
Graphs

Graphs

A graph is a data structure consisting of
nodes (or vertices) and edges
● An edge is a connection between two nodes

Nodes: A, B, C, D, E
Edges: (A, B), (A, D), (D, E), (E, C)

A B

CED

Nodes are stations
Edges are “bits of line”

Algorithm:
What is the quickest way
from point A to point B?

Nodes are components
Edges are connections

Algorithm:
How much current

flows through each wire
(as a function of time)?

Graphs

Graphs are used all over the place:
● communications networks

– many of the algorithms behind the internet are based on graphs
● maps, transport networks, route finding
● friends/followers in a social network
● etc.

Anywhere where you have connections or
relationships!
Normally the nodes and edges are labelled
with relevant information

Graphs

We only care what nodes and edges the graph
has, not how it's drawn – these two are the
same graph

V = {0, 1, 2, 3, 4, 5, 6}

E = {(0, 1), (0, 2), (0, 5), (0, 6), (3, 5), (3, 4), (4, 5), (4, 6)}

Graphs

Graphs can be directed or undirected
● In an undirected graph, an edge connects two nodes

symmetrically (we draw a line between the two
nodes)

● In a directed graph, the edge goes from the source
node to the target node (we draw an arrow from the
source to the target)
– we say that the target node is a successor of the source node

A tree is a special case of a directed graph
● Edge from parent to child

Paths

A path is a sequence of edges that take you
from one node to another

If there is a path from node A to node B, we
say that B is reachable from A

Cyclic graphs

A graph is cyclic if there is a path from a node
to itself; we call the path a cycle.
Otherwise the graph is acyclic.

This path is a cycle
and the graph

is cyclic

Cyclic graphs

A path is only a cycle if:
● it starts and ends at the same node

(otherwise it's definitely not a cycle!)
● it's non-empty

(otherwise all graphs would be cyclic)
● it is a simple path: it doesn't pass through the same

node or edge twice, except for starting and ending at
the same node (otherwise the following graph would
be cyclic, by going from 4 to 5 and back again):

4 5

How to implement a graph

One choice: adjacency matrix
● If there are n nodes, an adjacency matrix is an n × n matrix where

row i, column j is 1 if there is an edge from node i to node j (can
also store edge labels instead of 0s and 1s)

 0 1 0 1 0 0
 0 0 0 0 1 0
 0 0 0 0 1 1
 0 1 0 0 0 0
 0 0 0 1 0 0
 0 0 0 0 0 1
Problem: takes O(n2) memory!
● Most graphs in programming are sparse: relatively few pairs of

nodes have an edge between them

Row 2, column 5
(counting from 0):

an edge from
node 2 to node 5

How to implement a graph

A better choice: adjacency list
● Set of all nodes in the graph, and with each node

store all the edges having that node as source

How to implement a graph

A better choice: adjacency list
● Set of all nodes in the graph, and with each node

store all the edges having that node as sourceSet of nodes

List of edges
for each node

Adjacency list – undirected graph

Each edge appears twice, once for the source
and once for the target node

Graph algorithms:
depth-first search,

reachability,
connected components

Reachability

How can we tell what nodes are reachable
from a given node?
We can start exploring the graph from that
node, but we have to be careful not to (e.g.)
get caught in cycles, or visit the same node
lots of times
Depth-first search is one way to explore the
part of the graph reachable from a given
node

Depth-first search

Depth-first search is a traversal algorithm
● This means it takes a node as input, and enumerates all nodes

reachable from that node
● Similar to tree traversals!

It comes in two variants, preorder and postorder – we'll
start with preorder
To do a preorder DFS starting from a node:
● visit the node
● for each outgoing edge from the node,

recursively DFS the target of that edge,
unless it has already been visited

It's called preorder because we visit each node before its
outgoing edges

Depth-first search – code sketch

void preorderDFS(Node x) {
 if (!x.visited) {
 x.visited = true;
 visit x;
 for (Node y: x.successors)
 preorderDFS(y);
}

Only visit node
if not already
visited – not

needed in
tree traversals!

Example of a depth-first search

Visit order: 1
DFS node 1
(By the way, is 5
reachable from 1?)

1 2

3 4

5

6 7

= unvisited = visited= current

Example of a depth-first search

Visit order: 1 3
Follow edge 1 3,→
recursively DFS node 3

1 2

3 4

5

6 7

= unvisited = visited= current

Example of a depth-first search

Visit order: 1 3 6
Follow edge 3 6,→
recursively DFS node 6

1 2

3 4

5

6 7

= unvisited = visited= current

Example of a depth-first search

Visit order: 1 3 6
Recursion backtracks to 3

1 2

3 4

5

6 7

= unvisited = visited= current

Example of a depth-first search

Visit order: 1 3 6 4
Follow edge 3 4,→
recursively DFS node 4

1 2

3 4

5

6 7

= unvisited = visited= current

Example of a depth-first search

Visit order: 1 3 6 4 2
Follow edge 4 2,→
recursively DFS node 2
We don't follow 4 6→
or 2 3, as those nodes→
have already been visited
Eventually the recursion
backtracks to 1 and we stop

1 2

3 4

5

6 7

= unvisited = visited= current

Reachability revisited

How can we tell what nodes are reachable
from a given node?
Answer:
Perform a depth-first search starting from
node A, and the nodes visited by the DFS are
exactly the reachable nodes

Connectedness

An undirected graph is called connected if
there is a path from every node to every
other node

How can we tell if a graph is connected?

4

8

5

9

6 7

This graph is
connected

Connectedness

An undirected graph is called connected if
there is a path from every node to every
other node

How can we tell if a graph is connected?

4

8

5

9

6 7

This graph is
not connected

Connectedness

If an undirected graph is unconnected, it still
consists of connected components

4

8

5

9

6 7

{4, 5} is a
connected

component

{6, 7, 8, 9} is a
connected

component

Connectedness

A single unconnected node is a connected
component in itself

4

8 9

6 7

{4} is a
connected

component

Connected components

How can we find:
● the connected component containing a

given node?
● all connected components in the graph?

Connected components

To find the connected component containing
a given node:
● Perform a DFS starting from that node
● The set of visited nodes is the connected component

To find all connected components:
● Pick a node that doesn't have a connected component

yet
● Use the algorithm above to find its connected

component
● Repeat until all nodes are in a connected component

Strongly-connected components

In a directed graph, there are two notions of
connectedness:
● strongly connected means there is a path from every

node to every other node
● weakly connected means the graph is connected if you

ignore the direction of the edges
(the equivalent undirected graph is connected)

1 2

3 4

5

6 7

This graph is
weakly connected,
but not strongly

connected (why?)

Strongly-connected components

You can always divide a directed graph into its
strongly-connected components (SCCs):

In each strongly-connected component, every node
is reachable from every other node
● The relation “nodes A and B are both reachable from each

other” is an equivalence relation on nodes
● The SCCs are the equivalence classes of this relation

1 2

3 4

5

6 7

Strongly-connected components

To find the SCC of a node A, we take the
intersection of:
● the set of nodes reachable from A
● the set of nodes which A can be reached from

(the set of nodes “backwards-reachable” from A)

This gives us all the nodes B such that:
● there is a path from A to B, and
● there is a path from B to A

To find the set of nodes backwards-reachable
from A, we will use the idea of the transpose of a
graph

Transpose of a graph

To find the transpose of a directed graph, flip
the direction of all the graph's edges:

Note that: there is a path from A to B in the
original graph iff there is a path from
B to A in the transpose graph!

1 2

3 4

5

6 7

1 2

3 4

5

6 7

Graph Transpose

Strongly-connected components

To find the SCC of a node (such as 2), perform a
DFS in the graph and the transpose graph:

The intersection of the nodes visited in both
DFSs are the SCC of 2 – in this case {1, 2, 3, 4}

1 2

3 4

5

6 7

1 2

3 4

5

6 7
Graph Transpose

Strongly-connected components

To find the SCC of a node A:
● Find the set of nodes reachable from A, using DFS
● Find the set of nodes which have a path to A,

by doing a DFS in the transpose graph
● Take the intersection of these two sets

Implementation in practice:
● When doing the DFS in the transpose graph, we restrict

the search to the nodes that were reachable from A in the
original graph

● When doing the DFS in the forward graph, we can build
e.g. a map storing the “reversed edges”, so that we don’t
need to actually construct the transpose graph

What do SCCs mean?

The SCCs in a graph tell you about the cycles
in that graph!
● If a graph has a cycle, all the nodes in the cycle will be

in the same SCC
● If an SCC contains two nodes A and B, there is a path

from A to B and back again, so there is a cycle

A directed graph is acyclic iff:
● All the SCCs have size 1, and
● no node has an edge to itself (SCCs do not take any

notice of self-loops)

Cycles and SCCs

Here is the directed graph from before.
Notice that:
● The big SCC is where all the cycles are
● The acyclic “parts” of the graph have SCCs of size 1
● If you collapse each SCC into a single node, the graph becomes acyclic

The SCCs characterise the cycles in the graph!

1 2

3 4

5

6 7

Graph algorithms:
postorder DFS,

detecting cycles,
topological sorting

Topological sorting

Here is a directed acyclic graph (DAG) with
courses and prerequisites:
We might want
to find out: what
is a possible order
to take these
courses in?
This is what
topological sorting gives us.
Note that the graph must be acyclic!

Example: topological sort

A topological sort of the nodes in a DAG is a
list of all the nodes, so that if there is a path
from u to v, then u comes before v in the list
Every DAG has a
topological sort,
often several
012345678 is a
topological sort of
this DAG, but
015342678 isn't.

Postorder depth-first search

To implement topological sorting we'll need a
variant of DFS called postorder depth-first
search
To do a postorder DFS starting from a node:
● mark the node as reached
● for each outgoing edge from the node,

recursively DFS the target of that edge,
unless it has already been reached

● visit the node

In postorder DFS, we visit each node after we
visit its outgoing edges!

Depth-first search – code sketch

void preorderDFS(Node x) {
 if (!x.visited) {
 x.visited = true;
 visit x;
 for (Node y: x.successors)
 preorderDFS(y);
}

void postorderDFS(Node x) {
 if (!x.visited) {
 x.visited = true;
 for (Node y: x.successors)
 postorderDFS(y);
 visit x;
}

Postorder depth-first search

Visit order:
DFS node 1 (don't visit it yet, but remember
that we
have reached it) 1 2

3 4

5

6 7

= unvisited = visited= current

Postorder depth-first search

Visit order:
Follow edge 1 3,→
recursively DFS node 3

1 2

3 4

5

6 7

= unvisited = visited= current

Postorder depth-first search

Visit order: 6
Follow edge 3 6,→
recursively DFS node 6
The recursion bottoms
out, visit 6!

1 2

3 4

5

6 7

= unvisited = visited= current

Postorder depth-first search

Visit order: 6
Recursion backtracks to 3

1 2

3 4

5

6 7

= unvisited = visited= current

Postorder depth-first search

Visit order: 6
Follow edge 3 4,→
recursively DFS node 4

1 2

3 4

5

6 7

= unvisited = visited= current

Postorder depth-first search

Visit order: 6 2
Follow edge 4 2,→
recursively DFS node 2
The recursion bottoms
out again and we visit 2

1 2

3 4

5

6 7

= unvisited = visited= current

Postorder depth-first search

Visit order: 6 2 4
The recursion backtracks and
now we visit 4

1 2

3 4

5

6 7

= unvisited = visited= current

Postorder depth-first search

Visit order: 6 2 4 3
The recursion backtracks and
now we visit 3

1 2

3 4

5

6 7

= unvisited = visited= current

Postorder depth-first search

Visit order: 6 2 4 3 1
The recursion backtracks and
now we visit 1

1 2

3 4

5

6 7

= unvisited = visited= current

Why postorder DFS?

In postorder DFS:
● We only visit a node after we recursively DFS its

successors (the nodes it has an edge to)

If we look at the order the nodes are visited
(rather than the calls to DFS):
● If the graph is acyclic, we visit a node only after we

have visited all its successors

If we look at the list of nodes in the order
they are visited, each node comes after all its
successors (look at the previous slide)

Topological sorting

Visit order: 6 2 4 3 1
In topological sorting, we want each node to come
before its successors...
With postorder DFS,
each node is visited
after its successors!
Idea: to topologically sort,
do a postorder DFS,
look at the order the nodes
are visited in and reverse it
Small problem: not all nodes are visited!
Solution: pick a node we haven't visited and DFS it

1 2

3 4

5

6 7

Topological sorting

To topologically sort a DAG:
● Pick a node that we haven't visited yet
● Do a postorder DFS on it
● Repeat until all nodes have been visited

Then take the list of nodes in the order they
were visited, and reverse it
If the graph is acyclic, the list is topologically
sorted:
● If there is a path from node A to B, then A comes

before B in the list

Preorder vs postorder

You might think that in preorder DFS, we visit
each node before we visit its successsors
But this is not the case,
in this example from
earlier we visited 6 before
its predecessor 4, because we
happened to go through 3
Preorder DFS visits the nodes in “any old order”
– postorder is more well-behaved
● In general, if there is a path from u to v, and u and v are

not in the same SCC, then u is visited after v

1 2

3 4

5

6 7

Detecting cycles in graphs

We can only topologically sort acyclic graphs
– how can we detect if a graph is cyclic?
Easiest answer: topologically sort the graph
and check if the result is actually
topologically sorted
● Does any node in the result list have an edge to a

node earlier in the list? If so, the topological sorting
failed, and the graph must be cyclic

● Otherwise, the graph is acyclic

Kosaraju's algorithm (not on exam)

Kosaraju's algorithm finds all the SCCs in a
directed graph in linear time
Recall our algorithm to find the SCC of a node A:
● Do a DFS starting from node A
● Do a DFS starting from node A in the transpose graph
● Take the intersection of the two visited sets

In Kosaraju's algorithm, we first do a DFS
starting from node A, giving a set S of visited
nodes
Then we find the SCCs of all nodes in S, by doing
several DFSes in the transpose graph!

Kosaraju's algorithm (not on exam)

Start with a node A, do a topological sort
starting from A
Now take the visited nodes in topological
order, and for each node:
● If we have already assigned the node an SCC, skip it
● Otherwise, do a DFS starting from that node in the

transpose graph
● The SCC of that node is the intersection of the two

visited sets

An alternative:
depth-first forests

(not on exam)

Depth-first forests

Instead of producing a list of nodes, DFS can
return a tree that shows how the nodes were
explored (the recursion structure):

1 2

3 4

5

6 7

1

3

6 4

2

Depth-first forests

Repeating until all nodes have been visited,
we get a forest (set of trees):

1 2

3 4

5

6 7

1

3

6 4

2

5

7

Depth-first forests

A graph is cyclic iff the graph has an edge
from a node in the tree to its ancestor:

1 2

3 4

5

6 7

1

3

6 4

2

5

7

Edge from
4 to 1 – cyclic

Depth-first forests

You can also topologically sort a graph by
flattening the forest into a list!

1 2

3 4

5

6 7

1

3

6 4

2

5

7

5,7,
1,3,6,4,2

Depth-first forests

The idea: make DFS return a forest of nodes,
instead of a list
● Pre/post-order? Those are just different ways to

flatten the forest

Many algorithms based on DFS come out
pretty elegant that way
● You can view the graph as a forest, plus some extra

edges that go upwards, downwards or sideways in the
tree

Summary

Graphs are extremely useful!
● Common representation: adjacency lists (or just implicitly as references between the

objects in your program)

Several important graph algorithms:
● Reachability – can I get from node A to B?
● Does the graph have a cycle?
● Strongly-connected components – where are the cycles in the graph?
● Topological sorting – how can I order the nodes in an acyclic graph?
● These two are useful because they let you program graph algorithms without

worrying about cycles or visiting nodes multiple times

All these are based on depth-first search!
● Enumerate the nodes reachable from a starting node
● Preorder: visit each node before its successors
● Postorder: visit each node after its successors, gives nicer order
● Common pattern in these algorithms: repeat DFS from different nodes until all

nodes have been visited

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 61
	Slide 62
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

