"Computer Science is no more about computers than astronomy is about telescopes."

- Often attributed to Edsger Dijkstra

Foundations of Computing

"I fear - as far as I can tell - that most undergraduate degrees in computer science these days are basically Java vocational training." Alan Kay

Turing machines

A Turing Machine

- If you are in state 1 and reading a 0 , move right and change to state 2 .
- If you are in state 1 and reading a 1 , write a 0 .
- If you are in state 2 and reading a 0 , write a 1 and change to state 3 .
- If you are in state 2 and reading a 1 , move right.
- If you are in state 3 and reading a 0 , move right and halt.
- If you are in state 3 and reading a 1 , move left.

Register Machines

Sample Program:

Add the contents of register 1 to the contents of register 2

Register 1
Register 2
Register 3

\Rightarrow| STEP | Instruction | REGISTER | GO TO STEP | [BRANCH TO STEP] |
| :--- | :--- | :---: | :---: | :---: |
| 1. | Deb | 1 | 2 | 3 |
| 2. | Inc | 2 | 1 | |
| 3. | End | | | |
| | | | | |

Equivalence Theorem

A function is computed by some Turing machine if and only if it is computed by some register machine.

The Lambda Calculus

Idea: introduce a notation for functions
$\lambda x . x^{2}$ - the function that squares any number
$\lambda x . \lambda y . x+y$ - the function that, given two numbers, returns their sum

The Lambda Calculus

Expression s,t ::=x | st | $\lambda x . t$
Rule a : λx.---x--- is equal to λy.--- $y---$
So $\lambda x \cdot x^{2}=\lambda y \cdot y^{2}$
Rule β : $(\lambda x . s) t$ is equal to $s[t / x]$, the result of substituting t for x in s
So $\left(\lambda x \cdot x^{2}\right) 4=4^{2}$

Coding for Numbers

We can code numbers as lambda-calculus expressions:
$0=\lambda x \cdot \lambda y \cdot y$
$1=\lambda x \cdot \lambda y \cdot x y$
$2=\lambda x \cdot \lambda y \cdot x(x y)$
$3=\lambda x \cdot \lambda y \cdot x(x(x y))$
Now, what do these do?
$\lambda x . \lambda y . \lambda z . \lambda w . x z(y z w)$
$\lambda x . \lambda y . x y$

Equivalence Theorem

The following are all equal:

- The set of functions computed by Turing machines
- The set of functions computed by register machines
- The set of functions computed by lambda-calculus expressions
- The set of functions computed by Post canonical systems
- The set of functions computed by Petri nets

Church-Turing Thesis

A function is computable by a human being following some algorithm if and only if it is computable by a Turing machine.

The Halting Problem

Given a Turing machine M and input n , decide if Turing machine M will halt when started with input n.

More precisely:
Assign a natural number to every Turing machine $T_{0}, T_{1}, T_{2}, \ldots$
Given numbers m, n, decide if Turing machine T_{m} will halt when started with input n

The Halting problem is not Turing computable!

Suppose Turing machine M:

- given input m and n
- outputs 1 if T_{m} halts with input n and 0 if it does not

Let H be the machine which, given input n :

1. Creates a copy, so the tape is $n 1 s$, then 0 , then $n 1 s$
2. Follows the operations of M
3. If the tape has a 1 , go into an infinite loop. If the tape has a 0 , halt.

Let H be Turing machine T_{h}. Does H halt when given input h ?

Other uncomputable functions

The following problems are uncomputable:

- The Halting problem
- Given a set of Wang tiles, can they cover the plane?
- Given a Diophantine equation, does it have a solution?
- The Busy Beaver function:
$B B(n)=$ the largest number k such that there exists a Turing machine with n states that outputs k when started with a blank tape

P vs NP

A decision problem is a function with outputs 0 and 1 .
Let P be the set of all decision problems that can be computed by a Turing machine in polynomial time.

Let NP be the set of all decision problems that can be computed by a non-deterministic Turing machine in polynomial time.

Is $P=N P ?$
$\$ 1,000,000$ if you can find the answer...

Type Theory

The Typed Lambda-Calculus

Add a notion of types (sets) to the lambda calculus.
$x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t: B$
Example:
$x: A \rightarrow B, y: A \vdash x y: B$
What rules should these judgements obey?

Rules for the Typed Lambda Calculus

1. If $x_{1}: A_{1}, \ldots, x_{n}: A_{n^{\prime}}, y: B \vdash t: C$ then $x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash \lambda y . t: B \rightarrow C$
2. If $x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash s: B \rightarrow C$ and $x_{1}: A_{1}, \ldots, x_{n}: A_{n^{\prime}}: \mathrm{y}: \mathrm{B} \vdash \mathrm{t}: \mathrm{B}$ then $x_{1}: A_{1}, \ldots, x_{n}: A_{n^{\prime}}, y: B \vdash s t: C$

The same as the rules for IF...THEN in logic
"A remarkable correspondence" - Curry, 1958

More Rules!

1. If $x_{1}: A_{1}, \ldots, x_{n}: A_{n^{\prime}}, y: B \vdash s: C$ and $x_{1}: A_{1}, \ldots, x_{n}: A_{n^{\prime}} y: B \vdash t: D$ then $x_{1}: A_{1}, \ldots, x_{n}: A_{n^{\prime}} y: B \vdash(\mathrm{~s}, \mathrm{t}): \mathrm{C} x \mathrm{D}$
2. If $x_{1}: A_{1}, \ldots, x_{n}: A_{n^{\prime}}, y: B \vdash t: C x D$ then $x_{1}: A_{1}, \ldots, x_{n}: A_{n^{\prime}} y: B \vdash t_{1}: C$
3. If $x_{1}: A_{1}, \ldots, x_{n}: A_{n^{\prime}} y: B \vdash t: C x D$ then $x_{1}: A_{1}, \ldots, x_{n}: A_{n^{\prime}} y: B \vdash t_{2}: D$

The same as the rules of AND in logic!

The Curry-Howard Isomorphism

Logic	Type Theory
IF A THEN B	Functions from A to B
A AND B	Pairs AxB
A OR B	Disjoint union A $\uplus \mathrm{B}$
For all $x, \mathrm{P}(\mathrm{x})$	Dependent function type Пx.P(x)
Proposition	Program
Proof	\ldots
\ldots	

Type theory-based languages

- Agda (developed here at Chalmers)
- also Coq, Idris, HOL, ...

Both a programming language and a theorem prover!

Formalization of Mathematics

```
proof
    let " ?S = {x.x\not\infx} "
    show "?S & range f"
    proof
        assume "?S }\in\mathrm{ range f"
        then obtain y where fy: "?S = fy" ..
        show False
        proof cases
            assume " }y\in?S\mathrm{ "
            hence " }y\not\infy\mathrm{ " by simp
```


Correct-by-construction Programming

```
interp : REnv ty in m Lang ty in tyout T IO (Pair (REnv tyout ) (interpTy T))
interp env (READ p) }\quad\mathrm{ do val }\leftarrow\operatorname{readIORef (rlookup p env)
    return (MkPair env val)
interp env (WRITE vp) \mapsto do writeIORef (rlookup p env)v
    return (MkPair env ())
interp env (LOCK
    return (MkPair (lockEnv p env) ())
interp env (UNLOCK}\mp@subsup{}{i}{}p)\quad\mapsto\underline{\mathrm{ do unlock (llookup i env)}
    return (MkPair (unlockEnv p env)())
interp env (ACTION io) \mapsto \underline{ do io}
    return(MkPair env())
interp env (RETURN val) \mapsto return (MkPair env val)
interp env (CHECK (Just a) j n) \mapsto interp env (j a)
```


Do you want to know more?

- TMV028/DIT322 Finite automata theory Bachelor course given in LP3
- DAT350/DIT233 Types for Programs and Proofs Master course given in LP1
- DAT060/DIT201 Logic in Computer Science Master course given in LP1
- DAT415/DIT311 Computability

Master course given in LP2

