
Sorting
(Weiss chapter 7.1-2, 7.6-7)



  

Sorting

5 3 9 2 8 7 3 2 1 4

1 2 2 3 3 4 5 7 8 9

Zillions of sorting algorithms (bubblesort, 
insertion sort, selection sort, quicksort, 
heapsort, mergesort, shell sort, counting 
sort, radix sort, …)



  

Insertion sort

Imagine someone is dealing you cards. 
Whenever you get a new card you put it into 
the right place in your hand:

This is the idea of insertion sort.



  

Insertion sort

Sorting                                               :

Start by “picking up” the 5:

5 3 9 2 8

5



  

Insertion sort

Sorting                                               :

Then insert the 3 into the right place:

5 3 9 2 8

3 5



  

Insertion sort

Sorting                                               :

Then the 9:

5 3 9 2 8

3 5 9



  

Insertion sort

Sorting                                               :

Then the 2:

5 3 9 2 8

2 3 5 9



  

Insertion sort

Sorting                                               :

Finally the 8:

5 3 9 2 8

2 3 5 8 9

What’s the complexity?



  

Complexity of insertion sort

Insertion sort does n insertions for an array 
of size n
Does this mean it is O(n)? No! An insertion 
is not constant time.
To insert into a sorted array, you must move 
all the elements up one, which is O(n).
Thus total is O(n2).



  

In-place insertion sort

This version of insertion sort needs to make 
a new array to hold the result
An in-place sorting algorithm is one that 
doesn't need to make temporary arrays
● Has the potential to be more efficient

Let's make an in-place insertion sort!
Basic idea: loop through the array, and insert 
each element into the part which is already 
sorted



  

In-place insertion sort

The first element of the array is sorted:

5 3 9 2 8

5 3 9 2 8

White bit: sorted



  

In-place insertion sort

Insert the 3 into the correct place:

5 3 9 2 8

3 5 9 2 8



  

In-place insertion sort

Insert the 9 into the correct place:

3 5 9 2 8

3 5 9 2 8



  

In-place insertion sort

Insert the 2 into the correct place:

3 5 9 2 8

2 3 5 9 8



  

In-place insertion sort

Insert the 8 into the correct place:

2 3 5 9 8

2 3 5 8 9



  

Idea: look left, move elements left-to-right 
until we find the right spot

In-place insertion

2 3 5 9 4

2 3 5 9

2 3 5 9

2 3 5 94

Save this
at the

beginning



  

In-place insertion sort

for i = 1 to n
  insert array[i] into array[0..i)

An aside: we have the invariant that 
array[0..i) is sorted
● An invariant is something that holds whenever the 

loop body starts to run
● Initially, i = 1 and array[0..1) is sorted
● As the loop runs, more and more of the array becomes 

sorted
● When the loop finishes, i = n,  so array[0..n) is 

sorted – the whole array!

This notation
means

0, 1, …, i-1



  

Insertion sort

O(n2) in the worst case (which usually 
happens)
O(n) in the best case (a sorted array – 
nothing needs to be moved)
Actually the fastest sorting algorithm in 
general for small lists – it has low constant 
factors
● Insertion turns into a pretty tight loop
● Insertion sort into a tight nested loop



  

Divide and conquer

Very general name for a type of recursive 
algorithm
You have a problem to solve.
● Split that problem into smaller subproblems
● Recursively solve those subproblems
● Combine the solutions for the subproblems to solve 

the whole problem



  

To solve this...



  

1. Split the problem
into subproblems

2. Recursively solve
the subproblems

3. Combine
the solutions



  

Mergesort

We can merge two sorted lists into one in 
linear time:

792 3 5 8 1 2 3 4

7 92 3 5 81 2 3 4



  

Mergesort

792 3 5 8 1 2 3 4

1 is smaller



  

Mergesort

792 3 5 8 1 2 3 4

Both are the same

1



  

Mergesort

792 3 5 8 1 2 3 4

2 is smaller

1 2



  

Mergesort

792 3 5 8 1 2 3 4

And so on!

1 2 2



  

Mergesort

A divide-and-conquer algorithm
To mergesort a list:
● Split the list into two equal (as near as possible) parts
● Recursively mergesort the two parts
● Merge the two sorted lists together

Base cases: empty list, list of length 1



  

Mergesort

1. Split the list into two equal parts

485 3 9 2 7 3 2 1

85 3 9 2 47 3 2 1



  

Mergesort

2. Recursively mergesort the two parts

85 3 9 2 47 3 2 1

853 92 4 7321



  

Mergesort

3. Merge the two sorted lists together

792 3 5 8 1 2 3 4

7 92 3 5 81 2 3 4



  

Complexity of mergesort

An array of size n gets split into two arrays 
of size n/2:

n

n/2 n/2



  

Complexity of mergesort

The recursive calls will split these arrays into 
four arrays of size n/4:

n

n/2 n/2

n/4 n/4 n/4 n/4



  

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

log n
“levels”

O(n) time per level

Total time is
O(n log n)!

... ... ... ... ... ... ... ...



  

Complexity analysis

Mergesort's complexity is O(n log n)
● Recursion goes log n “levels” deep
● At each level there is a total of O(n) work

General “divide and conquer” theorem:
● If an algorithm does O(n) work to split the input into 

two pieces of size n/2 (or k pieces of size n/k)...
● ...then recursively processes those pieces...
● ...then does O(n) work to recombine the results...
● ...then the complexity is O(n log n)



  

Quicksort

Mergesort is great... except that it's not in-
place
● So it needs to allocate memory
● And it has a high constant factor

Quicksort: let's do divide-and-conquer 
sorting, but do it in-place



  

Quicksort

Pick an element from the array, called the 
pivot
Partition the array:
● First come all the elements smaller than the pivot, 

then the pivot, then all the elements greater than 
the pivot

Recursively quicksort the two partitions



  

Quicksort

5 3 9 2 8 7 3 2 1 4
Say the pivot is 5.
Partition the array into: all elements less 
than 5, then 5, then all elements greater than 
5

3 3 2 2 1 4 5 9 8 7

Less than the pivot Greater than the pivot



  

Quicksort

Now recursively quicksort the two 
partitions!

3 3 2 2 1 4 5 9 8 7

1 2 2 3 3 4 5 7 8 9

Quicksort Quicksort



  

Pseudocode

// call as sort(a, 0, a.length-1);
void sort(int[] a, int low, int high) {
   if (low >= high) return;
   int pivot = partition(a, low, high);
      // assume that partition returns the
      // index where the pivot now is
   sort(a, low, pivot-1);
   sort(a, pivot+1, high);
}

Common optimisation: switch to insertion sort when 
the input array is small



  

Quicksort's performance

Mergesort is fast because it splits the array 
into two equal halves
Quicksort just gives you two halves of 
whatever size!
So does it still work fast?



  

Complexity of quicksort

In the best case, partitioning splits an array 
of size n into two halves of size n/2:

n

n/2 n/2



  

Complexity of quicksort

The recursive calls will split these arrays into 
four arrays of size n/4:

n

n/2 n/2

n/4 n/4 n/4 n/4



  

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

log n
“levels”

O(n) time per level

Total time is
O(n log n)!



  

Complexity of quicksort

But that's the best case!
In the worst case, everything is greater than 
the pivot (say)
● The recursive call has size n-1
● Which in turn recurses with size n-2, etc.
● Amount of time spent in partitioning:

n + (n-1) + (n-2) + … + 1 = O(n2)



  

n

n-1

n-2

...

n
“levels”

O(n) time per level

Total time is
O(n2)!



  

Worst cases

When we simply use the first element as the 
pivot, we get this worst case for:
● Sorted arrays
● Reverse-sorted arrays

The best pivot to use is the median value of 
the array, but in practice it's too expensive to 
compute...
Most important decision in QuickSort:
what to use as the pivot



  

Complexity of quicksort

You don't need to split the array into exactly 
equal parts, it's enough to have some balance
● e.g. 10%/90% split still gives O(n log n) runtime
● Median-of-three: pick first, middle and last element of 

the array and pick the median of those three – gives O(n 
log n) in practice

● Pick pivot at random: gives O(n log n) expected 
(probabilistic) complexity

Introsort: detect when we get into the O(n2) 
case and switch to a different algorithm (e.g. 
heapsort, later in the course)



  

88

Partitioning algorithm

1. Pick a pivot (here 5)

5 3 9 2 7 3 2 1



  

88

Partitioning algorithm

2. Set two indexes, low and high

Idea: everything to the left of low is less than 
the pivot (coloured yellow), everything to the 
right of high is greater than the pivot (green)

5 3 9 2 7 3 2 1

low high



  

88

Partitioning algorithm

3. Move low right until you find something 
greater than or equal to the pivot

5 3 9 2 7 3 2 1

low high



  

88

Partitioning algorithm

3. Move low right until you find something 
greater than or equal to the pivot

while (a[low] < pivot) low++;

5 3 9 2 7 3 2 1

highlow



  

88

Partitioning algorithm

3. Move low right until you find something 
greater than or equal to the pivot

while (a[low] < pivot) low++;

5 3 9 2 7 3 2 1

low high



  

Partitioning algorithm

3. Move high left until you find something 
less than or equal to the pivot

while (a[high] < pivot) high--;

885 3 9 2 7 3 2 1

low high



  

Partitioning algorithm

3. Move high left until you find something 
less than or equal to the pivot

while (a[high] < pivot) high--;

885 3 9 2 7 3 2 1

low high



  

Partitioning algorithm

4. Swap them!

swap(a[low], a[high]);

885 3 1 2 7 3 2 9

low high



  

Partitioning algorithm

5. Advance low and high and repeat

low++; high--;

885 3 1 2 7 3 2 9

low high



  

Partitioning algorithm

5. Advance low and high and repeat

while (a[low] < pivot) low++;

885 3 1 2 7 3 2 9

low high



  

Partitioning algorithm

5. Advance low and high and repeat

885 3 1 2 7 3 2 9

low high



  

Partitioning algorithm

5. Advance low and high and repeat

while (a[high] < pivot) high++;

885 3 1 2 7 3 2 9

low high



  

Partitioning algorithm

5. Advance low and high and repeat

swap(a[low], a[high]);

825 3 1 2 7 3 8 9

low high



  

Partitioning algorithm

5. Advance low and high and repeat

low++; high--;

825 3 1 2 7 3 8 9

low high



  

Partitioning algorithm

5. Advance low and high and repeat

825 3 1 2 7 3 8 9

low high



  

Partitioning algorithm

5. Advance low and high and repeat

825 3 1 2 7 3 8 9

low high



  

Partitioning algorithm

5. Advance low and high and repeat

825 3 1 2 3 7 8 9

low high



  

Partitioning algorithm

5. Advance low and high and repeat

825 3 1 2 3 7 8 9

low

high



  

Partitioning algorithm

6. When low and high have crossed, we are 
finished!

But the pivot is in the
wrong place.

825 3 1 2 3 7 8 9

low

high



  

Partitioning algorithm

7. Last step: swap pivot with high

823 3 1 2 5 7 8 9

low

high



  

Details

1. What to do if we want to use a different 
element (not the first) for the pivot?
● Swap the pivot with the first element before starting 

partitioning!



  

Details

2. What happens if the array contains many 
duplicates?
● We only advance a[low] as long as a[low] < pivot
● If a[low] == pivot we stop, same for a[high]
● If the array contains just one element over and over 

again, low and high will advance at the same rate
● Hence we get equal-sized partitions



  

Details

3. Which pivot should we pick?
● First element: gives O(n2) behaviour for already-

sorted lists – no!
● Median – leads to optimal partition but expensive to 

compute – no!
● Median-of-three: pick first, middle and last element 

of the array and pick the median of those three – 
yes!

● Pick pivot at random: gives O(n log n) expected 
(probabilistic) complexity – yes!



  

Quicksort

Typically the fastest sorting algorithm...
...but very sensitive to details!
● Must choose a good pivot to avoid O(n2) case
● Must take care with duplicates
● Switch to insertion sort for small arrays to get better 

constant factors

If you do all that right, you get an in-place 
sorting algorithm, with low constant factors 
and O(n log n) complexity



  

Mergesort vs quicksort

Quicksort:
● In-place
● O(n log n) but O(n2) if you are not careful – delicate, may be 

unsuitable if the input can be chosen by a malicious user
● Works on arrays only (random access)

Compared to mergesort:
● Not in-place – somewhat higher constant factors
● O(n log n) – reliable
● Only requires sequential access to the list – can be used to sort 

lists in functional languages, data stored on disk, etc.

Both widely used in practice!
● Insertion sort as base case is common



  

Sorting

Why is sorting important? Because sorted lists are much 
easier to deal with!
● Searching – use binary instead of linear search
● Finding duplicates – takes linear instead of quadratic time
● etc.

The only thing that is hard about sorted lists is updating them
● Insertion, deletion takes O(n) time
● For data that does not need to be updated, a sorted list is often the best

Most sorting algorithms are based on comparisons
● Compare elements – is one bigger than the other? If not, do something 

about it!
● Advantage: they can work on all sorts of data
● Disadvantage: specialised algorithms for e.g. sorting lists of integers can be 

faster



Complexity of
recursive functions



  

Calculating complexity

Let T(n) be the time mergesort takes on a list 
of size n

Mergesort does O(n) work to split the list in two, two 
recursive calls of size n/2 and O(n) work to merge the 
two halves together, so...

T(n) = O(n) + 2T(n/2)

Time to sort a
list of size n

Linear amount
of time spent in
splitting +
merging

Plus two
recursive calls

of size n/2



  

Calculating complexity

Procedure for calculating complexity of a 
recursive algorithm:
● Write down a recurrence relation

e.g. T(n) = O(n) + 2T(n/2)
● Solve the recurrence relation to get a formula for 

T(n) (difficult!)

There isn't a general way of solving any 
recurrence relation – we'll just see a few 
families of them



  

Approach 1:
draw a diagram



  

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

O(log n)
“levels”

O(n) time per level

Total time is
O(n log n)!

T(n)

2T(n/2)

4T(n/4)

8T(n/8)



  

Another example:
T(n) = O(1) + 2T(n-1)



  

1

1 1

1 1 1 1

1 1 1 1 1 1 1 1

O(n)
“levels”

amount of work doubles at each level

T(n)

2T(n-1)

4T(n-2)

8T(n-3)



  

1

1 1

1 1 1 1

1 1 1 1 1 1 1 1

O(n)
“levels”

amount of work doubles at each level

Total time is
O(2n)!

T(n)

2T(n-1)

4T(n-2)

8T(n-3)



  

This approach

Good for building an intuition
Maybe a bit error-prone
Approach 2: expand out the definition
Example: solving T(n) = O(n) + 2T(n/2)



  

Expanding out recurrence relations

T(n) = n + 2T(n/2)

Get rid of big-O
before expanding out
(n instead of O(n)) –

the big O just gets
in the way here



  

Expanding out recurrence relations

T(n) = n + 2T(n/2)
= n + 2(n/2 + 2T(n/4))
= n + n + 4T(n/4)
= n + n + n + 8T(n/8)
= …
= n + n + n + … + n + T(1) (log n times)
= O(n log n)
(Note that T(1) is a constant so O(1))

Expand out T(n/2)



  

If you prefer it a bit more formally...

T(n) = n + 2T(n/2)
= 2n + 4T(n/4)
= 3n + 8T(n/8) = ...
General form is T(n) = kn + 2kT(n/2k)
(you can prove this by induction on k)
When k = log n, this is n log n + nT(1)
which is O(n log n)



  

Divide-and-conquer algorithms

T(n) = O(n) + 2T(n/2): T(n) = O(n log n)
● This is mergesort!

T(n) = 2T(n-1): T(n) = O(2n)
● Because 2n recursive calls of depth n

(exercise: show this)

Other cases: master theorem
● Kind of fiddly – best to just look it up if you need it 

(avoid Wikipedia unfortunately)



  

Another example: T(n) = O(n) + T(n-1)

T(n) = n + T(n-1)
= n + (n-1) + T(n-2)
= n + (n-1) + (n-2) + T(n-3)
= …
= n + (n-1) + (n-2) + … + 1 + T(0)
= n(n+1) / 2 + T(0)
= O(n2)



  

Another example: T(n) = O(1) + T(n-1)

T(n) = 1 + T(n-1)
= 2 + T(n-2)
= 3 + T(n-3)
= …
= n + T(0)
= O(n)



  

Another example: T(n) = O(1) + T(n/2)

T(n) = 1 + T(n/2)
= 2 + T(n/4)
= 3 + T(n/8)
= …
= log n + T(1)
= O(log n)



  

Another example: T(n) = O(n) + T(n/2)

T(n) = n + T(n/2):
T(n) = n + T(n/2)
= n + n/2 + T(n/4)
= n + n/2 + n/4 + T(n/8)
= …
= n + n/2 + n/4 + …
< 2n
= O(n)

Not
O(n log n),

which is what you
might expect



  

Functions that recurse once

T(n) = O(1) + T(n-1): T(n) = O(n)
T(n) = O(n) + T(n-1): T(n) = O(n2)
T(n) = O(1) + T(n/2): T(n) = O(log n)
T(n) = O(n) + T(n/2): T(n) = O(n)
An almost-rule-of-thumb:
● Solution is maximum recursion depth times amount of work 

in one call

(except that this rule of thumb would give O(n 
log n) for the last case)
Functions that recurse once are basically loops!



  

Complexity of recursive functions

Basic idea – recurrence relations
Easy enough to write down, hard to solve
● One technique: expand out the recurrence and see what 

happens
● Another rule of thumb: multiply work done per level with 

number of levels
● Drawing a diagram might help

Master theorem for divide and conquer
Luckily, in practice you come across the same few 
recurrence relations, so you usually just need to 
know how to solve those
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