
Foundations of Computing

“Computer Science is no more about computers than astronomy
is about telescopes.”
- Often attributed to Edsger Dijkstra

“I fear - as far as I can tell - that
most undergraduate degrees in
computer science these days are
basically Java vocational training.” -
Alan Kay

Turing machines

Image from 2009.igem.org

A Turing Machine

● If you are in state 1 and reading a 0, move right and change to state 2.
● If you are in state 1 and reading a 1, write a 0.
● If you are in state 2 and reading a 0, write a 1 and change to state 3.
● If you are in state 2 and reading a 1, move right.
● If you are in state 3 and reading a 0, move right and halt.
● If you are in state 3 and reading a 1, move left.

http://www.youtube.com/watch?v=0FUQwlKdDKI

Register Machines

Equivalence Theorem

A function is computed by some Turing machine if and only
if it is computed by some register machine.

The Lambda Calculus

Idea: introduce a notation for functions

λx.x2 - the function that squares any number

λx.λy.x+y - the function that, given two numbers, returns their sum

The Lambda Calculus

Expression s,t ::= x | st | λx.t

Rule α: λx.---x--- is equal to λy.---y---

So λx.x2 = λy.y2

Rule β: (λx.s)t is equal to s[t/x], the result of substituting t for x in s

So (λx.x2)4 = 42

Coding for Numbers

We can code numbers as lambda-calculus expressions:

0 = λx.λy.y
1 = λx.λy.xy
2 = λx.λy.x(xy)
3 = λx.λy.x(x(xy))

Now, what do these do?

λx.λy.λz.λw.xz(yzw)
λx.λy.xy

Equivalence Theorem

The following are all equal:

● The set of functions computed by Turing machines
● The set of functions computed by register machines
● The set of functions computed by lambda-calculus expressions
● The set of functions computed by Post canonical systems
● The set of functions computed by Petri nets
● …..

Church-Turing Thesis

A function is computable by a human being following some
algorithm if and only if it is computable by a Turing machine.

The Halting Problem

Given a Turing machine M and input n, decide if Turing machine M will halt when
started with input n.

More precisely:

Assign a natural number to every Turing machine T0, T1, T2, ...

Given numbers m, n, decide if Turing machine Tm will halt when started with input
n

The Halting problem is not Turing
computable!

Suppose Turing machine M:

● given input m and n
● outputs 1 if Tm halts with input n and 0 if it does not

Let H be the machine which, given input n:

1. Creates a copy, so the tape is n 1s, then 0, then n 1s
2. Follows the operations of M
3. If the tape has a 1, go into an infinite loop. If the tape has a 0, halt.

Let H be Turing machine Th. Does H halt when given input h?

Other uncomputable functions

The following problems are uncomputable:

● The Halting problem
● Given a set of Wang tiles, can they cover the plane?
● Given a Diophantine equation, does it have a solution?
● The Busy Beaver function:

BB(n) = the largest number k such that
there exists a Turing machine with n states
that outputs k when started with a blank tape

Images from Wikipedia

P vs NP

A decision problem is a function with outputs 0 and 1.

Let P be the set of all decision problems that can be computed by a Turing
machine in polynomial time.

Let NP be the set of all decision problems that can be computed by a
non-deterministic Turing machine in polynomial time.

Is P = NP?

$1,000,000 if you can find the answer...

Type Theory

The Typed Lambda-Calculus

Add a notion of types (sets) to the lambda calculus.

x1:A1 , ... , xn:An ⊢ t:B

Example:

x : A⟶B, y:A ⊢ xy : B

What rules should these judgements obey?

Rules for the Typed Lambda Calculus

1. If x1:A1, …, xn:An, y:B ⊢ t:C then x1:A1, …, xn:An ⊢ λy.t : B→C

2. If x1:A1, …, xn:An ⊢ s:B→C and x1:A1, …, xn:An, y:B ⊢ t:B then
x1:A1, …, xn:An, y:B ⊢ st:C

The same as the rules for IF...THEN in logic

“A remarkable correspondence” - Curry, 1958

More Rules!

1. If x1:A1, …, xn:An, y:B ⊢ s:C and x1:A1, …, xn:An, y:B ⊢ t:D
then x1:A1, …, xn:An, y:B ⊢ (s,t):C x D

2. If x1:A1, …, xn:An, y:B ⊢ t:C x D then x1:A1, …, xn:An, y:B ⊢ t1 : C

3. If x1:A1, …, xn:An, y:B ⊢ t:C x D then x1:A1, …, xn:An, y:B ⊢ t2 : D

The same as the rules of AND in logic!

The Curry-Howard Isomorphism

Logic Type Theory

IF A THEN B Functions from A to B

A AND B Pairs AxB

A OR B Disjoint union A⊎B

For all x, P(x) Dependent function type Πx.P(x)

Proposition Type

Proof Program

... ...

Type theory-based languages

● Agda (developed here at Chalmers)
● also Coq, Idris, HOL, …

Both a programming language and a theorem prover!

Formalization of Mathematics

Image from vdash.org

Correct-by-construction Programming

Do you want to know more?

● TMV028/DIT322 Finite automata theory
Bachelor course given in LP3

● DAT350/DIT233 Types for Programs and Proofs
Master course given in LP1

● DAT060/DIT201 Logic in Computer Science
Master course given in LP1

● DAT415/DIT311 Computability
Master course given in LP2

