


Graphs

A graph is a data structure consisting of
nodes (or vertices) and edges

e An edge is a connection between two nodes

A » B
‘D »E »C

Nodes: A, B,C, D, E
Edges: (A, B), (A, D), (D, E), (E, C)



Nodes are stations

Algorithm:

&

Edges are “bits of line”

What is the quickest way
from point A to point B?
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Nodes are components
. Edges are connections
v, Algorithm:

How much current

1.590V R 01 flows through each wire
(Verar) (as a function of time)?
— 10L

CURVATURE
COMPENSATOR

CIRCUIT




Graphs

Graphs are used all over the place:

e communications networks

— many of the algorithms behind the internet are based on graphs
e maps, transport networks, route finding

e friends/followers in a social network

e etc.

Anywhere where you have connections or
relationships!

Normally the nodes and edges are labelled

with relevant information



Graphs

We only care what nodes and edges the graph
has, not how it's drawn — these two are the
same graph

(o) (&)
e

V={0,1,23,4,5,6}
E=1(0,1),(0,2),(0,5),(0,6),(3,5), (3,4), (4,5), (4,6)}

®

©,



Graphs

Graphs can be directed or undirected

e In an undirected graph, an edge connects two nodes
symmetrically (we draw a line between the two
nodes)

o In a directed graph, the edge goes from the source
node to the target node (we draw an arrow from the
source to the target)

— we say that the target node is a successor of the source node

A tree is a special case of a directed graph

e Edge from parent to child



Paths

A path is a sequence of edges that take you
from one node to another

Ann Arbor

Detroit

120 Cleveland 130 Pittsburgh

Toledo
20

Chicago ¢
>

180 Philadelphia

Indianapolis Columbus

[f there is a path from node A to node B, we
say that B is reachable from A



Cyclic graphs

A graph is cyclic if there is a path from a node
to itself; we call the path a cycle.
Otherwise the graph is acyclic.

Ann Arbor
® 59 Detroit
40 Y .
0 120 Cleveland 130 Pittsburgh
260 ' \ x
Toledo
20
hi \
Chicago ¢ . {50
®
180 Philadelphia
- This pathisa cycle
and the graph
180 . .
® is cyclic

Indianapolis Columbus




Cyclic graphs

A path is only a cycle if:

e it starts and ends at the same node
(otherwise it's definitely not a cycle!)

¢ it's non-empty
(otherwise all graphs would be cyclic)

e itis a simple path: it doesn't pass through the same
node or edge twice, except for starting and ending at
the same node (otherwise the following graph would

be cyclic, by going from 4 to 5 and back again):

4) 5




How to implement a graph

One choice: adjacency matrix

o If there are n nodes, an adjacency matrix is an n x n matrix where
row i, column j is 1 if there is an edge from node i to node j (can
also store edge labels instead of Os and 1s)

910100
O o 000010 Row2 column5
900011 (countingfrom 0):
4 910000 an edge from
% 200 10¢@ node2tonode5
9@ 000 0 1

Problem: takes O(n2) memory!

e Most graphs in programming are sparse: relatively few pairs of
nodes have an edge between them




How to implement a graph

A better choice: adjacency list

o Set of all nodes in the graph, and with each node
store all the edges having that node as source

next = [ — next null
value = 1

de[ ]
L]
[el —
[l] | next E—rf_. nex
[2] — 1 5 val
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How to implement a graph

A better choice: adjacency Zi#

° Set Of,JLAAJ###]

store

Set of nodes

ing that node «.s source

Node| ]

(@]
[1]
(2]
[3]
[4]
[5]

AL

st ot edges

- for each node
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Adjacency list — undirected graph

Each edge appears twice, once for the source
and once for the target node

Node S— Node
next = [ — next = null
value 1 value = 4
next = [ —— next = —— ne C——+ | next = nu
[@] __._r—-*"'/ value = @ value ] val -7 1 3
.--""'r'.‘
[1] ==t}
[2] ___“_'_‘—‘-"—__-. Node I i
o — S
[4] —— — nex null
1 1 valu 3
g ode
= IEI—--"E next = [ —— 11
1 1 valu 4 1 2
de :,, ode
= [—3 next = — 11
1 3 val 4 1 1




Graph algorithms:
depth-first search,

reachability,
connected components




Reachability

How can we tell what nodes are reachable
from a given node?

We can start exploring the graph from that
node, but we have to be careful not to (e.g.)
get caught in cycles, or visit the same node
lots of times

Depth-first search is one way to explore the
part of the graph reachable from a given
node



Depth-first search

Depth-first search is a traversal algorithm

e This means it takes a node as input, and enumerates all nodes
reachable from that node

e Similar to tree traversals!

[t comes in two variants, preorder and postorder — we'll
start with preorder

To do a preorder DFES starting from a node:

e visit the node

o for each outgoing edge from the node,
recursively DES the target of that edge,
unless it has already been visited
It's called preorder because we visit each node before its

outgoing edges



Depth-first search — code sketch

Only visit node

void preorderDFS(Node x) { if not already
if (!x.visited) { visited — not
needed in

X.visited = true;

visit Xx; .

for (Node y: x.successors)
preorderDFS(y);

~ tree traversals!




Example of a depth-first search

Visit order: 1
DES node 1

(By the way, is 5
reachable from 17?)

O = current - =unvisited - =visited



Example of a depth-first search

Visit order: 1 3

Follow edge 1 — 3,
recursively DFS node 3

O = current - =unvisited - =visited



Example of a depth-first search

Visit order: 1 3 6

Follow edge 3 — 6,
recursively DES node 6

1_,2%5\

N

O = current - =unvisited - =visited



Example of a depth-first search

Visit order: 1 3 6

Recursion backtracks to 3

O = current - =unvisited - =visited



Example of a depth-first search

Visit order: 136 4

Follow edge 3 — 4,
recursively DFS node 4

1, -2- 5

O = current '~ =unvisited - =visited



Example of a depth-first search

Visit oxrder: 13642

Follow edge 4 — 2,
recursively DFS node 2

We don't follow 4 = 6 ‘
or 2 = 3, as those nodes \ g \ /

have already been visited

Eventually the recursion
backtracks to 1 and we stop

O = current , = unvisited

3—»4

. = visited

-



Reachability revisited

How can we tell what nodes are reachable
from a given node?

Answer:

Perform a depth-first search starting from
node A, and the nodes visited by the DFS are
exactly the reachable nodes



Connectedness

An undirected graph is called connected if

there is a path from every node to every
other node

This graph is
connected

How can we tell if a graph is connected?



Connectedness

An undirected graph is called connected if

there is a path from every node to every
other node

@ %)
This graph is

not connected

How can we tell if a graph is connected?



Connectedness

[f an undirected graph is unconnected, it stil
consists of connected components

{4 5}is a - {6,7,89}isa
connected connected
component component




Connectedness

A single unconnected node is a connected
component in itself

. ®

connected
component




Connected components

How can we find:

o the connected component containing a
given node?

e all connected components in the graph?



Connected components

To find the connected component containing
a given node:
e Perform a DFS starting from that node

o The set of visited nodes is the connected component
To find all connected components:

e Pick anode that doesn't have a connected component
yet

o Use the algorithm above to find its connected
component

e Repeat until all nodes are in a connected component



Strongly-connected components

In a directed graph, there are two notions of
connectedness:

o strongly connected means there is a path from every
node to every other node

o weakly connected means the graph is connected if you
ignore the direction of the edges
(the equivalent undirected graph is connected)

1> 2<«-5

 This graphis |
weakly connected, \:?S:\él /
but not strongly X
- connected (why?) \ GL |




Strongly-connected components

You can always divide a directed graph into its
strongly-connected components (SCCs):

1 =2« 5

A AN

3" -4

In each strongly-connected component, every node
is reachable from every other node

e The relation “nodes A and B are both reachable from each
other” is an equivalence relation on nodes

e The SCCs are the equivalence classes of this relation



Strongly-connected components

To find the SCC of a node A, we take the

intersection of:

e the set of nodes reachable from A

e the set of nodes which A can be reached from
(the set of nodes “backwards-reachable” from A)

This gives us all the nodes B such that:

o there is a path from A to B, and
o thereisapath fromBto A

To find the set of nodes backwards-reachable
from A, we will use the idea of the transpose of a

graph



Transpose of a graph

To find the transpose of a directed graph, flip
the direction of all the graph's edges:

1 »2< 5 1<« 2 =5

A/ A
\ / - TN/

f CamaP
Graph Transpose

Note that: there is a path from A to B in the
original graph iff there is a path from
B to A in the transpose graph!




Strongly-connected components

To find the SCC of a node (such as 2), perform a
DES in the graph and the transpose graph:

1 »2< 5 1< 2 5

| Nga|
g <7

% 6 -7
Graph Transpose
The intersection of the nodes visited in both

DFESs are the SCC of 2 — in this case {1, 2, 3, 4}




Strongly-connected components

To find the SCC of a node A:

 Find the set of nodes reachable from A, using DES

e Find the set of nodes which have a path to A,
by doing a DFS in the transpose graph

e Take the intersection of these two sets
Implementation in practice:

e When doing the DEFS in the transpose graph, we restrict
the search to the nodes that were reachable from A in the
original graph

e When doing the DFS in the forward graph, we can build
e.g. a map storing the “reversed edges’, so that we don't
need to actually construct the transpose graph



What do SCCs mean?

1]

he SCCs in a graph tell you about the cycles

in that graph!

o If a graph has a cycle, all the nodes in the cycle will be

in the same SCC

e If an SCC contains two nodes A and B, there is a path

from A to B and back again, so there is a cycle

A directed graph is acyclic iff:
e All the SCCs have size 1, and
e no node has an edge to itself (SCCs do not take any

notice of self-loops)



Cycles and SCCs

Here is the directed graph from before.

Notice that:

e The big SCC is where all the cycles are
o The acyclic “parts” of the graph have SCCs of size 1
e If you collapse each SCC into a single node, the graph becomes acyclic

The SCCs characterise the cycles in the graph!

1 -2405

S|

3 =4

oG




Graph algorithms:
postorder DFS,

detecting cycles,
topological sorting




Topological sorting

Here is a directed acyclic graph (DAG) with

courses and prerequisites: <
We might want
to find out: what -

courses in”?

is a possible order
tO take these el TR M- C ol R 7 CIS 223

This is what
topological sorting gives us. L

Note that the graph must be acyclic!



Example: topological sort

A topological sort of the nodes in a DAG is a
list of all the nodes, so that if there is a path
from u to v, then u comes before v in the list

Every DAG has a

topological sort,
often several

012345678 1is a
topological sort of
this DAG, but
015342678 isn't.




Postorder depth-first search

To implement topological sorting well need a
variant of DES called postorder depth-first

search

To do a postorder DEFS starting from a node:

e mark the node as reached

o for each outgoing edge from the node,
recursively DES the target of that edge,
unless it has already been reached

e visit the node

In postorder DES, we visit each node after we
visit its outgoing edges!



Depth-first search — code sketch

volid preorderDFS(Node x) {
1f (!x.visited) {
X.visited = true;

visit Xx;
for (Node y: Xx.successors)
preorderDFS(y);

}

void postorderDFS(Node x) {
1f (!x.visited) {
X.visited = true;
for (Node y: Xx.successors)
postorderDFS(y);
visit Xx;



Postorder depth-first search

Visit order:

DES node 1 (don't visit it yet, but remember
that we

have reached it) % 2 \‘ /5 )

O = current '~ =unvisited - =visited




Postorder depth-first search

Visit order:

Follow edge 1 — 3,
recursively DFS node 3

O = current - =unvisited - =visited



Postorder depth-first search

Visit order: 6

Follow edge 3 — 6,
recursively DES node 6

The recursion bottoms N vl o
out, visit 6! \ . \ /

O = current - =unvisited - =visited



Postorder depth-first search

Visit order: 6

Recursion backtracks to 3

O = current - =unvisited - =visited



Postorder depth-first search

Visit order: 6

Follow edge 3 — 4,
recursively DFS node 4

1245

O = current - =unvisited - =visited



Postorder depth-first search

Visit order: 6 2

Follow edge 4 — 2,
recursively DFS node 2

The recursion bottoms
out again and we visit 2

O = current w = unvisited

\%/ jj

3—»4

) = visited

-



Postorder depth-first search

Visit order: 6 2 4

The recursion backtracks and
now we visit 4

. —» ) % =)

O = current '~ =unvisited - =visited



Postorder depth-first search

Visit oxrder: 624 3

The recursion backtracks and
now we visit 3

O = current '~ =unvisited - =visited



Postorder depth-first search

Visitorder:62431

The recursion backtracks and
now we visit 1

O = current '~ =unvisited - =visited



Why postorder DFS?

In postorder DEFS:

e We only visit a node after we recursively DFS its
successors (the nodes it has an edge to)

If we look at the order the nodes are visited
(rather than the calls to DES):

o If the graph is acyclic, we visit a node only after we
have visited all its successors

[f we look at the list of nodes in the order
they are visited, each node comes after all its
successors (look at the previous slide)



Topological sorting

Visitorder:624 31

In topological sorting, we want each node to come
before its successors...

With postorder DFS, 2 = S
each node is visited \ /
dafter its successors! r

Idea: to topologically sort,

do a postorder DFS, \ | / Y

look at the order the nodes
are visited in and reverse it

Small problem: not all nodes are visited!
Solution: pick a node we haven't visited and DFES it



Topological sorting

To topologically sort a DAG:

 Pick a node that we haven't visited yet
e Do a postorder DES on it
e Repeat until all nodes have been visited

Then take the list of nodes in the order they
were visited, and reverse it

If the graph is acyclic, the list is topologically
sorted:

o If there is a path from node A to B, then A comes
before B in the list



Preorder vs postorder

You might think that in preorder DFS, we visit
each node before we visit its successsors

But this is not the case, 1o =2« 5
in this example from M /
earlier we visited 6 before '3 =4

its predecessor 4, because we I
happened to go through 3 7
Preorder DES visits the nodes in “any old order”

— postorder is more well-behaved

o In general, if there is a path from u to v, and u and v are
not in the same SCC, then u is visited after v



Detecting cycles in graphs

We can only topologically sort acyclic graphs
— how can we detect if a graph is cyclic?

Easiest answer: topologically sort the graph

and check if the result is actually

topologically sorted

e Does any node in the result list have an edge to a
node earlier in the list? If so, the topological sorting

failed, and the graph must be cyclic
o Otherwise, the graph is acyclic



Kosaraju's algorithm (not on exam)

Kosaraju's algorithm finds all the SCCs in a
directed graph in linear time

Recall our algorithm to find the SCC of a node A:

e Do a DFS starting from node A

e Do a DFS starting from node A in the transpose graph
o Take the intersection of the two visited sets
In Kosaraju's algorithm, we first do a DFS

starting from node A, giving a set S of visited
nodes

Then we find the SCCs of all nodes in S, by doing
several DFSes in the transpose graph!



Kosaraju's algorithm (not on exam)

Start with a node A, do a topological sort
starting from A

Now take the visited nodes in topological
order, and for each node:

o If we have already assigned the node an SCC, skip it

e Otherwise, do a DFS starting from that node in the
transpose graph

e The SCC of that node is the intersection of the two
visited sets



An alternative:

depth-first forests
(hot on exam)




Depth-first forests

Instead of producing a list of nodes, DFS can
return a tree that shows how the nodes were
explored (the recursion structure):

1%2%5 1




Depth-first forests

Repeating until all nodes have been visited,
we get a forest (set of trees):

12 5/ 1S




Depth-first forests

A graph is cyclic iff the graph has an edge

from a node in the tree to its ancestor:

Edge from
‘£ 4tol-cydlic

L

3 L
s B e

2




Depth-first forests

You can also topologically sort a graph by
flattening the forest into a list!

57,
1 =2« 13842

NAY 4

3%4

VeSS
\&5 o <




Depth-first forests

1]

he idea: make DFES return a forest of nodes,

instead of a list

e Pre/post-order? Those are just different ways to

flatten the forest

Many algorithms based on DES come out
pretty elegant that way

e You can view the graph as a forest, plus some extra

edges that go upwards, downwards or sideways in the
tree



Summary

Graphs are extremely useful!

» Common representation: adjacency lists (or just implicitly as references between the
objects in your program)

Several important graph algorithms:
 Reachability — can I get from node A to B?

Does the graph have a cycle?

Strongly-connected components — where are the cycles in the graph?

Topological sorting — how can I order the nodes in an acyclic graph?

These two are useful because they let you program graph algorithms without
worrying about cycles or visiting nodes multiple times

All these are based on depth-first search!

e Enumerate the nodes reachable from a starting node
e Preorder: visit each node before its successors
« Postorder: visit each node after its successors, gives nicer order

« Common pattern in these algorithms: repeat DFS from different nodes until all
nodes have been visited
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