"Computer Science is no more about computers than astronomy is about telescopes."

- Often attributed to Edsger Dijkstra

Foundations of Computing

"I fear - as far as I can tell - that most undergraduate degrees in computer science these days are basically Java vocational training." -Alan Kay

Turing machines

Image from 2009.igem.org

A Turing Machine

- If you are in state 1 and reading a 0, move right and change to state 2.
- If you are in state 1 and reading a 1, write a 0.
- If you are in state 2 and reading a 0, write a 1 and change to state 3.
- If you are in state 2 and reading a 1, move right.
- If you are in state 3 and reading a 0, move right and halt.
- If you are in state 3 and reading a 1, move left.

Register Machines

3.

End

Sample Program:

Add the contents of register 1 to the contents of register 2 **Register 2 Register 3 Register 1** STEP INSTRUCTION REGISTER GO TO STEP [BRANCH TO STEP] 1. Deb 1 2 3 2. Inc 2 1

Equivalence Theorem

A function is computed by some Turing machine if and only if it is computed by some register machine.

The Lambda Calculus

Idea: introduce a notation for functions

 $\lambda x.x^2$ - the function that squares any number

 $\lambda x.\lambda y.x+y$ - the function that, given two numbers, returns their sum

The Lambda Calculus

Expression s,t ::= x | st | λx .t

Rule α : λx .---x--- is equal to λy .---y---

So $\lambda x.x^2 = \lambda y.y^2$

Rule β : ($\lambda x.s$)t is equal to s[t/x], the result of substituting t for x in s So ($\lambda x.x^2$)4 = 4²

Coding for Numbers

We can code numbers as lambda-calculus expressions:

 $0 = \lambda x.\lambda y.y$ $1 = \lambda x.\lambda y.xy$ $2 = \lambda x.\lambda y.x(xy)$ $3 = \lambda x.\lambda y.x(x(xy))$

Now, what do these do?

λx.λy.λz.λw.xz(yzw) λx.λy.xy

Equivalence Theorem

The following are all equal:

- The set of functions computed by Turing machines
- The set of functions computed by register machines
- The set of functions computed by lambda-calculus expressions
- The set of functions computed by Post canonical systems
- The set of functions computed by Petri nets
- ····.

Church-Turing Thesis

A function is computable by a human being following some **algorithm** if and only if it is computable by a Turing machine.

The Halting Problem

Given a Turing machine M and input n, decide if Turing machine M will halt when started with input n.

More precisely:

Assign a natural number to every Turing machine $T_0, T_1, T_2, ...$

Given numbers m, n, decide if Turing machine ${\rm T_m}$ will halt when started with input n

The Halting problem is **not** Turing computable!

Suppose Turing machine M:

- given input m and n
- outputs 1 if T_m halts with input n and 0 if it does not

Let H be the machine which, given input n:

- 1. Creates a copy, so the tape is n 1s, then 0, then n 1s
- 2. Follows the operations of M
- 3. If the tape has a 1, go into an infinite loop. If the tape has a 0, halt.

Let H be Turing machine T_h . Does H halt when given input h?

Other uncomputable functions

The following problems are uncomputable:

- The Halting problem
- Given a set of Wang tiles, can they cover the plane?
- Given a Diophantine equation, does it have a solution?
- The **Busy Beaver** function:

BB(n) = the largest number k such that there exists a Turing machine with n states that outputs k when started with a blank tape

$$3x^2 - 2xy - y^2z - 7 = 0$$

Images from Wikipedia

P vs NP

A decision problem is a function with outputs 0 and 1.

Let P be the set of all decision problems that can be computed by a Turing machine in **polynomial time**.

Let NP be the set of all decision problems that can be computed by a non-deterministic Turing machine in polynomial time.

Is P = NP?

\$1,000,000 if you can find the answer...

Type Theory

The Typed Lambda-Calculus

Add a notion of types (sets) to the lambda calculus.

 $x_1:A_1, \dots, x_n:A_n \vdash t:B$

Example:

 $x : A \rightarrow B, y : A \vdash xy : B$

What rules should these judgements obey?

Rules for the Typed Lambda Calculus

1. If $x_1:A_1$, ..., $x_n:A_n$, $y:B \vdash t:C$ then $x_1:A_1$, ..., $x_n:A_n \vdash \lambda y.t: B \rightarrow C$

2. If $x_1:A_1, ..., x_n:A_n \vdash s:B \rightarrow C$ and $x_1:A_1, ..., x_n:A_n, y:B \vdash t:B$ then $x_1:A_1, ..., x_n:A_n, y:B \vdash st:C$

The same as the rules for IF...THEN in logic

"A remarkable correspondence" - Curry, 1958

More Rules!

1. If $x_1:A_1, ..., x_n:A_n, y:B \vdash s:C \text{ and } x_1:A_1, ..., x_n:A_n, y:B \vdash t:D$ then $x_1:A_1, ..., x_n:A_n, y:B \vdash (s,t):C \times D$

2. If
$$x_1:A_1, ..., x_n:A_n, y:B \vdash t:C \times D$$
 then $x_1:A_1, ..., x_n:A_n, y:B \vdash t_1 : C$

3. If
$$x_1:A_1, ..., x_n:A_n, y:B \vdash t:C \times D$$
 then $x_1:A_1, ..., x_n:A_n, y:B \vdash t_2:D$

The same as the rules of AND in logic!

The Curry-Howard Isomorphism

Logic	Type Theory
IF A THEN B	Functions from A to B
A AND B	Pairs AxB
A OR B	Disjoint union A⊎B
For all x, P(x)	Dependent function type Пх.P(x)
Proposition	Туре
Proof	Program

Type theory-based languages

- Agda (developed here at Chalmers)
- also Coq, Idris, HOL, ...

Both a programming language and a theorem prover!

Formalization of Mathematics

proof let " $?S = \{x.x \notin fx\}$ " show " $?S \not\in range f$ " proof assume " $?S \in range f$ " then obtain y where fy: "?S = fy" ...show False proof cases assume " $y \in ?S$ " hence " $y \not\in fy$ " by SIMD

Image from vdash.org

Correct-by-construction Programming

interp : REnv $ty_{in} \rightarrow \text{Lang } ty_{in} \ ty_{out} \ T \rightarrow \text{IO} (\text{Pair} (\text{REnv} \ ty_{out}) (\text{interpTy} \ T))$		
interp env	$(READ\ p)$	$\mapsto \underline{\operatorname{do}} val \leftarrow \mathbf{readIORef} \ (\mathbf{rlookup} \ p \ env)$
		\mathbf{return} (MkPair $env \ val$)
interp env	$(WRITE \ v \ p)$	$\mapsto \underline{\text{do}} \operatorname{\textbf{writeIORef}} (\operatorname{\textbf{rlookup}} p \ env) \ v$
		\mathbf{return} (MkPair env ())
interp env	$(LOCK_i \ p \ pri)$	$\mapsto \underline{\operatorname{do}} \operatorname{\mathbf{lock}} (\operatorname{\mathbf{llookup}} i \ env)$
		return (MkPair (lockEnv p env) ())
$interp \ env$	$(UNLOCK_i p)$	$\mapsto \underline{\operatorname{do}} \operatorname{unlock} (\operatorname{llookup} i \operatorname{env})$
		return (MkPair (unlockEnv p env) ())
interp env	(ACTION io)	$\mapsto \underline{\mathrm{do}} io$
		return (MkPair env ())
$interp \ env$	(RETURN val)	\mapsto return (MkPair <i>env val</i>)
interp env (C	$CHECK\;(Just\;a)\;j\;n)$	$\mapsto \mathbf{interp} \ env \ (j \ a)$

Do you want to know more?

- TMV028/DIT322 Finite automata theory Bachelor course given in LP3
- DAT350/DIT233 Types for Programs and Proofs Master course given in LP1
- DAT060/DIT201 Logic in Computer Science Master course given in LP1
- DAT415/DIT311 Computability Master course given in LP2