 61 + 11 = 72,

also via Tiptree 64 + 8 = 72,
also via Clacton 70 + 40 = 110)

So visit Maldon (distance 72)

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Visited nodes:
Dunwich distance 0
Blaxhall distance 15
Harwich distance 53
Feering distance 61
Tiptree distance 64
Clacton distance 70
Maldon distance 72
Finished!

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Two problems

1. How to implement this efficiently?
● Naive implementation takes O(|E| × |V|) time, where |E| =

number of edges, |V| = number of nodes
● This is because, in order to choose the next node to visit, we have

to go through all border edges to find the best one
● We can solve this by storing the border edges in a priority queue!

2. How to find not only the distance to each node, but
the shortest path?
● One possibility: use the same trick as we did for breadth-first

search – work backwards from the target node, only following
edges that reduce the total distance sufficiently

● A simpler approach: when we visit a node, remember which edge
we came from to get to the node

Dijkstra's algorithm, made efficient

To find the closest unvisited node, we store the targets
of all border edges in a priority queue
● The priority is the total distance to the node via that edge
● To make it easier to find paths, we also record the source of the

border edge
● To determine which node to visit next, we just take the node with

the smallest priority from the priority queue
● The node might already have been visited, in which case we ignore

it

Whenever we visit a node, we will add the target of all
of its outgoing edges to the priority queue
When the priority queue is empty, we are done!

Dijkstra's algorithm

S is the visited set and Q is the
priority queue of neighbouring nodes
Initially, no nodes have been visited,
and the priority queue contains the
start node:
S = {}
Q = {Dunwich 0}
The smallest element of Q
is “Dunwich 0”:
● Remove it from Q
● Add “Dunwich 0” to S
● Add Dunwich’s outgoing

edges to Q

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0}
Q = {Blaxhall 15 via Dunwich,
 Harwich 53 via Dunwich}
The smallest element of Q is
“Blaxhall 15 via Dunwich”:
● Remove it from Q
● Add “Blaxhall 15 via Dunwich”

to S
● Add Blaxhall’s outgoing edges to Q

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,
 Blaxhall 15 via Dunwich}
Q = {Harwich 53 via Dunwich,
 Feering 61 via Blaxhall,
 Harwich 55 via Blaxhall}
The smallest element of Q is
“Harwich 53 via Dunwich”:
● Remove it from Q
● Add “Harwich 53 via Dunwich” to S

Add Harwich’s outgoing edges to Q

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,
 Blaxhall 15 via Dunwich,
 Harwich 53 via Dunwich}
Q = {Feering 61 via Blaxhall,
 Harwich 55 via Blaxhall,
 Tiptree 84 via Harwich,
 Clacton 70 via Harwich}
The smallest element of Q is
“Harwich 55 via Blaxhall”.
But Harwich is already in S!
So just ignore it.

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,
 Blaxhall 15 via Dunwich,
 Harwich 53 via Dunwich}
Q = {Feering 61 via Blaxhall,
 Tiptree 84 via Harwich,
 Clacton 70 via Harwich}
The smallest element of Q is
“Feering 61 via Blaxhall”:
● Remove it from Q
● Add “Feering 61 via Blaxhall”

to S
● Add Feering’s outgoing edges to Q

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,
 Blaxhall 15 via Dunwich,
 Harwich 53 via Dunwich,
 Feering 61 via Blaxhall}
Q = {Tiptree 84 via Harwich,
 Tiptree 64 via Feering,
 Maldon 72 via Feering,
 Clacton 70 via Harwich}
Note: the shortest path to
Feering is:

Dunwich Blaxhall Feering→ →

and we can tell this by looking at S
since we get to Feering via Blaxhall
and to Blaxhall via Dunwich.

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm, efficiently

Let S = {} and Q = {start node 0}
While Q is not empty:
● Remove the node x from Q that has the smallest priority (distance), and let

that distance be d
● If x is in S, do nothing
● Otherwise, add x to S with distance d, and for each outgoing edge x y→ , add

y to Q with priority d + (weight of edge x y)→

Implementation notes:
● Each entry in Q and S should also record “via” information, in order to easily

find paths
● S can be implemented via a map, or by adding extra fields to the node class

Each edge in the graph is processed once, and added to Q at
most once, so complexity is O(n log n) where n = number of
edges in graph. Good!

Prim's algorithm

Minimum spanning trees

A spanning tree of a graph
is a subgraph (a graph
obtained by deleting
some of the edges) which:
● is acyclic
● is connected

A minimum spanning
tree is one where the
total weight of the edges
is as low as possible

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

40

3
17

29
8

Blaxhall

Minimum spanning trees

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

40

3
17

29
8

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Prim's algorithm

We will build a minimum spanning tree by
starting with no edges and adding edges until the
graph is connected
Keep a set S of all the nodes that are in the tree so
far, initially containing one arbitrary node
We call an edge a border edge if it connects a node
in S to a node not in S
While there is a node not in S:
● Pick the lowest-weight border edge
● Add that edge to the spanning tree, and add the newly-

connected node to S

Minimum spanning treesS = {Feering}
Lowest-weight

border edge
is Feering Tiptree→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

Blaxhall

Minimum spanning treesS = {Feering, Tiptree}
Lowest-weight

border edge
is Tiptree Maldon→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering
3

Blaxhall

Minimum spanning trees
S = {Feering, Tiptree,

Maldon}
Lowest-weight

border edge
is Tiptree Clacton→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering
3

8

Blaxhall

Minimum spanning trees
S = {Feering, Tiptree,

Maldon, Clacton}
Lowest-weight

border edge
is Clacton Harwich→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering
3

29
8

Blaxhall

Minimum spanning trees
S = {Feering, Tiptree,

Maldon, Clacton,
Harwich}

Lowest-weight
border edge

is Harwich Blaxhall→
Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering
3

17
29

8

Blaxhall

Minimum spanning trees
S = {Feering, Tiptree,

Maldon, Clacton,
Harwich, Blaxhall}

Lowest-weight
border edge

is Blaxhall Dunwich→
Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

40

3
17

29
8

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

40

3
17

29
8

Blaxhall

Minimum spanning trees

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Notice:
we get a minimum

spanning tree
whatever node we start at!

For this graph,
because there is only one
minimum spanning tree,
we always get that one.

Prim's algorithm, efficiently

The operation
● Pick the lowest-weight edge between a node in S and a node not in S

takes O(n) time if we're not careful! Then Prim's
algorithm will be O(n2)
To implement Prim's algorithm, use a priority queue
containing all border edges
● Whenever you add a node to S, add all of its edges (that are not to

nodes in S) to a priority queue
● To find the lowest-weight edge, just find the minimum element of the

priority queue
● Just like in Dijkstra's algorithm, the priority queue might return an

edge between two elements that are now in S: ignore it

New time: O(n log n) :)

Why does it work? (not on exam)

Proof sketch (drawing a diagram helps):
Suppose that Prim’s algorithm gives a non-minimal spanning tree,
and imagine that we are at the earliest point in the algorithm where
it goes wrong:
● We have a minimum spanning tree T for S; the smallest border edge e goes to node

x (not in S)
● T can be extended to a minimum spanning tree T’ for the whole graph, but T plus e

cannot

We will show that T plus e can be extended to a minimal spanning
tree, which is a contradiction:
● Observation: in a tree, there is exactly one path between every pair of nodes.
● Therefore, in T’, there is exactly one path from an arbitrary node in S to x
● This path must go through a border edge of S. Remove this border edge; now S is

disconnected from x. Add the edge e; this results in a spanning tree. This new
spanning tree is minimal, since T’ is minimal and e had minimum weight among all
border edges.

Summary

Breadth-first search – finding shortest paths in unweighted graphs, using a
queue
Dijkstra's algorithm – finding shortest paths in weighted graphs – some
extensions for those interested:
● Bellman-Ford: works when weights are negative (Dijkstra allows weights to be zero but not

negative)
● A* – faster – tries to move towards the target node, where Dijkstra's algorithm explores equally

in all directions

Prim's algorithm – finding minimum spanning trees
Dijkstra’s and Prim’s algorithms are based on the idea of choosing the “best”
border edge
● This is called a greedy algorithms – it repeatedly finds the “best” next element
● Common style of algorithm design when trying to find the “best” solution to a problem; finds at

least a locally optimal solution – but for the algorithms today is globally optimal

Both use a priority queue to get O(n log n)
● Dijkstra's algorithm is sort of BFS but using a priority queue instead of a queue

Many many many more graph algorithms

A* search
(not on exam)

A problem with Dijkstra's algorithm

We can use Dijkstra's algorithm to find the
shortest route from A to B
But it explores all nodes in the graph that are
closer than B!
A person planning a route would try to move
towards B

Gothenburg to Stockholm?

The A* algorithm

Often we have a notion of distance in a graph
● e.g., Gothenburg to Stockholm is 400km as the crow

flies
● No possible route can be shorter than this!

A* uses distance to guide the search towards
the destination
● Try to pick edges that reduce the distance to the

destination, avoid edges that increase the distance
● But still guaranteeing to find the shortest path!

The A* algorithm

We assume there is a function h(x) (the heuristic)
● In our example, h(x) is the distance from x to Stockholm as the

crow flies

When we take an edge x y, we are interested not →
only in the weight but also in how h changes:
● If h(y) > h(x), we moved away from the target (bad);

if h(y) < h(x), we moved towards the target (good)

Idea: give a bonus to edges that reduce the value of h!
● If we have an edge from x to y, we increase its weight by

h(y)-h(x) – so “good” edges get cheaper and “bad” edges get
more expensive

Then we run Dijkstra's algorithm on this new graph!

A* – an example

A* was originally invented for robot motion
planning! Here is a floor with an obstacle in.
(Edges given directions for simplicity.)
The robot wants to get
from the blue node to
the black node.
The shortest path has
weight 9 – Dijkstra's
algorithm will explore
the whole graph!

1 1 1 1 1

1

1

1

1

1 1

1

1

1 1

1

1

1 1 1
1

1

1

1

111

1

1

1 1

1

1 1

1

1 1

1

1

1 1

A* – an example

Now let's use the heuristic h(x) = “Manhattan distance”
(x coordinate + y coordinate) from x to black node
e.g., h(blue node) = 5, because
black node is 2 right and 3 up
from black node
If there is an edge from
x to y, we add h(y)-h(x),
so for this graph:
● If the edge goes up or right,

we decrease its weight by 1
● If it goes down or left,

we increase its weight by 1

1 1 1 1 1

1

1

1

1

1 1

1

1

1 1

1

1

1 1 1
1

1

1

1

111

1

1

1

1 1

1

1 1

1

1 1

1

1

1

A* – an example

In the new graph, the up and right edges
have weight 0, and the left and down edges
have weight 2
The shortest path has
weight 4 – you have to
go left twice
The area the algorithm
explores is highlighted
in red

0 0 0 0 0

2

2

2

2

2 2

2

2

2 2

2

2

2 0 0
0

0

0

0

000

0

0

2

2 2

2

0 0

2

2 2

2

0

0

Gothenburg to Stockholm

A* – why does it work?

In A*, we change the weights of all the edges – are we still
going to get the shortest path for the original graph? Yes!
Let’s look at a path a b c:→ →
● Assume the weights of the two edges are wab and wbc

● A* modifies the weights to wab + h(b) – h(a) and wbc + h(c) – h(b)
● The weight of the path becomes wab + h(b) - h(a) + wbc + h(c) - h(b) =

wab + wbc + h(c) – h(a)
● In other words, the weight of the path increases by h(c) – h(a). In fact,

the same thing happens for paths of any length!

So the total weight of each path from source to target is
increased by h(target) - h(source) – a constant
The weight of each path changes, but by the same amount
– so the shortest path is still the shortest path!

Some technicalities

Dijkstra's algorithm doesn't work if there is an
edge with a negative weight
So we'd better be sure that modifying the weights
never makes them negative
If we have an edge from x to y of weight w, the
new weight is w+h(y)-h(x), so this is fine as long
as:
● h(x) ≤ w + h(y)

That is, by following an edge you can't reduce the
distance to the target by more than the weight of
that edge – this is true e.g. of distance in maps

A* – summary

An extension of Dijkstra's algorithm that uses
distance information to move towards the
destination instead of exploring in all directions
● Still guaranteed to find the shortest path

Works very well in practice!
If we multiply the heuristic function by a constant,
we can direct the search less or more aggressively
● But if we're too aggressive and the heuristic function returns

too large values, the edge weights will become negative
● In this case we can't use Dijkstra's algorithm, but there is a

more complex version of A* we can use instead
● But this aggressive version of A* can find suboptimal paths

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

