
Binary search trees
(Weiss chapter 4.2-4.3)



  

horsehorse

Binary search trees

A binary search tree (BST) is a binary tree 
where each node is greater than all the nodes 
in the left subtree, and less than all the nodes 
in the right subtree

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster



  

horsehorse

Searching in a BST

Finding an element in a BST is easy, because 
by looking at the root you can tell which 
subtree the element is in

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

lemur must be
in left subtree

of owl

lemur must be
in right subtree

of hamster



  

Searching in a binary search tree

To search for target in a BST:
● If the target matches the root node's data, we've 

found it
● If the target is less than the root node's data, 

recursively search the left subtree
● If the target is greater than the root node's data, 

recursively search the right subtree
● If the tree is empty, fail

A BST can be used to implement a set, or a 
map from keys to values



  

Inserting into a BST

To insert a value into a BST:
● Start by searching for the value
● But when you get to null (the empty tree), make a 

node for the value and place it there

horsehorse

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

monkeymonkey



  

Finding minimum/maximum in a BST

To find the maximum value in a BST:
● Repeatedly go right from the root
● When you reach a node whose right child is empty, 

that’s the maximum

horsehorse

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

puffinpuffin



  

Deleting from a BST

To delete a value from a BST:
● Find the node containing the value
● If the node is a leaf, just remove it

horsehorse

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

To delete wolf,
just remove

this node from
the tree 



  

Deleting from a BST, continued

If the node has one child, replace the node 
with its child

horsehorse

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

To delete penguin,
replace it in the
tree with wolf



  

Deleting from a BST

To delete a value from a BST:
● Find the node
● If it has no children, just remove it from the tree
● If it has one child, replace the node with its child
● If it has two children...?

Can't remove the node without removing its children 
too!



  

Deleting a node with two children

Delete the biggest value from the node's left 
subtree and put this value [why this one?] in 
place of the node we want to delete

Delete owl
by replacing it
with monkey

Delete
monkeyhorsehorse

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

monkeymonkey



  

Deleting a node with two children

Delete the biggest value from the node's left 
subtree and put this value [why this one?] in 
place of the node we want to delete

The root is
now monkey

horsehorse

monkeymonkey

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster



  

Deleting a node with two children

Here is the most complicated case:

To delete
monkey, replace

it by lemur

horsehorse

monkeymonkey

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

But lemur has a
child! Put horse

where lemur was



  

Deleting a node with two children

Here is the most complicated case:

To delete
monkey, replace

it by lemur

horsehorse

monkeymonkey

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

But lemur has a
child! Put horse

where lemur was



  

Deleting a node with two children

Here is the most complicated case:

lemurlemur

horsehorsegorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster



  

A bigger example

What happens if we delete
is? cow? rat?



  

Deleting a node with two children

Deleting rat, we replace it with priest; now we 
have to delete priest which has a child, morn



  

Deleting a node with two children

Find and delete the biggest value in the left 
subtree and put that value in the deleted node
● Using the biggest value preserves the 

invariant (check you understand why)
● To find the biggest value: repeatedly 

descend into the right child until you find a 
node with no right child

● The biggest node can't have two children, so 
deleting it is easier



  

Complexity of BST operations

All our operations are O(height of tree)
This means O(log n) if the tree is balanced, 
but O(n) if it's unbalanced (like the tree on 
the right)
● how might we get

this tree?

Balanced BSTs add an
extra invariant that makes
sure the tree is balanced
● then all operations are O(log n)



  

Summary of BSTs

Binary trees with BST invariant
Can be used to implement sets and maps
● lookup: can easily find a value in the tree
● insert: perform a lookup, then put the new value at the place 

where the lookup would stop
● delete: find the value, then remove its node from the tree – 

several cases depending on how many children the node has

Complexity:
● all operations O(height of tree)
● that is, O(log n) if tree is balanced, O(n) if unbalanced
● inserting random data tends to give balanced trees, sequential 

data gives unbalanced ones


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

