
Sorting
(Weiss chapter 7.1-2, 7.6-7)

Sorting

5 3 9 2 8 7 3 2 1 4

1 2 2 3 3 4 5 7 8 9

Zillions of sorting algorithms (bubblesort,
insertion sort, selection sort, quicksort,
heapsort, mergesort, shell sort, counting
sort, radix sort, …)

Insertion sort

Imagine someone is dealing you cards.
Whenever you get a new card you put it into
the right place in your hand:

This is the idea of insertion sort.

Insertion sort

Sorting :

Start by “picking up” the 5:

5 3 9 2 8

5

Insertion sort

Sorting :

Then insert the 3 into the right place:

5 3 9 2 8

3 5

Insertion sort

Sorting :

Then the 9:

5 3 9 2 8

3 5 9

Insertion sort

Sorting :

Then the 2:

5 3 9 2 8

2 3 5 9

Insertion sort

Sorting :

Finally the 8:

5 3 9 2 8

2 3 5 8 9

What’s the complexity?

Complexity of insertion sort

Insertion sort does n insertions for an array
of size n
Does this mean it is O(n)? No! An insertion
is not constant time.
To insert into a sorted array, you must move
all the elements up one, which is O(n).
Thus total is O(n2).

In-place insertion sort

This version of insertion sort needs to make
a new array to hold the result
An in-place sorting algorithm is one that
doesn't need to make temporary arrays
● Has the potential to be more efficient

Let's make an in-place insertion sort!
Basic idea: loop through the array, and insert
each element into the part which is already
sorted

In-place insertion sort

The first element of the array is sorted:

5 3 9 2 8

5 3 9 2 8

White bit: sorted

In-place insertion sort

Insert the 3 into the correct place:

5 3 9 2 8

3 5 9 2 8

In-place insertion sort

Insert the 9 into the correct place:

3 5 9 2 8

3 5 9 2 8

In-place insertion sort

Insert the 2 into the correct place:

3 5 9 2 8

2 3 5 9 8

In-place insertion sort

Insert the 8 into the correct place:

2 3 5 9 8

2 3 5 8 9

Idea: look left, move elements left-to-right
until we find the right spot

In-place insertion

2 3 5 9 4

2 3 5 9

2 3 5 9

2 3 5 94

Save this
at the

beginning

In-place insertion sort

for i = 1 to n
 insert array[i] into array[0..i)

An aside: we have the invariant that
array[0..i) is sorted
● An invariant is something that holds whenever the

loop body starts to run
● Initially, i = 1 and array[0..1) is sorted
● As the loop runs, more and more of the array becomes

sorted
● When the loop finishes, i = n, so array[0..n) is

sorted – the whole array!

This notation
means

0, 1, …, i-1

Insertion sort

O(n2) in the worst case (which usually
happens)
O(n) in the best case (a sorted array –
nothing needs to be moved)
Actually the fastest sorting algorithm in
general for small lists – it has low constant
factors
● Insertion turns into a pretty tight loop
● Insertion sort into a tight nested loop

Divide and conquer

Very general name for a type of recursive
algorithm
You have a problem to solve.
● Split that problem into smaller subproblems
● Recursively solve those subproblems
● Combine the solutions for the subproblems to solve

the whole problem

To solve this...

1. Split the problem
into subproblems

2. Recursively solve
the subproblems

3. Combine
the solutions

Mergesort

We can merge two sorted lists into one in
linear time:

792 3 5 8 1 2 3 4

7 92 3 5 81 2 3 4

Mergesort

792 3 5 8 1 2 3 4

1 is smaller

Mergesort

792 3 5 8 1 2 3 4

Both are the same

1

Mergesort

792 3 5 8 1 2 3 4

2 is smaller

1 2

Mergesort

792 3 5 8 1 2 3 4

And so on!

1 2 2

Mergesort

A divide-and-conquer algorithm
To mergesort a list:
● Split the list into two equal (as near as possible) parts
● Recursively mergesort the two parts
● Merge the two sorted lists together

Base cases: empty list, list of length 1

Mergesort

1. Split the list into two equal parts

485 3 9 2 7 3 2 1

85 3 9 2 47 3 2 1

Mergesort

2. Recursively mergesort the two parts

85 3 9 2 47 3 2 1

853 92 4 7321

Mergesort

3. Merge the two sorted lists together

792 3 5 8 1 2 3 4

7 92 3 5 81 2 3 4

Complexity of mergesort

An array of size n gets split into two arrays
of size n/2:

n

n/2 n/2

Complexity of mergesort

The recursive calls will split these arrays into
four arrays of size n/4:

n

n/2 n/2

n/4 n/4 n/4 n/4

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

log n
“levels”

O(n) time per level

Total time is
O(n log n)!

...

Complexity analysis

Mergesort's complexity is O(n log n)
● Recursion goes log n “levels” deep
● At each level there is a total of O(n) work

General “divide and conquer” theorem:
● If an algorithm does O(n) work to split the input into

two pieces of size n/2 (or k pieces of size n/k)...
● ...then recursively processes those pieces...
● ...then does O(n) work to recombine the results...
● ...then the complexity is O(n log n)

Quicksort

Mergesort is great... except that it's not in-
place
● So it needs to allocate memory
● And it has a high constant factor

Quicksort: let's do divide-and-conquer
sorting, but do it in-place

Quicksort

Pick an element from the array, called the
pivot
Partition the array:
● First come all the elements smaller than the pivot,

then the pivot, then all the elements greater than
the pivot

Recursively quicksort the two partitions

Quicksort

5 3 9 2 8 7 3 2 1 4
Say the pivot is 5.
Partition the array into: all elements less
than 5, then 5, then all elements greater than
5

3 3 2 2 1 4 5 9 8 7

Less than the pivot Greater than the pivot

Quicksort

Now recursively quicksort the two
partitions!

3 3 2 2 1 4 5 9 8 7

1 2 2 3 3 4 5 7 8 9

Quicksort Quicksort

Pseudocode

// call as sort(a, 0, a.length-1);
void sort(int[] a, int low, int high) {
 if (low >= high) return;
 int pivot = partition(a, low, high);
 // assume that partition returns the
 // index where the pivot now is
 sort(a, low, pivot-1);
 sort(a, pivot+1, high);
}

Common optimisation: switch to insertion sort when
the input array is small

Quicksort's performance

Mergesort is fast because it splits the array
into two equal halves
Quicksort just gives you two halves of
whatever size!
So does it still work fast?

Complexity of quicksort

In the best case, partitioning splits an array
of size n into two halves of size n/2:

n

n/2 n/2

Complexity of quicksort

The recursive calls will split these arrays into
four arrays of size n/4:

n

n/2 n/2

n/4 n/4 n/4 n/4

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

log n
“levels”

O(n) time per level

Total time is
O(n log n)!

Complexity of quicksort

But that's the best case!
In the worst case, everything is greater than
the pivot (say)
● The recursive call has size n-1
● Which in turn recurses with size n-2, etc.
● Amount of time spent in partitioning:

n + (n-1) + (n-2) + … + 1 = O(n2)

n

n-1

n-2

...

n
“levels”

O(n) time per level

Total time is
O(n2)!

Worst cases

When we simply use the first element as the
pivot, we get this worst case for:
● Sorted arrays
● Reverse-sorted arrays

The best pivot to use is the median value of
the array, but in practice it's too expensive to
compute...
Most important decision in QuickSort:
what to use as the pivot

Complexity of quicksort

You don't need to split the array into exactly
equal parts, it's enough to have some balance
● e.g. 10%/90% split still gives O(n log n) runtime
● Median-of-three: pick first, middle and last element of

the array and pick the median of those three – gives O(n
log n) in practice

● Pick pivot at random: gives O(n log n) expected
(probabilistic) complexity

Introsort: detect when we get into the O(n2)
case and switch to a different algorithm (e.g.
heapsort, later in the course)

88

Partitioning algorithm

1. Pick a pivot (here 5)

5 3 9 2 7 3 2 1

88

Partitioning algorithm

2. Set two indexes, low and high

Idea: everything to the left of low is less than
the pivot (coloured yellow), everything to the
right of high is greater than the pivot (green)

5 3 9 2 7 3 2 1

low high

88

Partitioning algorithm

3. Move low right until you find something
greater than or equal to the pivot

5 3 9 2 7 3 2 1

low high

88

Partitioning algorithm

3. Move low right until you find something
greater than or equal to the pivot

while (a[low] < pivot) low++;

5 3 9 2 7 3 2 1

highlow

88

Partitioning algorithm

3. Move low right until you find something
greater than or equal to the pivot

while (a[low] < pivot) low++;

5 3 9 2 7 3 2 1

low high

Partitioning algorithm

3. Move high left until you find something
less than or equal to the pivot

while (a[high] < pivot) high--;

885 3 9 2 7 3 2 1

low high

Partitioning algorithm

3. Move high left until you find something
less than or equal to the pivot

while (a[high] < pivot) high--;

885 3 9 2 7 3 2 1

low high

Partitioning algorithm

4. Swap them!

swap(a[low], a[high]);

885 3 1 2 7 3 2 9

low high

Partitioning algorithm

5. Advance low and high and repeat

low++; high--;

885 3 1 2 7 3 2 9

low high

Partitioning algorithm

5. Advance low and high and repeat

while (a[low] < pivot) low++;

885 3 1 2 7 3 2 9

low high

Partitioning algorithm

5. Advance low and high and repeat

885 3 1 2 7 3 2 9

low high

Partitioning algorithm

5. Advance low and high and repeat

while (a[high] < pivot) high++;

885 3 1 2 7 3 2 9

low high

Partitioning algorithm

5. Advance low and high and repeat

swap(a[low], a[high]);

825 3 1 2 7 3 8 9

low high

Partitioning algorithm

5. Advance low and high and repeat

low++; high--;

825 3 1 2 7 3 8 9

low high

Partitioning algorithm

5. Advance low and high and repeat

825 3 1 2 7 3 8 9

low high

Partitioning algorithm

5. Advance low and high and repeat

825 3 1 2 7 3 8 9

low high

Partitioning algorithm

5. Advance low and high and repeat

825 3 1 2 3 7 8 9

low high

Partitioning algorithm

5. Advance low and high and repeat

825 3 1 2 3 7 8 9

low

high

Partitioning algorithm

6. When low and high have crossed, we are
finished!

But the pivot is in the
wrong place.

825 3 1 2 3 7 8 9

low

high

Partitioning algorithm

7. Last step: swap pivot with high

823 3 1 2 5 7 8 9

low

high

Details

1. What to do if we want to use a different
element (not the first) for the pivot?
● Swap the pivot with the first element before starting

partitioning!

Details

2. What happens if the array contains many
duplicates?
● We only advance a[low] as long as a[low] < pivot
● If a[low] == pivot we stop, same for a[high]
● If the array contains just one element over and over

again, low and high will advance at the same rate
● Hence we get equal-sized partitions

Details

3. Which pivot should we pick?
● First element: gives O(n2) behaviour for already-

sorted lists – no!
● Median – leads to optimal partition but expensive to

compute – no!
● Median-of-three: pick first, middle and last element

of the array and pick the median of those three –
yes!

● Pick pivot at random: gives O(n log n) expected
(probabilistic) complexity – yes!

Quicksort

Typically the fastest sorting algorithm...
...but very sensitive to details!
● Must choose a good pivot to avoid O(n2) case
● Must take care with duplicates
● Switch to insertion sort for small arrays to get better

constant factors

If you do all that right, you get an in-place
sorting algorithm, with low constant factors
and O(n log n) complexity

Mergesort vs quicksort

Quicksort:
● In-place
● O(n log n) but O(n2) if you are not careful – delicate, may be

unsuitable if the input can be chosen by a malicious user
● Works on arrays only (random access)

Compared to mergesort:
● Not in-place – somewhat higher constant factors
● O(n log n) – reliable
● Only requires sequential access to the list – can be used to sort

lists in functional languages, data stored on disk, etc.

Both widely used in practice!
● Insertion sort as base case is common

Sorting

Why is sorting important? Because sorted lists are much
easier to deal with!
● Searching – use binary instead of linear search
● Finding duplicates – takes linear instead of quadratic time
● etc.

The only thing that is hard about sorted lists is updating them
● Insertion, deletion takes O(n) time
● For data that does not need to be updated, a sorted list is often the best

Most sorting algorithms are based on comparisons
● Compare elements – is one bigger than the other? If not, do something

about it!
● Advantage: they can work on all sorts of data
● Disadvantage: specialised algorithms for e.g. sorting lists of integers can be

faster

Complexity of
recursive functions

Calculating complexity

Let T(n) be the time mergesort takes on a list
of size n

Mergesort does O(n) work to split the list in two, two
recursive calls of size n/2 and O(n) work to merge the
two halves together, so...

T(n) = O(n) + 2T(n/2)

Time to sort a
list of size n

Linear amount
of time spent in
splitting +
merging

Plus two
recursive calls

of size n/2

Calculating complexity

Procedure for calculating complexity of a
recursive algorithm:
● Write down a recurrence relation

e.g. T(n) = O(n) + 2T(n/2)
● Solve the recurrence relation to get a formula for

T(n) (difficult!)

There isn't a general way of solving any
recurrence relation – we'll just see a few
families of them

Approach 1:
draw a diagram

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

O(log n)
“levels”

O(n) time per level

Total time is
O(n log n)!

T(n)

2T(n/2)

4T(n/4)

8T(n/8)

Another example:
T(n) = O(1) + 2T(n-1)

1

1 1

1 1 1 1

1 1 1 1 1 1 1 1

O(n)
“levels”

amount of work doubles at each level

T(n)

2T(n-1)

4T(n-2)

8T(n-3)

1

1 1

1 1 1 1

1 1 1 1 1 1 1 1

O(n)
“levels”

amount of work doubles at each level

Total time is
O(2n)!

T(n)

2T(n-1)

4T(n-2)

8T(n-3)

This approach

Good for building an intuition
Maybe a bit error-prone
Approach 2: expand out the definition
Example: solving T(n) = O(n) + 2T(n/2)

Expanding out recurrence relations

T(n) = n + 2T(n/2)

Get rid of big-O
before expanding out
(n instead of O(n)) –

the big O just gets
in the way here

Expanding out recurrence relations

T(n) = n + 2T(n/2)
= n + 2(n/2 + 2T(n/4))
= n + n + 4T(n/4)
= n + n + n + 8T(n/8)
= …
= n + n + n + … + n + T(1) (log n times)
= O(n log n)
(Note that T(1) is a constant so O(1))

Expand out T(n/2)

If you prefer it a bit more formally...

T(n) = n + 2T(n/2)
= 2n + 4T(n/4)
= 3n + 8T(n/8) = ...
General form is T(n) = kn + 2kT(n/2k)
(you can prove this by induction on k)
When k = log n, this is n log n + nT(1)
which is O(n log n)

Divide-and-conquer algorithms

T(n) = O(n) + 2T(n/2): T(n) = O(n log n)
● This is mergesort!

T(n) = 2T(n-1): T(n) = O(2n)
● Because 2n recursive calls of depth n

(exercise: show this)

Other cases: master theorem
● Kind of fiddly – best to just look it up if you need it

(avoid Wikipedia unfortunately)

Another example: T(n) = O(n) + T(n-1)

T(n) = n + T(n-1)
= n + (n-1) + T(n-2)
= n + (n-1) + (n-2) + T(n-3)
= …
= n + (n-1) + (n-2) + … + 1 + T(0)
= n(n+1) / 2 + T(0)
= O(n2)

Another example: T(n) = O(1) + T(n-1)

T(n) = 1 + T(n-1)
= 2 + T(n-2)
= 3 + T(n-3)
= …
= n + T(0)
= O(n)

Another example: T(n) = O(1) + T(n/2)

T(n) = 1 + T(n/2)
= 2 + T(n/4)
= 3 + T(n/8)
= …
= log n + T(1)
= O(log n)

Another example: T(n) = O(n) + T(n/2)

T(n) = n + T(n/2):
T(n) = n + T(n/2)
= n + n/2 + T(n/4)
= n + n/2 + n/4 + T(n/8)
= …
= n + n/2 + n/4 + …
< 2n
= O(n)

Not
O(n log n),

which is what you
might expect

Functions that recurse once

T(n) = O(1) + T(n-1): T(n) = O(n)
T(n) = O(n) + T(n-1): T(n) = O(n2)
T(n) = O(1) + T(n/2): T(n) = O(log n)
T(n) = O(n) + T(n/2): T(n) = O(n)
An almost-rule-of-thumb:
● Solution is maximum recursion depth times amount of work

in one call

(except that this rule of thumb would give O(n
log n) for the last case)
Functions that recurse once are basically loops!

Complexity of recursive functions

Basic idea – recurrence relations
Easy enough to write down, hard to solve
● One technique: expand out the recurrence and see what

happens
● Another rule of thumb: multiply work done per level with

number of levels
● Drawing a diagram might help

Master theorem for divide and conquer
Luckily, in practice you come across the same few
recurrence relations, so you usually just need to
know how to solve those

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92

