Complexity (Weiss chapter 2)

Complexity

This lecture is all about *how to describe the performance of an algorithm*

Given an algorithm, and (e.g.) the size of the input, can we come up with a formula for the runtime of the algorithm?

- Problem: runtime may vary based on exact input solution: look at worst-case runtime for a given size
- Problem: calculating an exact runtime requires deep knowledge of the machine the program will be run on – solution: count *number of steps* instead
- Problem: the formula is usually very large and annoying to calculate – solution: the rest of this lecture!

Idea: *asymptotic complexity* – what is the performance like when n is large?

Big-O notation

When n is large:

- only leading terms are significant
- constant factors don't (usually) matter

Main concept in this lecture: *big-O notation*, which allows us to ignore all those details in our formulas The runtime of the three file copying programs is:

- The first one: n(n-1)/2 is $O(n^2)$ ("big-O n-squared")
- The second one: n(n-100)/2 is $O(n^2)$ too
- The third one: 2n is **O(n)**
- **O(...)** means roughly: "proportional to ..., when n is large enough"

Time complexity

With big-O notation, it doesn't matter whether we count steps or time!

As long as each step takes a constant amount of time:

• if the number of steps is proportional to n^2

• then the amount of time is proportional to n^2 We say that the algorithm has $O(n^2)$ time complexity or simply complexity

Common complexities

Big-O	Name
O (1)	Constant
$O(\log n)$	Logarithmic
O (<i>n</i>)	Linear
$O(n \log n)$	Log-linear
$O(n^2)$	Quadratic
$O(n^3)$	Cubic
O(2 ⁿ)	Exponential

Quiz

An algorithm takes O(n) time to run. What happens to the runtime if the size of the input is doubled?

What about if the algorithm takes $O(n^2)$ time to run?

How does this explain the following facts:

- In the slow file-copying program, it started quickly but gradually got slower as it read the file
- In the fast file-copying program, it carried on at a constant rate

Growth rates

Imagine that we double the input size from n to 2n. If an algorithm is...

- O(1), then it takes the same time as before
- O(log n), then it takes a constant amount more
- O(n), then it takes twice as long
- O(n log n), then it takes twice as long plus a little bit more
- $O(n^2)$, then it takes four times as long
 - This explains why the slow file reading programs started quickly, but then gradually slowed down as they continued reading the file. How?

If an algorithm is $O(2^n)$, then adding *one element* makes it take twice as long

Big O tells you how the performance of an algorithm scales with the input size

Big O mathematically

Big O, formally

Big O measures the growth of a *mathematical function*

- Typically a function T(*n*) giving the number of steps taken by an algorithm on input of size *n*
- But can also be used to measure *space complexity* (memory usage) or anything else
- So for the file-copying program:
 - T(n) = n(n-1)/2
 - T(n) is $O(n^2)$
 - In general, T(n) is O(f(n)), for some function f
 - We often abuse notation and write "T(n) = O(f(n))"

Big O, formally

What does it mean to say "T(n) is O(f(n))"?

• e.g. T(n) is $O(n^2)$

We could say it means T(n) is proportional to f(n)

- i.e. $T(n) = k \times f(n)$ for some k
- e.g. $T(n) = n^2/2$ is $O(n^2)$ (let $k = \frac{1}{2}$)

But this is too restrictive!

- We want T(n) = n(n-1)/2 to be $O(n^2)$
- We want $T(n) = n^2 + 1$ to be $O(n^2)$

Big O, formally

Instead, we say that T(n) is O(f(n)) if:

- T(n) ≤ k × f(n) for some k,
 i.e. T(n) is proportional to f(n) *or lower*!
- This only has to hold for *big enough* n: i.e. for all n above some threshold n_0

If you draw the graphs of T(n) and $k \times f(n)$, at some point the graph of $k \times f(n)$ must permanently overtake the graph of T(n)

- In other words, T(n) grows more slowly than k × f(n) Note that big-O notation is allowed to *overestimate* the complexity!
- $k \times f(n)$ is an *upper bound* on T(n)

Quiz

- Is 3n + 5 in O(n)?
- Is $n^2 + 2n + 3$ in O(n^3)?
- Is it in O(n²)?
- Is it in O(n)?
- Why do we need the threshold n_0 ?

Adding big O

Some functions grow faster than others:

 $O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n)$

When adding two functions, the fastergrowing function "wins":

$$\begin{split} &O(1) + O(\log n) = O(\log n) \\ &O(\log n) + O(n^k) = O(n^k) \ (\text{if } k \ge 0) \\ &O(n^j) + O(n^k) = O(n^k), \text{if } j \le k \\ &O(n^k) + O(2^n) = O(2^n) \end{split}$$

Quiz

What are these in Big O notation (simplified as far as possible)?

- $n^2 + 11$
- $2n^3 + 3n + 1$
- n⁴ + 2ⁿ

Just use hierarchy!

 $\begin{aligned} n^2 + 11 &= O(n^2) + O(1) = O(n^2) \\ 2n^3 + 3n + 1 &= O(n^3) + O(n) + O(1) = O(n^3) \\ n^4 + 2^n &= O(n^4) + O(2^n) = O(2^n) \end{aligned}$

Multiplying big O

 $O(f(n)) \times O(g(n)) = O(f(n) \times g(n))$

• e.g., $O(n^2) \times O(\log n) = O(n^2 \log n)$

You can drop constant factors:

- $k \times O(f(n)) = O(f(n))$, if k is constant
- e.g. $2 \times O(n) = O(n)$

(Exercise: show that these are true)

Quiz

What is $(n^2 + 3)(2^n \times n) + \log_{10} n$ in Big O notation?

Answer

 $(n^{2} + 3)(2^{n} \times n) + \log_{10} n$ = $O(n^{2}) \times O(2^{n} \times n) + O(\log n)$ = $O(2^{n} \times n^{3}) + O(\log n)$ (multiplication) = $O(2^{n} \times n^{3})$ (hierarchy)

> log₁₀n = log n / log 10 i.e. log n times a constant factor

Reasoning about programs

Complexity of a program

Most "primitive" operations take O(1) time:

```
int add(int x, int y) {
   return x + y;
}
```

(Exception: creating an array of length n takes O(n) time)

This is called the *uniform cost model*, because all primitive operations are assigned the same cost

Complexity of a program

```
What about loops?
```

(Assume the array size is *n*)

```
boolean member(Object[] array, Object x) {
  for (int i = 0; i < array.length; i++)
    if (array[i].equals(x))
      return true;
  return false;
}</pre>
```

Complexity of a program

What about loops?

(Assume the array size is *n*)

boolean member(Object[] array, Object x) {
 for (int i = 0; i < array.length; i++)
 if (array[i].equals(x))
 return true;
 return false;
} Loop runs
 O(n) times</pre>

 $O(1) \times O(n) = O(n)$

Loop body takes O(1) time

Complexity of loops

The complexity of a loop is: the number of times it runs times the complexity of the body

For nested loops, start from the innermost loop and work your way outwards!

What about this one?

boolean unique(Object[] a) {

for(int i = 0; i < a.length; i++)
for (int j = 0; j < a.length; j++)
if (a[i].equals(a[j]) && i != j)
return false;</pre>

return true;

What about this one?

What about this one?
void function(int n) {
for(int i = 0; i <
$$n \times n$$
,
for (int j = 0; j < $n/2$; $J \rightarrow J$
" thing taking 0(1) time"
}
Inner loop runs
 $n/2 = O(n)$ times:
 $O(n) \times O(1) = O(n)$
Loop body:
 $O(1)$

Here's a new one

boolean unique(Object[] a) {
 for(int i = 0; i < a.length; i++)
 for (int j = 0; j < i; j++)
 if (a[i].equals(a[j]))
 return false;
 return true;</pre>

Here's a new one

Here's a new one

Body is O(1)

ret i < n, so i is O(n)So loop runs O(n)times, complexity: $O(n) \times O(1) = O(n)$

Three nested loops

void something(Object[] a) {
 for(int i = 0; i < a.length; i++)
 for (int j = 0; j < i; j++)
 for (int k = 0; k < j; k++)
 "something that takes 1 step"</pre>

i < n, j < n, k < n, so all three loops run **O(n)** times Total runtime is O(n) × O(n) × O(n) × O(1) = **O(n³)**

What's the complexity?

void something(Object[] a) {

}

for(int i = 0; i < a.length; i++)
for (int j = 1; j < a.length; j *= 2)
... // something taking 0(1) time</pre>

Outer loop is What's the complexity? $O(n \log n)$ Inner loop is void s mething(Object[] a) { $O(\log n)$ for(int i = 0; i < a.length; $i \rightarrow b$ for (int j = 1; j < a.lengtn; j *= 2)</pre> \dots // something taking O(1) time }

A loop running through i = 1, 2, 4, ..., n runs **O(log n)** times!

While loops

```
long squareRoot(long n) {
    long i = 0;
                                Each iteration takes
                                   O(1) time...
    long j = n;
                              but how many times
    while (i < j) {
                               does the loop run?
        long k = (i + j) / 2;
        if (k*k <= n) i = k;
        else j = k-1;
    return i;
```

}

While loops

```
long squareRoot(long n) {
    long i = 0;
                                     Each iteration
                                     takes O(1) time
    long j = n;
    while (i < j) {
         long k = (i + j) / 2;
         if (k*k <= n) i = k;
         else j = k-1;
                                     ...and halves
                                   j-i, so O(log n)
    return i;
                                      iterations
```

Summary: loops

Basic rule for complexity of loops:

- Number of iterations times complexity of body
- for (int i = 0; i < n; i++) ...: n iterations
- for (int i = 1; i \leq n; i *= 2): O(log n) iterations
- While loops: have to work out number of iterations If the complexity of the body depends on the value of the loop counter:
 - e.g. O(i), where $0 \le i < n$
 - You can safely round i up to O(n)!

Sequences of statements

What's the complexity here?
(Assume that the loop bodies are O(1))
for (int i = 0; i < n; i++) ...
for (int i = 1; i < n; i *= 2) ...</pre>

Sequences of statements

What's the complexity here? (Assume that the loop bodies are O(1)) for (int i = 0; i < n; i++) ... for (int i = 1; i < n; i *= 2) ... First loop: **O(n)** Second loop: O(log n) Total: $O(n) + O(\log n) = O(n)$ For sequences, add the complexities!

Modelling a slow dynamic array

int[] array = $\{\};$ for (int i = 0; i < n; i+=100) { int[] newArray = new int[array.length+100]; for (int j = 0; j < i; j++) newArray[j] = array[j];newArray = array;

Modelling a slow dynamic array Rest of loop body **O(1)**, int[] array = {}; so loop body for (int i = 0; i < n; O(1) + O(n) = O(n)int[] newArray = new int[rray.length+100]; for (int j 0; j < i; j++) newArray[= array[i]; newArray Outer loop: Inner loop n iterations, **O(n)** O(n) body, so **O(n²)**

Modelling a fast dynamic array

int[] array = $\{0\}$; for (int i = 1; i <= n; i*=2) { int[] newArray = new int[array.length*2]; for (int j = 0; j < i; j++) newArray[j] = array[j];newArray = array; }

Modelling a fast dynamic array

int[] array = $\{0\}$; for (int i = 1; i <= n; i*=2) { int[] newArray = new int[array.length*2]; for (int j = 0; j < i; j++)</pre> newArray[j] array[j]; newArray = Outer loop: log n iterations, O(n) body, so **O(n log n)**??

Modelling a fast dynamic array

 $int[] array = \{0\};$ for (int i = 1; i <= n; i*=2) { int[] newArray = new int[array.length*2]; for (int j = 0; j < i; j++)</pre> newArray[j] array[j]; newArray = Here we "round up" O(i) to O(n). This causes an overestimate!

A complication

Our algorithm has O(n) complexity, but we've calculated O(n log n)

- An overestimate, but not a severe one (If n = 1000000 then n log n = 20n)
- This can happen but is normally not severe
- To get the right answer: do the maths

Good news: for "normal" loops this doesn't happen

- If all bounds are n, or $n^2\!\!,$ or another loop variable, or a loop variable squared, or ...

Main exception: loop variable *i* doubles every time, body complexity depends on *i*

Doing the sums

In our example:

- The inner loop's complexity is O(i)
- In the outer loop, i ranges over 1, 2, 4, 8, ..., 2^a

Instead of rounding up, we will add up the time for all the iterations of the loop:

 $1 + 2 + 4 + 8 + ... + 2^a$

 $= 2 \times 2^{a} - 1 < 2 \times 2^{a}$

Since $2^a \le n$, the total time is at most 2n, which is O(n)

A last example

The outer loop
runs
$$O(\log n)$$

times A last example The j-loop
runs n^2 times
for (int i = 1; i <= n; i *= -7 {
for (int j = 0; j < n*n; j++)
for (int k = 0; k <= j; k++)
// 0(1)
for (int j = 0; j < n; j++)
// 0(1)
}
This loop is
 $O(n^2)$

Total: $O(\log n) \times (O(n^2) \times O(n^2) + O(n))$ = $O(n^4 \log n)$

A couple of loose ends

Big Ω

Recall that big-O allows us to *overestimate* the growth rate of a function:

• $2n^2+3n+1$ is $O(n^2)$, but also $O(n^3)$

Big-O has a cousin, big- Ω ("big-omega"), which allows us to *underestimate* the growth rate:

• $2n^2+3n+1$ is $\Omega(n^2)$, but also $\Omega(n)$

Formally we just replace a \leq with a \geq in the definition of big-O:

- T(n) is O(n²) if T(n) $\leq kn^2$ for some k, for big enough n
- T(n) is $\Omega(n^2)$ if T(n) $\geq kn^2$ for some k, for big enough n

Big Θ

There is also big- Θ ("big-theta"), which is like big-O but requires the complexity given to be tight:

• For example, $2n^2+3n+1$ is $\Theta(n^2)$ (and nothing else)

• T(n) is $\Theta(f(n))$ if T(n) is both O(f(n)) and $\Omega(f(n))$ You should recognise all three notations, but we will mostly stick to big-O in this course

- The other two are generally harder to calculate accurately
- Big- Ω is mostly useful for defining big- Θ
- Big-O gives you an upper bound, which can tell you that an algorithm is fast enough

Amortised time complexity

How long does it take to add one element to a dynamic array?

- Simple answer: O(n)
- But adding n elements to an empty array takes O(n) time, O(1) "per element". So it's somehow O(1) "on average"?
- If we measure the runtime of a program using dynamic arrays, it will look as if each operation took O(1) time!

To capture this, we say that adding an element to a dynamic array has O(1) *amortised complexity*

- An operation has O(f(n)) amortised complexity if, for any sequence of operations, the *total runtime* is as if each operation took O(f(n)) time
- e.g.: O(log n) amortised complexity \rightarrow n operations take O(n log n) time
- Amortised complexity can occur when an expensive operation is always balanced out by many cheap ones

Be careful to distinguish amortised from "normal" complexity

- If your program has real-time constraints, then a data structure with amortised complexity may be totally unsuitable
- But for most applications, it works just fine

The uniform cost model

We assumed that all primitive operations took constant time – this is called the *uniform cost model*

But – if your programming language supports integers of unbounded size – then arithmetic on bigger numbers takes longer!

- Most arithmetic operations grow as O(log n), where n is the magnitude of the number
- This is called the *logarithmic cost model*
- It is common when integers can be unbounded size, and also in some specialised applications like cryptography

Life without big O notation

What happens without big O?

How many steps does this function take on an array of length *n* (in the worst case)?

boolean unique(Object[] a) {

for(int i = 0; i < a.length; i++)</pre>

for (int j = 0; j < a.length; j++)

if (a[i].equals(a[j]) && i != j)

return false;

return true;

Assume that loop body takes 1 step

What about this one?

boolean unique(Object[] a) {

for(int i = 0; i < a.length; i++)
for (int j = 0; j < i; j++)
if (a[i].equals(a[j]),
 return false;
return true;
Loop runs to i
instead of n</pre>

Some hard sums

When *i* = 0, inner loop runs 0 times When *i* = 1, inner loop runs 1 time

When i = n-1, inner loop runs n-1 times

Total:

. . .

•
$$\sum_{i=0}^{n-1} i = 0 + 1 + 2 + \dots + n-1$$

which is n(n-1)/2

What about this one?

boolean unique(Object[] a) { for(int i = 0; i < a.leng+; i++)</pre> for (int j = 0; iif (a[i].equal Answer: return fal n(n-1)/2return true;

What about this one?

```
void something(Object[] a) {
  for(int i = 0; i < a.length; i++)
   for (int j = 0; j < i; j++)
    for (int k = 0; k < j; k++)
        "something that takes 1 step"</pre>
```

More hard sums

 $\sum_{i=0} \sum_{j=0} \sum_{k=0} \frac{1}{k}$

 $n-1 \ i-1 \ j-1$

Inner loop: *k* goes from 0 to j-1

Outer loop: *i* goes from 0 to *n*-1

> Middle loop: *j* goes from 0 to i-1

Counts: how many values *i*, *j*, *k* where $0 \le i < n, 0 \le j < i, 0 \le k \le j$

More hard sums

 $n-1 \ i-1 \ j-1$

 $\sum_{i=0}^{r} \sum_{j=0}^{r} \sum_{k=1}^{r} 1$

Answer (I looked it up): n(n-1)(n-2)/6

Counts: how many values *i*, *j*, *k* where $0 \le i < n, 0 \le j < i, 0 \le k \le j$

What about this one?

Sums vs integrals

$$\sum_{x=a}^{b} f(x) \approx \int_{a}^{b} f(x)$$

For example:

$$\sum_{i=0}^{n} i = n(n+1)/2 \qquad \int_{0}^{n} x \, dx = n^2/2$$

Not quite the same, but close! (usually gives the right complexity)

A better approach: *"Finite calculus: a tutorial for solving nasty sums"* - adapts rules of calculus to work with sums instead of integrals

Big O in retrospect

We do lose some precision by throwing away constant factors

- ...you probably *do* care about a factor of 100 performance improvement
- ...but in practice the constant factors don't get much higher than 2,

On the other hand, life gets much simpler:

- A small phrase like O(n²) tells you exactly how the performance *scales* when the input gets big
- It's a lot easier to calculate big-O complexity than a precise formula (lots of good rules to help you)

Big O is normally an excellent compromise!