
Leftist heaps
(Weiss 6.6)

Heaps with merging

Another useful operation is merging two heaps
into one
To do this, let's go back to binary trees with the
heap property (no completeness):

We can implement the other priority queue
operations in terms of merging!

8

18 29

37 32 89

20 28 39 66

Insertion

To insert a single element:
● build a heap containing just that one element
● merge it into the existing heap!

E.g., inserting 12

8

18 29

37 32 89

20 28 39 66

+ 12

A tree with
just one node

Delete minimum

To delete the minimum element:
● take the left and right branches of the tree
● these contain every element except the smallest
● merge them!

E.g., deleting 8 from the previous heap

18 29

37 32 89

20 28 39 66+

Heaps with merging

Using merge, we can efficiently implement:
● insertion
● delete minimum

Only question is, how to implement merge?
● Should take O(log n) time

We'll start with a bad merge algorithm, and
then fix it

Naive merging

How to merge these two heaps?

Idea: root of resulting heap must be 18
Take heap A, it has the smallest root.
Pick one of its children. Recursively merge B
into that child.
Which child should we pick? Let's pick the
right child for no particular reason

18 29

37 32 89

20 28 39 66A = B =

Naive merging

To merge two non-empty heaps:
Pick the heap with the smallest root:

Let C be the other heap
Recursively merge B and C!

x

A B

+ C → x

A B + C

x

A B

Example

18 < 29 so pick 18 as the root of the merged
tree

18 29

37 32 74 89

20 28 39 66+

Naive merging

Recursively merge the right branch of 18 and
the 29 tree

18

29
37

32
74 89

20

28
39 66+

Naive merging

28 < 29 so pick 28 as the root of the merged
tree

18

29
37

32
74 89

20

28
39 66+

Naive merging

Recursively merge the right branch of 28 and
the 29 tree

18

29
37

32

74 89

20

39 66+
28

Naive merging

29 < 32 so pick 29 as the root of the merged
tree

18

29
37

32

74 89

20

39 66+
28

Naive merging

Recursively merge the right branch of 29
with 32

18

2937

32
74 89

20

39
66+

28

Naive merging

Base case: merge 66 with the empty tree

Notice that the tree looks pretty “right-
heavy”

18

2937

32

74 89

20

39

66

28

Worst case for naive merging

A right-heavy tree:

Unfortunately, you get this just by doing
insertions! So insert takes O(n) time...
How can we stop the tree from becoming right-
heavy?

Define the null path length (npl) of a binary tree as
follows:
● The npl of the empty tree is 0
● The npl of the tree is 1 + min(npl(A), npl(B))

Observation: npl is at most O(log n), where n =
number of nodes (if npl is k, then first k levels of
tree are “full”)

Null path length

x

A B
29

74 89

39 66

npl = 2

Leftist heaps

A leftist heap is a binary tree satisfying the heap
property and the following invariant:
For any node in the tree…

...we must have npl(A) ≥ npl(B).
This means the tree is not right-heavy
If this invariant is violated, we can repair it by
swapping A and B!
Note: we must have npl(x) = 1 + npl(B). This means
that naive merging will take logarithmic time!

x

A B

Example

One way to do leftist merge is to first do
naive merge, then go up the tree swapping
left and right children when necessary...

18 29

37 32 74 89

20 30 39 66+
18

3037

3274 89

20

39

66

29→

Naive merge

70

70 74

74

Repairing
leftist

invariant

18 29

37 32 74 89

20 30 39 66+
18

3037

3274 89

20

39

66

29→
70

70
→

74

74

18

3037

3274 89

20

39

66

29

70 74

18

30 37

3274 89

20

39

66

29

70 74

→

Leftist heaps – implementation

Add a field
int npl;

to each node, which records the null path
length
● Invariant: x.npl == null path length of x

In the recursive case of merge:
● Merge the other tree into the right child of this node
● Then swap the left and right children if left.npl <

right.npl
● Then update the npl of this node (npl = right.npl + 1)

Leftist heaps

Implementation of priority queues:
● binary trees with heap property and leftist invariant,

which avoids right-heavy trees
● other operations are based on merge

A good fit for functional languages:
● based on trees rather than arrays, tiny implementation!

Other data structures based on naive merging +
avoiding right heavy trees:
● skew heaps (always swap left and right child)
● meldable heaps (swap children at random)

See webpage for link to visualisation site!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

