
AVL trees
(Weiss 4.4)

Balanced BSTs: the problem

The BST operations take O(height of tree), so for
unbalanced trees can take O(n) time

Balanced BSTs: the solution

Take BSTs and add an extra invariant that
makes sure that the tree is balanced
● Height of tree must be O(log n)
● Then all operations will take O(log n) time

One possible idea for an invariant:
● Height of left child = height of right child

(for all nodes in the tree)
● Tree would be sort of “perfectly balanced”

What's wrong with this idea?

A too restrictive invariant

Perfect balance is too restrictive!
Number of nodes can only be 1, 3, 7, 15,
31, ...

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

hamsterhamster

pandapanda

AVL trees – a less restrictive invariant

The AVL tree is the first balanced BST
discovered (from 1962) – it's named after
Adelson-Velsky and Landis
It's a BST with the following invariant:
● The difference in heights between the left and right

children of any node is at most 1
● (compared to 0 for a perfectly balanced tree)

This makes the tree's height O(log n), so it's
balanced

Example of an AVL tree
(from Wikipedia)

12 23 54 76

9 14 19 67

50

17 72

Left child height 2
Right child height 1

Left child height 2
Right child height 2

Left child height 1
Right child height 0

Why are these not AVL trees?

Why are these not AVL trees?

Left child height 0
Right child height 8

Why are these not AVL trees?

Left child height 1
Right child height 3

Rotation

Rotation rearranges a BST by moving a
different node to the root, without changing
the BST's contents

(pic from Wikipedia)

Rotation

We can strategically use rotations to
rebalance an unbalanced tree.
This is what most balanced BST variants do!

Height of 4

Height of 3

AVL insertion

Start by doing a BST insertion
● This might break the AVL (balance) invariant

Then go upwards from the newly-inserted
node, looking for nodes that break the
invariant (unbalanced nodes)
If you find one, rotate it to fix the balance
There are four cases depending on how the
node became unbalanced

Case 1: a left-left tree

50

c

25

ba

Each pink triangle
represents an

AVL tree
with height k

The purple represents
an insertion that has
increased the height

of tree a to k+1

Notice that the tree
was balanced

before the purple
bit was added

Assumption:
this tree

is the deepest
node that
violates

the invariant

Case 1: a left-left tree

50

c

25

ba

Height kHeight k+2

Left height minus
right height = 2:

invariant broken!

Case 1: a left-left tree

50

c

25

ba

This is called a
left-left tree

because both the root and
the left child are deeper

on the left

To fix it we do a
right rotation

Balancing a left-left tree, afterwards

50

c

25

b

a

Height k+1 Height k+1

Invariant
restored!

Case 2: a right-right tree

25

a

50

b c

Mirror image of left-left tree
Can be fixed with

left rotation

Case 3: a left-right tree

50

c

25

ba

Height kHeight k+2

Left height minus
right height = 2:

invariant broken!

Case 3: a left-right tree

50

c

25

ba We can't fix this with
one rotation

Let's look at b's
subtrees b

L
 and b

R

Case 3: a left-right tree

50

c

25

a

Rotate 25-subtree to the left

40

bRbL

Height k-1

Case 3: a left-right tree

50

c
25

a

We now have a left-left tree!
So we can fix it by

rotating the whole tree
to the right

40

bR

bL

Height k+2 Height kHeight k+2

Height k+1

Case 3: a left-right tree

50

c

25

a

40

bRbL

Balanced!
Notice it works whichever

of b
L
 and b

R
 has the

extra height

Case 4: a right-left tree

25

a

50

b c

Mirror image of
left-right tree

How to identify the cases

Left-left (extra height in left-left grandchild):
● height of left-left grandchild = k+1

height of left child = k+2
height of right child = k

● Rotate the whole tree to the right

Left-right (extra height in left-right grandchild):
● height of left-right grandchild = k+1

height of left child = k+2
height of right child = k

● First rotate the left child to the left
● Then rotate the whole tree to the right

Right-left and right-right: symmetric

Algorithm uses
heights of subtrees
to determine case

The four cases

(picture from Wikipedia)
The numbers in the
diagram show the balance
of the tree: left height
minus right height
To implement this
efficiently, record the
balance in the nodes and
look at it to work out
which case you're in

5

D

3

A

4

CB

Left Right Case Right Left Case

3

A

4

5

C D

B

Right Right Case

5

D

4

3

BA

C

Left Left Case

4

5

C D

Balanced

3

A B

4

5

C D

Balanced

3

A B

3

A

5

D

4

B C

-22

1-1

2 -2

1/0 -1/0

-1/0 1/0

Example: the quick brown fox
jumps over a lazy dog

Insert “brown” into “the quick”

the

quick

brown

Left-left tree!
Rotate right

Example: the quick brown fox
jumps over a lazy dog

Insert “brown” into “the quick”

the

quick

brown

Example: the quick brown fox
jumps over a lazy dog

Insert “jumps” into “the quick brown fox”

the

quick

brown

fox

jumps

Right-right tree!
(What node?)

Rotate left

Example: the quick brown fox
jumps over a lazy dog

Insert “jumps” into “the quick brown fox”

the

quick

fox

jumpsbrown

Example: the quick brown fox
jumps over a lazy dog

Insert “over” into “the quick brown fox
jumps”

the

quick

fox

jumpsbrown

over

Left-right tree!
(quick →

fox →
jumps)

Rotate fox left...

Example: the quick brown fox
jumps over a lazy dog

Insert “over” into “the quick brown fox
jumps”

the

quick

jumps

overfox ...then rotate
quick right

brown

Example: the quick brown fox
jumps over a lazy dog

Insert “over” into “the quick brown fox
jumps”

quick

jumps

fox

thebrown over

Deletion in an AVL tree

First do the normal BST deletion
Then go up the tree, finding nodes that break the
invariant and fixing them using rotations
● Start from the node that was removed from the tree (recall that in

the case that the value to be deleted was a node with two children,
this was the biggest value in the left subtree)

The cases you need to consider are exactly the same as
for insertion!
● When implementing AVL trees, you need only implement the

balancing code once
● In general, the balancing algorithm works for any node where the left

and right children satisfy the AVL invariant, but their heights differ
by 2. Nothing specific to insertion...

There is one subtle point, see next slide...

An extra case in deletion

50

c

25

b

Height kHeight k+2

This case doesn’t
appear in insertion
(think about why).

But it works fine
when treated as a

left-left tree!

a
a and b

both have
height k+1

Consider the smallest AVL tree with height h (h ≥ 2). It
must have two children:
● One of height h-1, so that the tree to have height h
● One of height h-2, so that the tree is as small as possible

Thus, if F(h) is the size of the smallest AVL tree of height
h, we have:
● F(0) = 0, F(1) = 1, F(h) = F(h-1)+F(h-2) if h ≥ 2

Thus F(h) is the hth Fibonacci number!
● F(h) ~ φh, where is the golden ratioφ
● If an AVL tree has size n and height h, then n ≥ φh

● Taking logs of both sides, h ≤ logφn = log2n / log2 ~ 1.44 logφ 2n

So: an AVL tree of n nodes has height at most 1.44 log2n

How balanced are AVL trees?

AVL trees

Use rotation to keep the tree balanced
● Worst case height 1.44 log2 n, normally close to log2 n

– so lookups are quick

Insertion/deletion – BST insertion/deletion,
then rotate to repair the invariant
Visualisation:
● http://visualgo.net/
● https://www.cs.usfca.edu/~galles/visualization/AVLtre

e.html

http://visualgo.net/
https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

