Reminder

No Friday lectures from now on!
Instead, there will be lectures on Wednesdays, 8am, room HB2
Monday lecture continues as normal

> 2-3 trees, AA trees, B-trees (Weiss chapter 4.6)

2-3 trees

In a binary tree, each node has two children
In a 2-3 tree, each node has either 2 children (a 2node) or 3 (a 3-node)
A 2-node is a normal BST node:

- One data value x, which is greater than all values in the left subtree and less than all values in the right subtree
A 3-node is different:
- Two data values x and y
- All the values in the left subtree are less than x
- All the values in the middle subtree are between x and y
- All the values in the right subtree are greater than y

2-3 trees

3-node
An example of a 2-3 tree:

Why 2-3 trees?

With a 2-3 tree we can maintain the invariant:

- The tree is always perfectly balanced!

Invariant: all children of each node always have the same height

- Note: the empty tree (null) has height 0
- In particular, any non-leaf 2-node has 2 children
- Any non-leaf 3-node has 3 children

This wasn't possible with binary search trees

Which of these are 2-3 trees?

Which of these are 2-3 trees?

Insertion into a 2-3 tree

To insert a value (e.g. 4) into a 2-3 tree, we start by doing a normal insertion...

7

We broke the balance invariant!

Insertion into a 2-3 tree

To fix the balance invariant, we absorb the bad node into its parent!

4 got absorbed into 5

Insertion into a 2-3 tree

Now suppose we want to insert 3.
We'll absorb it into its parent as before...

Insertion into a 2-3 tree

We get a 4-node, which is not allowed! We fix this by a method called splitting.

Splitting a 4-node

To get rid of a 4-node, we split it into several 2-nodes!
This creates an extra level in the tree.
We will fix this by absorbing
the red node into its parent.

Insertion into a 2-3 tree

After splitting, we absorb the "extra level" node into its parent.

Insertion into a 2-3 tree

We restored the invariant!
Let's try inserting 18.

Insertion into a 2-3 tree

First add and absorb.
We got a 4 -node, split it.

Insertion into a 2-3 tree

Absorb the extra node into the parent.

Insertion into a 2-3 tree

We got a 4-node again, so split and absorb.

Insertion into a 2-3 tree

Done! (If we insert even more, eventually the root will split, which adds a new level to the tree.)

$$
7 \quad 15
$$

2-3 insertion algorithm

Insert the new node into the tree
Then alternate 2 steps:

- absorb the node into its parent, move up to the parent
- if the node is a 4 -node, split it into 2 -nodes

Stop once you don't need to split

2-3 trees, implementation (?)

```
```

class Node<E> {

```
```

class Node<E> {
boolean isTwoNode;
boolean isTwoNode;
E value, secondValue;
E value, secondValue;
Node<E> left, right, middle;
Node<E> left, right, middle;
boolean member(E key) {
boolean member(E key) {
if (key.compareTo(value) == 0) return true;
if (key.compareTo(value) == 0) return true;
else if (key.compareTo(value) < 0)
else if (key.compareTo(value) < 0)
return left.member(value);
return left.member(value);
else {
else {
if (!isTwoNode) {
if (!isTwoNode) {
if (key.compareTo(secondValue) == 0)
if (key.compareTo(secondValue) == 0)
return true;
return true;
else if (key.compareTo(secondValue) < 0)
else if (key.compareTo(secondValue) < 0)
return middle.member(value);
return middle.member(value);
}
}
return right.member(value);
return right.member(value);
}
}
}
}
}

```
```

}

```
```

> Space wasted by storing two values even in 2-nodes, fixing this is annoying

Lots of cases compared to BSTs

> Even worse: insertion temporarily creates 4-nodes!

2-3 trees, summary

2-3 trees do not use rotation, unlike balanced BSTs - instead, they keep the tree perfectly balanced

- Invariant maintained using absorption (to remove unwanted nodes) and splitting (to eliminate 4-nodes)
Complexity is $\mathrm{O}(\log n)$, as tree is perfectly balanced
Conceptually much simpler than AVL trees! But implementation is really annoying :(
- Fix this by using AA trees, next

AA trees

AA trees

AA trees implement a 2-3 tree using a BST!
A 2-node becomes a BST node
A 3-node becomes two BST nodes:

We'll always translate a 3-node into a node and its right child

AA trees, the plan

An AA tree is really a 2-3 tree, but we store it in a binary search tree

- A bit like what we did for binary heaps

We'll need to add extra information to the nodes, and invariants, so that:

- Any AA tree must correspond to a 2-3 tree
- We can tell whether each node in the tree is a 2-node, or part of a 3-node
Then we can adapt 2-3 insertion to AA trees!
- For searching, we can just use BST search

AA trees

We store with each node a level, which is the height of the corresponding 2-3 tree node

Our invariant will talk about levels.

AA trees

If a node has the same level as its parent, we'll draw them next to each other.

This emphasises the levels in the tree.

2-3 trees as AA trees

Here was the 2-3 tree from before...

2-3 trees as AA trees

...and here is the corresponding AA tree! We can identify the 2- and 3-nodes by looking at the level of the nodes (how?) 3 3
7-15

AA trees

We can translate a 2-3 tree to an AA tree
And, by looking at the levels, we can go the other way

- If a node has the same level as its right child, the two nodes together make a 3-node
- Otherwise it's a 2 -node

Now we need an invariant to check that:

- We only have 2 -nodes and 3 -nodes
- The levels match the heights in the 2-3 tree
- The 2-3 tree is perfectly balanced

AA tree invariant, a first attempt

An AA tree must be built up only from subtrees of the following shape:

$\stackrel{\mathbf{x}}{\mathrm{k}+\mathbf{1}} \mathrm{y} \xrightarrow{\mathbf{k + 1}}$

$$
\hat{\mathrm{A}}^{\mathbf{k}} \stackrel{1}{\mathrm{~B}}^{\mathbf{k}}
$$

$$
\hat{A}^{\prime} \dot{B}^{\prime} \mathbf{k} \dot{C}^{\mathbf{k}}
$$

Notice that the level of x / y must be exactly one more than the level of $A / B / C$
(we consider null to have a level of 0 - this means a leaf must have a level of 1)

AA tree invariant, part 1

It turns out to be better to break this invariant into pieces, so that it says something about each BST node
First, the level of a child node in the BST must be either:

- equal to the level of its parent, or
- one less than the level of its parent
(where the level of null is 0)

AA tree invariant, part 2

If a node has the same level as its child, it must be the root of a 3-node.
So we can say:

- A node's level must be greater than its left child: level(node) > level(node.left)
- And also greater than its right-right grandchild: level(node) > level(node.right.right)

AA tree - not allowed

Bad: malformed 3node (left child at same height)

Bad: 4-node (right grandchild at same height)

We'll get these trees during insertion!

AA tree invariant, summary

We consider the level of null to be 0
For each node in the tree, the following must hold:

- The node's children must have a level either equal to or one less than the node itself
- level(node) > level(node.left) ($\mathrm{x} \leftarrow \mathrm{y}$ not allowed)
- level(node) > level(node.right.right) ($\mathrm{x} \rightarrow \mathrm{y} \rightarrow \mathrm{z}$ not allowed)
This implies that any leaf node has a level of 1
We also have the normal BST invariant!

Why is this not an AA tree?

(1)

Why is this not an AA tree?

$$
12
$$

Why is this not an AA tree?

Why is this not an AA tree?

Leaf nodes have left child null (height 0), so their height should be 1

AA tree insertion

To insert into an AA tree, we start with a normal BST insertion. The new node is a leaf so we give it a level of 1. Note that its parent also has level 1 (why?)
If we are lucky the parent was a 2 -node and we insert into the right of it, giving a 3-node:

Otherwise, the invariant is broken. But there are only two ways it can break!

Case 1: skew

Here, we have inserted into the left of a 2-node, breaking the invariant.
We can fix it by doing a right rotation!

This operation is called skew.
We do it whenever the new node is the left child of its parent.

Case 2: split

Here, insertion created a 4-node.
We can split it into 2-nodes!
Notice that y's level increases - may break the invariant one level up.
So continue up recursively!

		\cdots					
A	B^{k}	C		A	B	C	

All other cases: skew and split

Insertion can also create a 4-node like this:

But, if we do a skew, this turns into the previous kind of 4-node!
To cover all the cases we just have to: first skew if the left child is bad, then split if the right grandchild is bad

Example: the quick brown fox...

Insert "quick" into "the"

Left child at same level!
Skew to fix it (rotate right)

Example: the quick brown fox...

Example: the quick brown fox...

Insert "fox"

2 quick

$$
\text { brown }-\frac{1}{1} \text { the }{ }^{\mathbf{1}}
$$

Insert"jumps"

2 quick

Split moves "fox" up

brown
jumps ${ }^{1}$
the 1

Example: the quick brown fox...

Insert "jumps" fox $\mathbf{2}$ quick ${ }^{2}$

AA trees - looking back

There are only two ways that insertion can break the invariant

- Making a left child with the same height as its parent skew it
- Making a 4-node - split it

Why skew then split? Because skewing ensures there's only one possible way to represent a 4-node
When we split, the level of the top node increases - this corresponds to absorption in a 2-3 tree

AA trees - implementation

The level is stored as part of each node.
Looking at the diagrams, the level changes when you do a split - so make sure to do this
Easiest way to implement it: have separate functions for skew and split, call them from insert. But first skew then split, to take care of this case:

AA versus AVL trees

AA trees have a weaker invariant than AVL trees (less balanced) - but still $\mathrm{O}(\log \mathrm{n})$ running time
Advantage: less work to maintain the invariant (topdown insertion - no need to go up tree afterwards), so insertion and deletion are cheaper
Disadvantage: lookup will be slower if the tree is less balanced

- But no real difference in practice

Another disadvantage: deletion requires a fair amount of extra work

- Still simpler than AVL deletion, but in AVL trees the same balancing code could be used for both insertion and deletion

B-trees

B-trees generalise 2-3 trees:

- In a B-tree of order k, a node can have k children
- Each non-root node must be at least half-full
- A 2-3 tree is a B-tree of order 3

Insertion also based on splitting!

Why B-trees

B-trees are used for disk storage in databases:

- Hard drives read data in blocks of typically ~4KB
- For good performance, you want to minimise the number of blocks read
- This means you want: 1 tree node $=1$ block
- B-trees with k about 1024 achieve this

Red-black trees (not on exam)

Instead of 2-3 trees, we can use 2-3-4 trees

- 2-node, 3 -nodes and 4-nodes (or B-tree with $\mathrm{k}=4$)
There's a more efficient insertion algorithm for them, called top-down insertion!
- See book section on red-black trees, or Wikipedia page on 2-3-4 trees, for more information
We can implement them using BSTs, using the same ideas as AA trees. This is called a red-black tree, the fastest balanced BST
- Gets complicated because of lots of cases

Summary

2-3 trees: allow 2 or 3 children per node

- Possible to keep perfectly balanced
- Slightly annoying to implement

AA trees - 2-3 trees implemented using a BST

- Similar performance to AVL trees, but much simpler
- Fewer cases to consider, because the invariant can only break in two ways
B-trees: generalise 2-3 trees to k children
- If k is big, the height is very small - useful for on-disk trees e.g. databases

