“Computer Science is no more about computers than astronomy

is about telescopes.”
- Often attributed to Edsger Dijkstra

Foundations of Computing

“| fear - as far as | can tell - that
most undergraduate degrees in
computer science these days are
basically Java vocational training.” -
Alan Kay

Turing machines

moving CPU

readiwrite device — I

memory tape

Image from 2009.igem.org

A Turing Machine

If you are in state 1 and reading a 0, move right and change to state 2.
If you are in state 1 and reading a 1, write a 0.

If you are in state 2 and reading a 0, write a 1 and change to state 3.

If you are in state 2 and reading a 1, move right.

If you are in state 3 and reading a 0, move right and halt.

If you are in state 3 and reading a 1, move left.

[EEE TR TTERT TR PRI

[TR T TR Ty

TURING MACHINE

http://www.youtube.com/watch?v=0FUQwlKdDKI

Register Machines

Sample Program:
Add the contents of register 1 to the contents of register 2

20 /oo0 /@ |

Register 1 Register 2 Register 3

 ow [v [2 [5
b e [2 | 1 [
5 few [[[

Equivalence Theorem

A function is computed by some Turing machine if and only
if it is computed by some register machine.

The Lambda Calculus

Idea: introduce a notation for functions
Ax.x? - the function that squares any number

AX.Ay.x+y - the function that, given two numbers, returns their sum

The Lambda Calculus

Expression s;t ;= x | st | Ax.t

Rule a: Ax.---x--- is equal to Ay.---y---

So Ax.x?% = Ay.y?

Rule B: (Ax.s)t is equal to s[t/x], the result of substituting t for x in s

So (Ax.x?)4 = 42

Coding for Numbers

We can code numbers as lambda-calculus expressions:

D VONAY

1T = AX.AY.Xy

2 = AX.Ay.x(xy)

3 = Ax.Ay.x(x(xy))

Now, what do these do?

INONAVANTAvA\rAY)
AX.Ay.xy

Equivalence Theorem

The following are all equal:

The set of functions computed by Turing machines

The set of functions computed by register machines

The set of functions computed by lambda-calculus expressions
The set of functions computed by Post canonical systems

The set of functions computed by Petri nets

Church-Turing Thesis

A function is computable by a human being following some
algorithm if and only if it is computable by a Turing machine.

The Halting Problem

Given a Turing machine M and input n, decide if Turing machine M will halt when
started with input n.

More precisely:

Assign a natural number to every Turing machine T T, T, ...

Given numbers m, n, decide if Turing machine T will halt when started with input
n

The Halting problem 1s not Turing
computable!

Suppose Turing machine M:

e giveninputmandn
e outputs Tif T_ halts with input n and 0 if it does not

Let H be the machine which, given input n:

1. Creates a copy, so the tapeis n 1s,then 0,thenn 1s
2. Follows the operations of M
3. If the tape has a 1, go into an infinite loop. If the tape has a 0, halt.

Let H be Turing machine T, . Does H halt when given input h?

Other uncomputable functions

The following problems are uncomputable: ~ \ v
e The Halting problem A " }
e Given a set of Wang tiles, can they cover the plane? { D <
e Given a Diophantine equation, does it have a solution?
e The Busy Beaver function: 322 — 22y —y?2z—T7=0

BB(n) = the largest number k such that
there exists a Turing machine with n states
that outputs k when started with a blank tape

Images from Wikipedia

P vs NP

A decision problem is a function with outputs 0 and 1.

Let P be the set of all decision problems that can be computed by a Turing
machine in polynomial time.

Let NP be the set of all decision problems that can be computed by a
non-deterministic Turing machine in polynomial time.

s P = NP?

$1,000,000 if you can find the answer...

Type Theory

The Typed Lambda-Calculus

Add a notion of types (sets) to the lambda calculus.
x1:A1, - xn:An - t:B

Example:

X:A—B,yAr-xy:B

What rules should these judgements obey?

Rules for the Typed Lambda Calculus

1. If x1:A1, xn:An, y:B +1:C then x1:A1, xn:Arl = Ay.t:B—C

2. If X, :A1, xn:An -~ s:B—C and x1:A1, xn:An, y:B +1:B then
XA, XA LY B EstC

The same as the rules for IF...THEN in logic

“A remarkable correspondence” - Curry, 1958

More Rules!

1. If x1:A1, xn:An, y:B +s:C and x1:A1, xn:An, y:B+-1.D
then x.:A, .., x ‘A y:B+(st):CxD

2. |If X, AL, ., X ALY BETCXD then X, AL, X ALYBET C

3. If x1:A1, xn:An, y:B -1:C x D then x1:A1, xn:An, y:BF t,: D

The same as the rules of AND in logic!

The Curry-Howard Isomorphism

Logic Type Theory
IFATHEN B Functions from A to B
AAND B Pairs AxB
AORB Disjoint union A+B

For all x, P(x)

Dependent function type lNx.P(x)

Proposition

Type

Proof

Program

Type theory-based languages

e Agda (developed here at Chalmers)
e also Coq, Idris, HOL, ...

Both a programming language and a theorem prover!

Formalization of Mathematics

proof
ot “?S=4{zrxs¢&fz}"
show "'7.S Q range [
proof
assume “7 S5 € range f*

then obtain y where fy: "?S = fy"
show

proof cases

assume "y €75 "
hence " Y §£ f.l/) by simp

Image from vdash.org

Correct-by-construction Programming

interp : REnv ty;, — Lang ty;, ty,ws T — 10 (Pair (REnv ty,,;) (interpTy T)))
interp env (READ p) +— do val « readIORef (rlookup p env)
return (MkPair env val)
interp env (WRITE v p) do writeIORef (rlookup p env) v
return (MkPair env ())
interp env (LOCK; p pri) do lock (llookup i env)
return (MkPair (lockEnv p env) ())
interp env (UNLOCK; p) do unlock (llookup i env)
return (MkPair (unlockEnv p env) ())
interp env (ACTION qo) do io
return (MkPair env ())
interp env (RETURN val) return (MkPair env val)
interp env (CHECK (Just a) j n) interp env (j a)

Do you want to know more?

e TMV028/DIT322 Finite automata theory
Bachelor course given in LP3

e DAT350/DIT233 Types for Programs and Proofs
Master course given in LP1

e DAT060/DIT201 Logic in Computer Science
Master course given in LP1

e DAT415/DIT311 Computability
Master course given in LP2

