

Complexity
(Weiss chapter 2)

Complexity

This lecture is all about how to describe the performance of
an algorithm
Given an algorithm, and (e.g.) the size of the input, can
we come up with a formula for the runtime of the
algorithm?
● Problem: runtime may vary based on exact input – solution: look at

worst-case runtime for a given size
● Problem: calculating an exact runtime requires deep knowledge of

the machine the program will be run on – solution: count number of
steps instead

● Problem: the formula is usually very large and annoying to calculate
– solution: the rest of this lecture!

Idea: asymptotic complexity – what is the performance like
when n is large?

≈ n2/200

2n

≈ n2/2

Observation 1:
constant factors

don’t usually matter!

n(n-1)/2
= n2/2 - n/2

n2/2

Observation 2:
only leading terms

are significant

Big-O notation

When n is large:
● only leading terms are significant
● constant factors don’t (usually) matter

Main concept in this lecture: big-O notation, which
allows us to ignore all those details in our formulas
The runtime of the three file copying programs is:
● The first one: n(n-1)/2 is O(n2) (“big-O n-squared”)
● The second one: n(n-100)/2 is O(n2) too
● The third one: 2n is O(n)
● O(…) means roughly: “proportional to …, when n is large

enough”

O(n2)

O(n)

O(n2)

Big-O notation
explains the difference

in performance!

Time complexity

With big-O notation, it doesn't matter
whether we count steps or time!
As long as each step takes a constant amount
of time:
● if the number of steps is proportional to n2

● then the amount of time is proportional to n2

We say that the algorithm has O(n2) time
complexity or simply complexity

Common complexities

Quiz

An algorithm takes O(n) time to run. What
happens to the runtime if the size of the
input is doubled?
What about if the algorithm takes O(n2)
time to run?
How does this explain the following facts:
● In the slow file-copying program, it started quickly

but gradually got slower as it read the file
● In the fast file-copying program, it carried on at a

constant rate

Growth rates
Imagine that we double the input size from n to 2n.
If an algorithm is...
● O(1), then it takes the same time as before
● O(log n), then it takes a constant amount more
● O(n), then it takes twice as long
● O(n log n), then it takes twice as long plus a little bit more
● O(n2), then it takes four times as long

– This explains why the slow file reading programs started quickly, but then
gradually slowed down as they continued reading the file. How?

If an algorithm is O(2n), then adding one element
makes it take twice as long
Big O tells you how the performance of an algorithm
scales with the input size

Big O mathematically

Big O, formally

Big O measures the growth of a mathematical
function
● Typically a function T(n) giving the number of steps

taken by an algorithm on input of size n
● But can also be used to measure space complexity

(memory usage) or anything else

So for the file-copying program:
● T(n) = n(n-1)/2
● T(n) is O(n2)
● In general, T(n) is O(f(n)), for some function f
● We often abuse notation and write “T(n) = O(f(n))”

Big O, formally

What does it mean to say “T(n) is O(f(n))”?
● e.g. T(n) is O(n2)

We could say it means T(n) is proportional to
f(n)
● i.e. T(n) = k × f(n) for some k
● e.g. T(n) = n2/2 is O(n2) (let k = ½)

But this is too restrictive!
● We want T(n) = n(n-1)/2 to be O(n2)
● We want T(n) = n2 + 1 to be O(n2)

Big O, formally

Instead, we say that T(n) is O(f(n)) if:
● T(n) ≤ k × f(n) for some k,

i.e. T(n) is proportional to f(n) or lower!
● This only has to hold for big enough n:

i.e. for all n above some threshold n0

If you draw the graphs of T(n) and k × f(n), at some
point the graph of k × f(n) must permanently
overtake the graph of T(n)
● In other words, T(n) grows more slowly than k × f(n)

Note that big-O notation is allowed to overestimate
the complexity!
● k × f(n) is an upper bound on T(n)

An example: n2 + 2n + 3 is O(n2)

n2+2n+3 ≤ 2n2

for n ≥ 3

Quiz

● Is 3n + 5 in O(n)?
● Is n2 + 2n + 3 in O(n3)?
● Is it in O(n2)?
● Is it in O(n)?
● Why do we need the threshold n0?

Adding big O

Some functions grow faster than others:
O(1) < O(log n) < O(n) < O(n log n) < O(n2) <
O(n3) < O(2n)
When adding two functions, the faster-
growing function “wins”:

O(1) + O(log n) = O(log n)
O(log n) + O(nk) = O(nk) (if k ≥ 0)
O(nj) + O(nk) = O(nk), if j ≤ k
O(nk) + O(2n) = O(2n)

An example: n2 + 2n + 3 is O(n2)

Use hierarchy:
n2 + 2n + 3

=
O(n2) + O(n) + O(1)

=
O(n2)

Quiz

What are these in Big O notation (simplified
as far as possible)?

● n2 + 11
● 2n3 + 3n + 1
● n4 + 2n

Just use hierarchy!

n2 + 11 = O(n2) + O(1) = O(n2)
2n3 + 3n + 1 = O(n3) + O(n) + O(1) = O(n3)
n4 + 2n = O(n4) + O(2n) = O(2n)

Multiplying big O

O(f(n)) × O(g(n)) = O(f(n) × g(n))
● e.g., O(n2) × O(log n) = O(n2 log n)

You can drop constant factors:
● k × O(f(n)) = O(f(n)), if k is constant
● e.g. 2 × O(n) = O(n)

(Exercise: show that these are true)

Quiz

What is (n2 + 3)(2n × n) + log10 n
in Big O notation?

Answer

(n2 + 3)(2n × n) + log10 n
= O(n2) × O(2n × n) + O(log n)
= O(2n × n3) + O(log n) (multiplication)
= O(2n × n3) (hierarchy)

log
10

n = log n / log 10
i.e. log n times a
constant factor

Reasoning about programs

Complexity of a program

Most “primitive” operations take O(1) time:

int add(int x, int y) {
 return x + y;
}

(Exception: creating an array of length n
takes O(n) time)

This is called the uniform cost model,
because all primitive operations

are assigned the same cost

Complexity of a program

What about loops?
(Assume the array size is n)
boolean member(Object[] array, Object x) {
 for (int i = 0; i < array.length; i++)
 if (array[i].equals(x))
 return true;
 return false;
}

Complexity of a program

What about loops?
(Assume the array size is n)
boolean member(Object[] array, Object x) {
 for (int i = 0; i < array.length; i++)
 if (array[i].equals(x))
 return true;
 return false;
}

Loop runs
O(n) times

Loop body takes
O(1) time

O(1) × O(n) = O(n)

Complexity of loops

The complexity of a loop is:
the number of times it runs
times the complexity of the body

For nested loops, start from the innermost
loop and work your way outwards!

What about this one?

boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < a.length; j++)

 if (a[i].equals(a[j]) && i != j)

 return false;

 return true;

}

What about this one?

boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < a.length; j++)

 if (a[i].equals(a[j]) && i != j)

 return false;

 return true;

}
Loop body:

O(1)

Inner loop runs
n times:

O(n) × O(1) = O(n)

Outer loop runs
n times:

O(n) × O(n) = O(n2)

What about this one?

void function(int n) {

 for(int i = 0; i < n*n; i++)

 for (int j = 0; j < n/2; j++)

 “something taking O(1) time”

}

What about this one?

void function(int n) {

 for(int i = 0; i < n*n; i++)

 for (int j = 0; j < n/2; j++)

 “something taking O(1) time”

}

Loop body:
O(1)

Inner loop runs
n/2 = O(n) times:

O(n) × O(1) = O(n)

Outer loop runs
n2 times:

O(n2) × O(n) = O(n3)

Here's a new one

boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 if (a[i].equals(a[j]))

 return false;

 return true;

}

Here's a new one

boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 if (a[i].equals(a[j]))

 return false;

 return true;

}
Body is O(1)

Inner loop is
i × O(1) = O(i)??
But it should be
in terms of n?

Here's a new one

boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 if (a[i].equals(a[j]))

 return false;

 return true;

}
Body is O(1)

i < n, so i is O(n)
So loop runs O(n)
times, complexity:

O(n) × O(1) = O(n)

Here's a new one

boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 if (a[i].equals(a[j]))

 return false;

 return true;

}
Body is O(1)

i < n, so i is O(n)
So loop runs O(n)
times, complexity:

O(n) × O(1) = O(n)

Outer loop runs
n times:

O(n) × O(n) = O(n2)

Three nested loops

void something(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 for (int k = 0; k < j; k++)

 “something that takes 1 step”

} i < n, j < n, k < n,
so all three loops run O(n) times

Total runtime is
O(n) × O(n) × O(n) × O(1) = O(n3)

What's the complexity?

void something(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 1; j < a.length; j *= 2)

 … // something taking O(1) time

}

What's the complexity?

void something(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 1; j < a.length; j *= 2)

 … // something taking O(1) time

}

A loop running through i = 1, 2, 4, …, n runs
O(log n) times!

Inner loop is
O(log n)

Outer loop is
O(n log n)

While loops

long squareRoot(long n) {

 long i = 0;

 long j = n;

 while (i < j) {

 long k = (i + j) / 2;

 if (k*k <= n) i = k;

 else j = k-1;

 }

 return i;

}

Each iteration takes
O(1) time...

but how many times
does the loop run?

While loops

long squareRoot(long n) {

 long i = 0;

 long j = n;

 while (i < j) {

 long k = (i + j) / 2;

 if (k*k <= n) i = k;

 else j = k-1;

 }

 return i;

}

Each iteration
takes O(1) time

...and halves
j-i, so O(log n)

iterations

Summary: loops

Basic rule for complexity of loops:
● Number of iterations times complexity of body
● for (int i = 0; i < n; i++) …: n iterations
● for (int i = 1; i ≤ n; i *= 2): O(log n) iterations
● While loops: have to work out number of iterations

If the complexity of the body depends on the
value of the loop counter:
● e.g. O(i), where 0 ≤ i < n
● You can safely round i up to O(n)!

Sequences of statements

What's the complexity here?
(Assume that the loop bodies are O(1))
 for (int i = 0; i < n; i++) …
 for (int i = 1; i < n; i *= 2) …

Sequences of statements

What's the complexity here?
(Assume that the loop bodies are O(1))
 for (int i = 0; i < n; i++) …
 for (int i = 1; i < n; i *= 2) …

First loop: O(n)
Second loop: O(log n)
Total: O(n) + O(log n) = O(n)
For sequences, add the complexities!

Modelling a slow dynamic array

int[] array = {};
for (int i = 0; i < n; i+=100) {
int[] newArray =
new int[array.length+100];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
}

Modelling a slow dynamic array

int[] array = {};
for (int i = 0; i < n; i+=100) {
int[] newArray =
new int[array.length+100];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
}

Inner loop
O(n)

Rest of loop body
O(1),

so loop body
O(1) + O(n) = O(n)

Outer loop:
n iterations,
O(n) body,
so O(n2)

Modelling a fast dynamic array

int[] array = {0};
for (int i = 1; i <= n; i*=2) {
int[] newArray =
new int[array.length*2];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
}

Modelling a fast dynamic array

int[] array = {0};
for (int i = 1; i <= n; i*=2) {
int[] newArray =
new int[array.length*2];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
}

Outer loop:
log n iterations,

O(n) body,
so O(n log n)??

Modelling a fast dynamic array

int[] array = {0};
for (int i = 1; i <= n; i*=2) {
int[] newArray =
new int[array.length*2];

for (int j = 0; j < i; j++)
newArray[j] = array[j];

newArray = array;
}

Here we
“round up”

O(i) to O(n).
This causes an
overestimate!

A complication

Our algorithm has O(n) complexity, but we've
calculated O(n log n)
● An overestimate, but not a severe one

(If n = 1000000 then n log n = 20n)
● This can happen but is normally not severe
● To get the right answer: do the maths

Good news: for “normal” loops this doesn't happen
● If all bounds are n, or n2, or another loop variable, or a loop

variable squared, or …

Main exception: loop variable i doubles every time,
body complexity depends on i

Doing the sums

In our example:
● The inner loop's complexity is O(i)
● In the outer loop, i ranges over 1, 2, 4, 8, …, 2a

Instead of rounding up, we will add up the
time for all the iterations of the loop:

1 + 2 + 4 + 8 + … + 2a

= 2 × 2a – 1 < 2 × 2a

Since 2a ≤ n, the total time is at most 2n,
which is O(n)

A last example

for (int i = 1; i <= n; i *= 2) {
 for (int j = 0; j < n*n; j++)
 for (int k = 0; k <= j; k++)
 // O(1)
 for (int j = 0; j < n; j++)
 // O(1)
}

A last example

for (int i = 1; i <= n; i *= 2) {
 for (int j = 0; j < n*n; j++)
 for (int k = 0; k <= j; k++)
 // O(1)
 for (int j = 0; j < n; j++)
 // O(1)
}

Total: O(log n) × (O(n2) × O(n2) + O(n))
= O(n4 log n)

k <= j < n*n
so this loop is

O(n2)

The outer loop
runs O(log n)

times

This loop is
O(n)

The j-loop
runs n2 times

A couple of loose ends

Big Ω

Recall that big-O allows us to overestimate the growth
rate of a function:
● 2n2+3n+1 is O(n2), but also O(n3)

Big-O has a cousin, big- (“big-omega”), which allows us Ω
to underestimate the growth rate:
● 2n2+3n+1 is (nΩ 2), but also (n)Ω

Formally we just replace a ≤ with a ≥ in the definition of
big-O:
● T(n) is O(n2) if T(n) ≤ kn2 for some k, for big enough n
● T(n) is (nΩ 2) if T(n) ≥ kn2 for some k, for big enough n

Big Θ

There is also big- (“big-theta”), which is like big-O Θ
but requires the complexity given to be tight:
● For example, 2n2+3n+1 is (nΘ 2) (and nothing

else)
● T(n) is (f(n)) if T(n) is both O(f(n)) and (f(n))Θ Ω

You should recognise all three notations, but we
will mostly stick to big-O in this course
● The other two are generally harder to calculate accurately
● Big- is mostly useful for defining big-Ω Θ
● Big-O gives you an upper bound, which can tell you that an

algorithm is fast enough

Amortised time complexity

How long does it take to add one element to a dynamic array?
● Simple answer: O(n)
● But adding n elements to an empty array takes O(n) time, O(1) “per element”.

So it’s somehow O(1) “on average”?
● If we measure the runtime of a program using dynamic arrays, it will look as if each

operation took O(1) time!

To capture this, we say that adding an element to a dynamic array has
O(1) amortised complexity
● An operation has O(f(n)) amortised complexity if, for any sequence of operations, the

total runtime is as if each operation took O(f(n)) time
● e.g.: O(log n) amortised complexity n operations take O(n log n) time→
● Amortised complexity can occur when an expensive operation is always balanced out

by many cheap ones

Be careful to distinguish amortised from “normal” complexity
● If your program has real-time constraints, then a data structure with amortised

complexity may be totally unsuitable
● But for most applications, it works just fine

The uniform cost model

We assumed that all primitive operations took
constant time – this is called the uniform cost
model
But – if your programming language supports
integers of unbounded size – then arithmetic
on bigger numbers takes longer!
● Most arithmetic operations grow as O(log n), where n is

the magnitude of the number
● This is called the logarithmic cost model
● It is common when integers can be unbounded size, and

also in some specialised applications like cryptography

Life without
big O notation

What happens without big O?

How many steps does this function take on an
array of length n (in the worst case)?
boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < a.length; j++)

 if (a[i].equals(a[j]) && i != j)

 return false;

 return true;

}

Assume that
loop body takes

1 step

What happens without big O?

How many steps does this function take on an
array of length n (in the worst case)?
boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < a.length; j++)

 if (a[i].equals(a[j]) && i != j)

 return false;

 return true;

}

Outer loop runs n times
Each time, inner loop

runs n times

Total: n × n = n2

What about this one?

boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 if (a[i].equals(a[j]))

 return false;

 return true;

}

Loop runs to i
instead of n

Some hard sums

When i = 0, inner loop runs 0 times
When i = 1, inner loop runs 1 time
…
When i = n-1, inner loop runs n-1 times

Total:

● = 0 + 1 + 2 + … + n-1

which is n(n-1)/2

∑
i=0

n−1

i

What about this one?

boolean unique(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 if (a[i].equals(a[j]))

 return false;

 return true;

}

Answer:
n(n-1)/2

What about this one?

void something(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 for (int k = 0; k < j; k++)

 “something that takes 1 step”

}

More hard sums

Outer loop:
i goes from 0 to n-1

Middle loop:
j goes from 0 to i-1

Inner loop:
k goes from 0 to j-1

Counts: how many values i, j, k where
0 ≤ i < n, 0 ≤ j < i, 0 ≤ k ≤ j

∑
i=0

n−1

∑
j=0

i−1

∑
k=0

j−1

1

More hard sums

Counts: how many values i, j, k where
0 ≤ i < n, 0 ≤ j < i, 0 ≤ k ≤ j

∑
i=0

n−1

∑
j=0

i−1

∑
k=0

j−1

1

Answer (I looked it up):
n(n-1)(n-2)/6

What about this one?

void something(Object[] a) {

 for(int i = 0; i < a.length; i++)

 for (int j = 0; j < i; j++)

 for (int k = 0; k < j; k++)

 “something that takes 1 step”

}

Answer:
n(n-1)(n-2)/6

Sums vs integrals

For example:

Not quite the same, but close! (usually gives the right
complexity)
A better approach: “Finite calculus: a tutorial for solving nasty
sums” - adapts rules of calculus to work with sums instead of
integrals

∑
x=a

b

f (x)≈∫
a

b

f (x)

∑
i=0

n

i=n(n+1)/2 ∫
0

n

x dx=n2
/2

Big O in retrospect

We do lose some precision by throwing away
constant factors
● ...you probably do care about a factor of 100 performance

improvement
● ...but in practice the constant factors don’t get much higher

than 2,

On the other hand, life gets much simpler:
● A small phrase like O(n2) tells you exactly how the

performance scales when the input gets big
● It's a lot easier to calculate big-O complexity than a precise

formula (lots of good rules to help you)

Big O is normally an excellent compromise!

	Slide 1
	Slide 2
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

