
Reminder

No Friday lectures from now on!
Instead, there will be lectures on
Wednesdays, 8am, room HB2
Monday lecture continues as normal

2-3 trees,
AA trees,

B-trees
(Weiss chapter 4.6)

2-3 trees

In a binary tree, each node has two children
In a 2-3 tree, each node has either 2 children (a 2-
node) or 3 (a 3-node)
A 2-node is a normal BST node:
● One data value x, which is greater than all values in the left

subtree and less than all values in the right subtree

A 3-node is different:
● Two data values x and y
● All the values in the left subtree are less than x
● All the values in the middle subtree are between x and y
● All the values in the right subtree are greater than y

2-3 trees

An example of a 2-3 tree:

Why 2-3 trees?

With a 2-3 tree we can maintain the
invariant:
● The tree is always perfectly balanced!

Invariant: all children of each node always
have the same height
● Note: the empty tree (null) has height 0
● In particular, any non-leaf 2-node has 2 children
● Any non-leaf 3-node has 3 children

This wasn't possible with binary search trees

Which of these are 2-3 trees?

7

2 11 15

17 191 5 9 13

7

2 11 15

17 191 5 9

7

2 11 15

17 191 9 13

7

2 11 15

17 191 9 13543

Which of these are 2-3 trees?

7

2 11 15

17 191 5 9 13

7

2 11 15

17 191 5 9

7

2 11 15

17 191 9 13

7

2 11 15

17 191 9 13543

Only this one
(why?)

Insertion into a 2-3 tree

To insert a value (e.g. 4) into a 2-3 tree,
we start by doing a normal insertion...

7

2 11 15

17 191 5 9 13

4 We broke the balance invariant!

Insertion into a 2-3 tree

To fix the balance invariant, we absorb the
bad node into its parent!

7

2 11 15

17 191 9 1354

4 got absorbed into 5

Insertion into a 2-3 tree

Now suppose we want to insert 3.
We'll absorb it into its parent as before...

7

2 11 15

17 191 9 1354

3

Insertion into a 2-3 tree

We get a 4-node, which is not allowed!
We fix this by a method called splitting.

7

2 11 15

17 191 9 13543

Splitting a 4-node

To get rid of a 4-node, we split it into several
2-nodes!
This creates an extra level in the tree.
We will fix this by absorbing
the red node into its parent.

x y z

A B C D

y

x z

A B C D

Insertion into a 2-3 tree

After splitting, we absorb the “extra level”
node into its parent.

7

2 11 15

17 191 9 13

5

4

3

Absorb 4
into 2.

Insertion into a 2-3 tree

We restored the invariant!
Let's try inserting 18.

7

11 15

17 191 9 135

2 4

3

Insertion into a 2-3 tree

First add and absorb.
We got a 4-node, split it.

7

11 15

1 9 135

2 4

3 17 18 19

Insertion into a 2-3 tree

Absorb the extra node into the parent.

7

11 15

1 9 135

2 4

3

17

18

19

Insertion into a 2-3 tree

We got a 4-node again, so split and absorb.

7

1 9 135

2 4

3 17

11 15 18

19

15 will be
absorbed

Insertion into a 2-3 tree

Done! (If we insert even more, eventually the
root will split, which adds a new level to the
tree.)

1 9 135

2 4

3 17

11

7 15

18

19

2-3 insertion algorithm

Insert the new node into the tree
Then alternate 2 steps:
● absorb the node into its parent, move up to the parent
● if the node is a 4-node, split it into 2-nodes

Stop once you don't need to split

2-3 trees, implementation (?)

class Node<E> {
 boolean isTwoNode;
 E value, secondValue;
 Node<E> left, right, middle;

 boolean member(E key) {
 if (key.compareTo(value) == 0) return true;
 else if (key.compareTo(value) < 0)
 return left.member(value);
 else {
 if (!isTwoNode) {
 if (key.compareTo(secondValue) == 0)
 return true;
 else if (key.compareTo(secondValue) < 0)
 return middle.member(value);
 }
 return right.member(value);
 }
 }
}

Lots of cases
compared to BSTs

Space wasted by
storing two values

even in 2-nodes,
fixing this is

annoying

Even worse:
insertion

temporarily creates
4-nodes!

2-3 trees, summary

2-3 trees do not use rotation, unlike balanced
BSTs – instead, they keep the tree perfectly
balanced
● Invariant maintained using absorption (to remove

unwanted nodes) and splitting (to eliminate 4-nodes)

Complexity is O(log n), as tree is perfectly
balanced
Conceptually much simpler than AVL trees!
But implementation is really annoying :(
● Fix this by using AA trees, next

AA trees

AA trees

AA trees implement a 2-3 tree using a BST!
A 2-node becomes a BST node
A 3-node becomes two BST nodes:

We'll always translate a 3-node
into a node and its right child

x y

CA B

x

yA

B C

AA trees, the plan

An AA tree is really a 2-3 tree, but we store it
in a binary search tree
● A bit like what we did for binary heaps

We'll need to add extra information to the
nodes, and invariants, so that:
● Any AA tree must correspond to a 2-3 tree
● We can tell whether each node in the tree is a

2-node, or part of a 3-node

Then we can adapt 2-3 insertion to AA trees!
● For searching, we can just use BST search

AA trees

We store with each node a level, which is the
height of the corresponding 2-3 tree node

Notice that x and y have the
same level. That's how we can
tell they represent a 3-node.
Our invariant will talk about levels.

x y

CA B

x

yA

B C

k+1

kkk

k+1

k+1k

k k

AA trees

If a node has the same level as its parent,
we'll draw them next to each other.

This emphasises the levels in the tree.

x y

CA B

x y

A B C

k+1

kkk

k+1 k+1

k k k

2-3 trees as AA trees

Here was the 2-3 tree from before...

1 9 135

2 4

3 17

11

7 15

18

19

2-3 trees as AA trees

...and here is the corresponding AA tree!
We can identify the 2- and 3-nodes by
looking at the level of the nodes (how?)

7 15

2 4

1 3 5

11

9 13 17 19

18

1 1 1 1 1 1 1

2222

3 3

AA trees

We can translate a 2-3 tree to an AA tree
And, by looking at the levels, we can go the
other way
● If a node has the same level as its right child, the two

nodes together make a 3-node
● Otherwise it's a 2-node

Now we need an invariant to check that:
● We only have 2-nodes and 3-nodes
● The levels match the heights in the 2-3 tree
● The 2-3 tree is perfectly balanced

AA tree invariant, a first attempt

An AA tree must be built up only from subtrees
of the following shape:

Notice that the level of x/y must be exactly one
more than the level of A/B/C
(we consider null to have a level of 0 – this
means a leaf must have a level of 1)

x y

A B C
k k k

k+1k+1
x

A B
k k

k+1

AA tree invariant, part 1

It turns out to be better to break this
invariant into pieces, so that it says
something about each BST node
First, the level of a child node in the BST
must be either:
● equal to the level of its parent, or
● one less than the level of its parent

(where the level of null is 0)

AA tree invariant, part 2

If a node has the same level
as its child, it must be the
root of a 3-node.
So we can say:
● A node's level must be greater than its left child:

level(node) > level(node.left)
● And also greater than its right-right grandchild:

level(node) > level(node.right.right)

x y

A B C

AA tree – not allowed

x y

A B C

x y

A B C

z

D

Bad: malformed 3-
node (left child at
same height)

Bad: 4-node (right
grandchild at same
height)

We'll get these trees during insertion!

AA tree invariant, summary

We consider the level of null to be 0
For each node in the tree, the following must
hold:
● The node's children must have a level either equal to or

one less than the node itself
● level(node) > level(node.left)

(x y not allowed)←
● level(node) > level(node.right.right)

(x y z not allowed)→ →

This implies that any leaf node has a level of 1
We also have the normal BST invariant!

Why is this not an AA tree?

7 15

2 4

1 3 5

11

9 17 19

18

1 1 1 1 1 1

2222

3 3

11's right child
(null) has level 0,
should be 1 or 2

Why is this not an AA tree?

7 15

2 4

1 3 5

11

9 13 17 19

18

1 1 1 1 1 1 1

2222

3 3

7 is left child of 15,
has same level

Why is this not an AA tree?

7 15

2 4

1 3 5

11

9 13 17 19

18

1 1 1 1 1 1 1

2222

4 4

Children of 7 and 15
have too small level

Why is this not an AA tree?

7 15

2 4

1 3 5

11

9 13 17 19

18

0 0 0 0 0 0 0

1111

2 2

Leaf nodes have
left child null

(height 0),
so their height

should be 1

AA tree insertion

To insert into an AA tree, we start with a normal
BST insertion. The new node is a leaf so we give it a
level of 1. Note that its parent also has level 1
(why?)
If we are lucky the parent was a 2-node and we
insert into the right of it, giving a 3-node:

Otherwise, the invariant is broken.
But there are only two ways it can break!

x yx

Case 1: skew

x y

A B C

x y

A B C

Here, we have inserted into the left of a 2-node,
breaking the invariant.
We can fix it by doing a right rotation!

This operation is called skew.
We do it whenever the new node is the left child
of its parent.

k k k k k k

k+1k+1k+1k+1

Case 2: split

x y

A B C

z

D

Here, insertion created a 4-node.
We can split it into 2-nodes!
Notice that y's level increases – may break
the invariant one level up.
So continue up recursively!

x

y

A B C

z

D
k k k k k k k k

k+1k+1k+1k+1k+1

k+2

All other cases: skew and split

Insertion can also create a 4-node like this:

But, if we do a skew, this turns into the
previous kind of 4-node!
To cover all the cases we just have to:
first skew if the left child is bad,
then split if the right grandchild is bad

x y

A B C

z

D

Example: the quick brown fox...

Insert “quick” into “the”

thequick
1 1

Left child at
same level!

Skew to fix it
(rotate right)

thequick
1 1

Example: the quick brown fox...

Insert “brown”

thequick
1 1

brown
1

thequick
1 1

brown
1

skew

split After skewing,
we get a 4-node!

Split it

the

quick
2

1
brown

1

Example: the quick brown fox...

Insert “fox”

the

quick
2

1
brown
1

fox
1

Insert “jumps”

the

quick
2

1
brown
1

fox
1

jumps
1

the

quick
2

1
brown
1

fox
2

jumps
1

split “brown”

Split moves
“fox” up

Example: the quick brown fox...

Insert “jumps”

the

quick
2

1
brown
1

fox
2

jumps
1

skew

the

quick
2

1
brown
1

fox
2

jumps
1

AA trees – looking back

There are only two ways that insertion can
break the invariant
● Making a left child with the same height as its parent –

skew it
● Making a 4-node – split it

Why skew then split? Because skewing
ensures there's only one possible way to
represent a 4-node
When we split, the level of the top node
increases – this corresponds to absorption in a
2-3 tree

AA trees – implementation

The level is stored as part of each node.
Looking at the diagrams, the level changes when
you do a split – so make sure to do this
Easiest way to implement it:
have separate functions for skew and split,
call them from insert. But first skew then split, to
take care
of this case:

x y

A B C

z

D

AA versus AVL trees

AA trees have a weaker invariant than AVL trees (less
balanced) – but still O(log n) running time
Advantage: less work to maintain the invariant (top-
down insertion – no need to go up tree afterwards),
so insertion and deletion are cheaper
Disadvantage: lookup will be slower if the tree is less
balanced
● But no real difference in practice

Another disadvantage: deletion requires a fair
amount of extra work
● Still simpler than AVL deletion, but in AVL trees the same

balancing code could be used for both insertion and deletion

B-trees

B-trees generalise 2-3 trees:
● In a B-tree of order k, a node can have k children
● Each non-root node must be at least half-full
● A 2-3 tree is a B-tree of order 3

Insertion also based on splitting!
1010 2222 3030 4040

1313 1515 1818 2020 3232 3535 3838

55 77 88 2626 2727 4242 4646

Why B-trees

B-trees are used for disk storage in databases:
● Hard drives read data in blocks of typically ~4KB
● For good performance, you want to minimise the number of

blocks read
● This means you want: 1 tree node = 1 block
● B-trees with k about 1024 achieve this

1010 2222 3030 4040

1313 1515 1818 2020 3232 3535 3838

55 77 88 2626 2727 4242 4646

Red-black trees (not on exam)

Instead of 2-3 trees, we can use 2-3-4 trees
● 2-node, 3-nodes and 4-nodes

(or B-tree with k = 4)

There's a more efficient insertion algorithm for
them, called top-down insertion!
● See book section on red-black trees, or Wikipedia page

on 2-3-4 trees, for more information

We can implement them using BSTs, using the
same ideas as AA trees. This is called a red-black
tree, the fastest balanced BST
● Gets complicated because of lots of cases

Summary

2-3 trees: allow 2 or 3 children per node
● Possible to keep perfectly balanced
● Slightly annoying to implement

AA trees – 2-3 trees implemented using a BST
● Similar performance to AVL trees, but much simpler
● Fewer cases to consider, because the invariant can only

break in two ways

B-trees: generalise 2-3 trees to k children
● If k is big, the height is very small – useful for on-disk

trees e.g. databases

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

