
Reminder

No Friday lectures from now on!
Instead, there will be lectures on 
Wednesdays, 8am, room HB2
Monday lecture continues as normal



2-3 trees,
AA trees,

B-trees
(Weiss chapter 4.6)



  

2-3 trees

In a binary tree, each node has two children
In a 2-3 tree, each node has either 2 children (a 2-
node) or 3 (a 3-node)
A 2-node is a normal BST node:
● One data value x, which is greater than all values in the left 

subtree and less than all values in the right subtree

A 3-node is different:
● Two data values x and y
● All the values in the left subtree are less than x
● All the values in the middle subtree are between x and y
● All the values in the right subtree are greater than y



  

2-3 trees

An example of a 2-3 tree:



  

Why 2-3 trees?

With a 2-3 tree we can maintain the 
invariant:
● The tree is always perfectly balanced!

Invariant: all children of each node always 
have the same height
● Note: the empty tree (null) has height 0
● In particular, any non-leaf 2-node has 2 children
● Any non-leaf 3-node has 3 children

This wasn't possible with binary search trees



  

Which of these are 2-3 trees?

7

2 11 15

17 191 5 9 13

7

2 11 15

17 191 5 9

7

2 11 15

17 191 9 13

7

2 11 15

17 191 9 13543



  

Which of these are 2-3 trees?

7

2 11 15

17 191 5 9 13

7

2 11 15

17 191 5 9

7

2 11 15

17 191 9 13

7

2 11 15

17 191 9 13543

Only this one
(why?)



  

Insertion into a 2-3 tree

To insert a value (e.g. 4) into a 2-3 tree,
we start by doing a normal insertion...

7

2 11 15

17 191 5 9 13

4 We broke the balance invariant!



  

Insertion into a 2-3 tree

To fix the balance invariant, we absorb the 
bad node into its parent!

7

2 11 15

17 191 9 1354

4 got absorbed into 5



  

Insertion into a 2-3 tree

Now suppose we want to insert 3.
We'll absorb it into its parent as before...

7

2 11 15

17 191 9 1354

3



  

Insertion into a 2-3 tree

We get a 4-node, which is not allowed!
We fix this by a method called splitting.

7

2 11 15

17 191 9 13543



  

Splitting a 4-node

To get rid of a 4-node, we split it into several 
2-nodes!
This creates an extra level in the tree.
We will fix this by absorbing
the red node into its parent.

x y z

A B C D

y

x z

A B C D



  

Insertion into a 2-3 tree

After splitting, we absorb the “extra level” 
node into its parent.

7

2 11 15

17 191 9 13

5

4

3

Absorb 4
into 2.



  

Insertion into a 2-3 tree

We restored the invariant!
Let's try inserting 18.

7

11 15

17 191 9 135

2 4

3



  

Insertion into a 2-3 tree

First add and absorb.
We got a 4-node, split it.

7

11 15

1 9 135

2 4

3 17 18 19



  

Insertion into a 2-3 tree

Absorb the extra node into the parent.

7

11 15

1 9 135

2 4

3

17

18

19



  

Insertion into a 2-3 tree

We got a 4-node again, so split and absorb.

7

1 9 135

2 4

3 17

11 15 18

19

15 will be
absorbed



  

Insertion into a 2-3 tree

Done! (If we insert even more, eventually the 
root will split, which adds a new level to the 
tree.)

1 9 135

2 4

3 17

11

7 15

18

19



  

2-3 insertion algorithm

Insert the new node into the tree
Then alternate 2 steps:
● absorb the node into its parent, move up to the parent
● if the node is a 4-node, split it into 2-nodes

Stop once you don't need to split



  

2-3 trees, implementation (?)

class Node<E> {
   boolean isTwoNode;
   E value, secondValue;
   Node<E> left, right, middle;
   
   boolean member(E key) {
      if (key.compareTo(value) == 0) return true;
      else if (key.compareTo(value) < 0)
         return left.member(value);
      else {
         if (!isTwoNode) {
            if (key.compareTo(secondValue) == 0)
               return true;
            else if (key.compareTo(secondValue) < 0)
               return middle.member(value);
         }
         return right.member(value);
      }
   }
}

Lots of cases
compared to BSTs

Space wasted by
storing two values

even in 2-nodes,
fixing this is

annoying

Even worse:
insertion

temporarily creates
4-nodes!



  

2-3 trees, summary

2-3 trees do not use rotation, unlike balanced 
BSTs – instead, they keep the tree perfectly 
balanced
● Invariant maintained using absorption (to remove 

unwanted nodes) and splitting (to eliminate 4-nodes)

Complexity is O(log n), as tree is perfectly 
balanced
Conceptually much simpler than AVL trees!
But implementation is really annoying :(
● Fix this by using AA trees, next



AA trees



  

AA trees

AA trees implement a 2-3 tree using a BST!
A 2-node becomes a BST node
A 3-node becomes two BST nodes:

We'll always translate a 3-node
into a node and its right child

x y

CA B

x

yA

B C



  

AA trees, the plan

An AA tree is really a 2-3 tree, but we store it 
in a binary search tree
● A bit like what we did for binary heaps

We'll need to add extra information to the 
nodes, and invariants, so that:
● Any AA tree must correspond to a 2-3 tree
● We can tell whether each node in the tree is a

2-node, or part of a 3-node

Then we can adapt 2-3 insertion to AA trees!
● For searching, we can just use BST search



  

AA trees

We store with each node a level, which is the 
height of the corresponding  2-3 tree node

Notice that x and y have the
same level. That's how we can
tell they represent a 3-node.
Our invariant will talk about levels.

x y

CA B

x

yA

B C

k+1

kkk

k+1

k+1k

k k



  

AA trees

If a node has the same level as its parent, 
we'll draw them next to each other.

This emphasises the levels in the tree.

x y

CA B

x y

A B C

k+1

kkk

k+1 k+1

k k k



  

2-3 trees as AA trees

Here was the 2-3 tree from before...

1 9 135

2 4

3 17

11

7 15

18

19



  

2-3 trees as AA trees

...and here is the corresponding AA tree!
We can identify the 2- and 3-nodes by 
looking at the level of the nodes (how?)

7 15

2 4

1 3 5

11

9 13 17 19

18

1 1 1 1 1 1 1

2222

3 3



  

AA trees

We can translate a 2-3 tree to an AA tree
And, by looking at the levels, we can go the 
other way
● If a node has the same level as its right child, the two 

nodes together make a 3-node
● Otherwise it's a 2-node

Now we need an invariant to check that:
● We only have 2-nodes and 3-nodes
● The levels match the heights in the 2-3 tree
● The 2-3 tree is perfectly balanced



  

AA tree invariant, a first attempt

An AA tree must be built up only from subtrees 
of the following shape:

Notice that the level of x/y must be exactly one 
more than the level of A/B/C
(we consider null to have a level of 0 – this 
means a leaf must have a level of 1)

x y

A B C
k k k

k+1k+1
x

A B
k k

k+1



  

AA tree invariant, part 1

It turns out to be better to break this 
invariant into pieces, so that it says 
something about each BST node
First, the level of a child node in the BST 
must be either:
● equal to the level of its parent, or
● one less than the level of its parent

(where the level of null is 0)



  

AA tree invariant, part 2

If a node has the same level
as its child, it must be the
root of a 3-node.
So we can say:
● A node's level must be greater than its left child:

level(node) > level(node.left)
● And also greater than its right-right grandchild:

level(node) > level(node.right.right)

x y

A B C



  

AA tree – not allowed

x y

A B C

x y

A B C

z

D

Bad: malformed 3-
node (left child at 
same height)

Bad: 4-node (right 
grandchild at same 
height)

We'll get these trees during insertion!



  

AA tree invariant, summary

We consider the level of null to be 0
For each node in the tree, the following must 
hold:
● The node's children must have a level either equal to or 

one less than the node itself
● level(node) > level(node.left)

(x  y not allowed)←
● level(node) > level(node.right.right)

(x  y  z not allowed)→ →

This implies that any leaf node has a level of 1
We also have the normal BST invariant!



  

Why is this not an AA tree?

7 15

2 4

1 3 5

11

9 17 19

18

1 1 1 1 1 1

2222

3 3

11's right child
(null) has level 0,
should be 1 or 2



  

Why is this not an AA tree?

7 15

2 4

1 3 5

11

9 13 17 19

18

1 1 1 1 1 1 1

2222

3 3

7 is left child of 15,
has same level



  

Why is this not an AA tree?

7 15

2 4

1 3 5

11

9 13 17 19

18

1 1 1 1 1 1 1

2222

4 4

Children of 7 and 15
have too small level



  

Why is this not an AA tree?

7 15

2 4

1 3 5

11

9 13 17 19

18

0 0 0 0 0 0 0

1111

2 2

Leaf nodes have
left child null

(height 0),
so their height

should be 1



  

AA tree insertion

To insert into an AA tree, we start with a normal 
BST insertion. The new node is a leaf so we give it a 
level of 1. Note that its parent also has level 1 
(why?)
If we are lucky the parent was a 2-node and we 
insert into the right of it, giving a 3-node:

Otherwise, the invariant is broken.
But there are only two ways it can break!

x yx



  

Case 1: skew

x y

A B C

x y

A B C

Here, we have inserted into the left of a 2-node, 
breaking the invariant.
We can fix it by doing a right rotation!

This operation is called skew.
We do it whenever the new node is the left child 
of its parent.

k k k k k k

k+1k+1k+1k+1



  

Case 2: split

x y

A B C

z

D

Here, insertion created a 4-node.
We can split it into 2-nodes!
Notice that y's level increases – may break 
the invariant one level up.
So continue up recursively!

x

y

A B C

z

D
k k k k k k k k

k+1k+1k+1k+1k+1

k+2



  

All other cases: skew and split

Insertion can also create a 4-node like this:

But, if we do a skew, this turns into the 
previous kind of 4-node!
To cover all the cases we just have to:
first skew if the left child is bad,
then split if the right grandchild is bad

x y

A B C

z

D



  

Example: the quick brown fox...

Insert “quick” into “the”

thequick
1 1

Left child at
same level!

Skew to fix it
(rotate right)

thequick
1 1



  

Example: the quick brown fox...

Insert “brown”

thequick
1 1

brown
1

thequick
1 1

brown
1

skew

split After skewing,
we get a 4-node!

Split it

the

quick
2

1
brown

1



  

Example: the quick brown fox...

Insert “fox”

the

quick
2

1
brown
1

fox
1



  

Insert “jumps”

the

quick
2

1
brown
1

fox
1

jumps
1

the

quick
2

1
brown
1

fox
2

jumps
1

split “brown”

Split moves
“fox” up



  

Example: the quick brown fox...

Insert “jumps”

the

quick
2

1
brown
1

fox
2

jumps
1

skew

the

quick
2

1
brown
1

fox
2

jumps
1



  

AA trees – looking back

There are only two ways that insertion can 
break the invariant
● Making a left child with the same height as its parent – 

skew it
● Making a 4-node – split it

Why skew then split? Because skewing 
ensures there's only one possible way to 
represent a 4-node
When we split, the level of the top node 
increases – this corresponds to absorption in a 
2-3 tree



  

AA trees – implementation

The level is stored as part of each node.
Looking at the diagrams, the level changes when 
you do a split – so make sure to do this
Easiest way to implement it:
have separate functions for skew and split,
call them from insert. But first skew then split, to 
take care
of this case:

x y

A B C

z

D



  

AA versus AVL trees

AA trees have a weaker invariant than AVL trees (less 
balanced) – but still O(log n) running time
Advantage: less work to maintain the invariant (top-
down insertion – no need to go up tree afterwards), 
so insertion and deletion are cheaper
Disadvantage: lookup will be slower if the tree is less 
balanced
● But no real difference in practice

Another disadvantage: deletion requires a fair 
amount of extra work
● Still simpler than AVL deletion, but in AVL trees the same 

balancing code could be used for both insertion and deletion



  

B-trees

B-trees generalise 2-3 trees:
● In a B-tree of order k, a node can have k children
● Each non-root node must be at least half-full
● A 2-3 tree is a B-tree of order 3

Insertion also based on splitting!
1010 2222 3030 4040

1313 1515 1818 2020 3232 3535 3838

55 77 88 2626 2727 4242 4646



  

Why B-trees

B-trees are used for disk storage in databases:
● Hard drives read data in blocks of typically ~4KB
● For good performance, you want to minimise the number of 

blocks read
● This means you want: 1 tree node = 1 block
● B-trees with k about 1024 achieve this

1010 2222 3030 4040

1313 1515 1818 2020 3232 3535 3838

55 77 88 2626 2727 4242 4646



  

Red-black trees (not on exam)

Instead of 2-3 trees, we can use 2-3-4 trees
● 2-node, 3-nodes and 4-nodes

(or B-tree with k = 4)

There's a more efficient insertion algorithm for 
them, called top-down insertion!
● See book section on red-black trees, or Wikipedia page 

on 2-3-4 trees, for more information

We can implement them using BSTs, using the 
same ideas as AA trees. This is called a red-black 
tree, the fastest balanced BST
● Gets complicated because of lots of cases



  

Summary

2-3 trees: allow 2 or 3 children per node
● Possible to keep perfectly balanced
● Slightly annoying to implement

AA trees – 2-3 trees implemented using a BST
● Similar performance to AVL trees, but much simpler
● Fewer cases to consider, because the invariant can only 

break in two ways

B-trees: generalise 2-3 trees to k children
● If k is big, the height is very small – useful for on-disk 

trees e.g. databases
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